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Abstract Reactive oxygen species (ROS), including su-
peroxide (·O2

�), hydrogen peroxide (H2O2), and hydroxyl
anion (OH-), and reactive nitrogen species, such as nitric
oxide (NO) and peroxynitrite (ONOO�), are biologically
important O2 derivatives that are increasingly recognized
to be important in vascular biology through their oxida-
tion/reduction (redox) potential. All vascular cell types
(endothelial cells, vascular smooth muscle cells, and ad-
ventitial fibroblasts) produce ROS, primarily via cell
membrane-associated NAD(P)H oxidase. Reactive oxy-
gen species regulate vascular function by modulating cell
growth, apoptosis/anoikis, migration, inflammation, se-
cretion, and extracellular matrix protein production. An
imbalance in redox state where pro-oxidants overwhelm
anti-oxidant capacity results in oxidative stress. Oxidative
stress and associated oxidative damage are mediators of
vascular injury and inflammation in many cardiovascular
diseases, including hypertension, hyperlipidemia, and di-
abetes. Increased generation of ROS has been demon-
strated in experimental and human hypertension. Anti-
oxidants and agents that interrupt NAD(P)H oxidase-
driven ·O2

� production regress vascular remodeling, im-
prove endothelial function, reduce inflammation, and de-
crease blood pressure in hypertensive models. This ex-
perimental evidence has evoked considerable interest
because of the possibilities that therapies targeted against
reactive oxygen intermediates, by decreasing generation
of ROS and/or by increasing availability of antioxidants,
may be useful in minimizing vascular injury and hyper-
tensive end organ damage. The present chapter focuses on
the importance of ROS in vascular biology and discusses
the role of oxidative stress in vascular damage in hyper-
tension.
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Introduction

Reactive oxygen species (ROS) are ubiquitous reactive
derivatives of O2 metabolism found in the environment
and in all biological systems. Reactive oxygen species
from mitochondria and other cellular sources were tradi-
tionally considered as injurious cellular by-products with
the potential to damage lipids, proteins and DNA (Free-
man and Crapo 1982). However, there is now convincing
evidence that ROS are not only toxic consequences of
cellular metabolism but also essential participants in cell
signaling and regulation (Griendling et al. 2000a; Sauer et
al. 2001; Reth 2002; Chiarugi and Cirri 2003). Reactive
oxygen species are implicated in many intracellular sig-
naling pathways leading to changes in gene transcription
and protein synthesis and consequently in cell function.

Within the cardiovascular system, ROS play an es-
sential physiological role in maintaining cardiac and vas-
cular integrity and a pathophysiological role in cardio-
vascular dysfunction associated with conditions such as
hypertension, diabetes, atherosclerosis, ischemia–reperfu-
sion injury, ischemic heart disease, and congestive cardiac
failure (Landmesser and Harrison 2001; Zalba et al.
2001a). Among the major ROS important in these pro-
cesses are superoxide anion (·O2

�), hydrogen peroxide
(H2O2), hydroxyl radical (·OH), and the reactive nitrogen
species, nitric oxide (NO) and peroxynitrite (ONOO�).
Under physiological conditions, ROS are produced in a
controlled manner at low concentrations and function as
signaling molecules regulating vascular smooth muscle
cell (VSMC) contraction–relaxation and VSMC growth
(Rao and Berk 1992; Cosentino et al. 1994; Zafari et al.
1998; Touyz and Schiffrin 1999). Under pathological
conditions increased ROS production leads to endothelial
dysfunction, increased contractility, VSMC growth and
apoptosis, monocyte migration, lipid peroxidation, in-
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flammation, and increased deposition of extracellular
matrix proteins, major processes contributing to vascular
damage in cardiovascular disease (Rao and Berk 1992;
Harrison 1997).

In experimental and clinical hypertension, ROS gener-
ation is increased (Kerr et al. 1999; Romero and Reckel-
hoff 1999; Schnackenberg et al. 1999; Chen et al. 2001).
Treatment with antioxidants improves vascular function
and structure, prevents target-organ damage, and reduces
blood pressure in animal models (Romero and Reckel-
hoff 1999; Schnackenberg et al. 1999; Chen et al. 2001;
Hoagland et al. 2003) and in human hypertension
(Sharma et al. 1996; Duffy et al. 1999; Fotheby et al. 2000;
Boshtam et al. 2002; Mullan et al. 2002). Mouse models
deficient in ROS-forming enzymes have lower blood
pressure compared with wild-type counterparts and an-
giotensin II (Ang II) infusion in these mice fails to induce
hypertension (Bendall et al. 2002; Li and Shah 2003).
Furthermore, in cultured VSMCs and isolated arteries from
hypertensive rats and humans, ROS production is aug-
mented and antioxidant capacity is reduced (Schnacken-
berg et al. 1999; Chen et al. 2001; Touyz and Schiffrin
2001). Accordingly, evidence at both experimental and
clinical levels supports a pathophysiological role for ROS
and oxidative stress in the development and progression of
hypertension and its associated end-organ damage.

In the present review, we focus on the role of ROS in
vascular biology and implications of oxidative stress in
hypertensive vascular damage. Although the cardiac, re-
nal, endocrine, and central nervous systems are also major
targets for oxidative damage by ROS, these systems will
not be discussed here and the reader is referred to ex-
cellent recent reviews on these systems (Wilcox 2002;
Zanzinger 2002; Cantor et al. 2003). In this chapter we
discuss mechanisms whereby ROS are formed in vascular
cells, especially relating to non-phagocytic NAD(P)H
oxidase, how ROS influence vascular function, and what
the implications of oxidative stress are in vascular injury
in hypertension.

Reactive oxygen species and oxidative stress
in the vasculature

Reactive oxygen species are formed as intermediates in
reduction–oxidation (redox) processes, leading from
oxygen to water (Fridovich 1997). The univalent reduc-
tion of oxygen, in the presence of a free electron (e),
yields ·O2

�, H2O2, and ·OH. Superoxide has an unpaired
electron, which imparts high reactivity and renders it
unstable and short-lived. Superoxide is water soluble and
acts either as an oxidizing agent, where it is reduced to
H2O2, or as a reducing agent, where it donates its extra
electron to form ONOO� with NO (Darley-Usmar et al.
1995; Fridovich 1997). In physiological conditions in
aqueous solutions at a neutral pH, the favored reaction
of ·O2

� is the dismutation reaction yielding H2O2. How-
ever, when produced in excess, a significant amount
of ·O2

� reacts with NO to produce ONOO� (Darley-Us-

mar et al. 1995). Superoxide is membrane-impermeable,
but can cross cell membranes via anion channels (Schafer
and Beuttner 2001; Han et al. 2003).

Hydrogen peroxide is produced mainly from dismuta-
tion of ·O2

�. This reaction can be spontaneous or it can be
catalyzed by superoxide dismutase (SOD), of which there
are three isoforms, CuZnSOD, MnSOD, and extracellular
SOD (EC-SOD) (Fridovich 1997). The SOD-catalyzed
dismutation is favored when the concentration of ·O2

� is
low and when the concentration of SOD is high, which
occurs under physiological conditions. Unlike ·O2

�, H2O2
is not a free radical and is a much more stable molecule.
Hydrogen peroxide is lipid soluble, crosses cell mem-
branes, and has a longer half-life than ·O2

�. In biological
systems, it is scavenged by catalase and by glutathione
peroxidase (Schafer and Beuttner 2001). Hydrogen perox-
ide can also be reduced to generate the highly reactive ·OH
(Haber-Weiss or Fenton reaction) in the presence of metal-
containing molecules such as Fe2+ (Fridovich 1997). Hy-
droxyl radical is extremely reactive and unlike ·O2

� and
H2O2, which travel some distance from their site of gen-
eration, ·OH induces local damage where it is formed.

In the vasculature, ·O2
�, H2O2, NO, OONO�, and ·OH

are all produced to varying degrees (Fig. 1). These pro-
oxidants are tightly regulated by anti-oxidants such as
SOD, catalase, thioredoxin, glutathione, anti-oxidant vi-
tamins, and other small molecules (Stralin et al. 1995;
Halliwell 1999; Channon and Guzik 2002; Yamawaki et
al. 2003). Under normal conditions, the rate of ROS
production is balanced by the rate of elimination. How-
ever, a mismatch between ROS formation and the ability
to defend against them by antioxidants results in increased
bioavailability of ROS leading to a state of oxidative
stress (Griendling et al. 2000a; Landmesser and Harrison
2001; Zalba et al. 2001a). The pathogenic outcome of
oxidative stress is oxidative damage (Griendling et al.
2000a; Schafer and Buettner 2001; Zalba et al. 2001a), a
major cause of vascular injury in hypertension.

Production of ROS in vessels

Non-phagocytic, vascular NAD(P)H oxidase(s)

Vascular ROS are produced in endothelial, adventitial,
and VSMCs (Stralin et al. 1995; Rajagopalan et al.
1996a; Halliwell 1999; Channon and Guzik 2002;
Sorescu et al. 2002; Yamawaki et al. 2003) and derived
predominantly from NAD(P)H oxidase, which is a multi-
subunit enzyme (Jones et al. 1996; Azumimi et al. 1999;
Griendling et al. 2000b; Lassegue and Clempus 2003)
that catalyzes the production of ·O2

� by the one electron
reduction of oxygen using NAD(P)H as the electron
donor: 2O2 + NAD(P)H ! 2O2

� + NAD(P)H + H+. The
prototypical and best characterized NAD(P)H oxidase is
that found in phagocytes (neutrophilic and eosinophilic
granulocytes, monocytes, and macrophages; Leusen et al.
1996; Babior et al. 2002; Vignais 2002). Phagocytic
NAD(P)H oxidase comprises at least five components:
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(phox for PHagocyte OXidase), p47phox, p67phox,
p40phox, p22phox, and gp91phox (Babior et al. 2002;
Vignais 2002). Additional components include the small
G proteins Rac2 (Rac1 in some cells) and Rap1A. In
unstimulated cells, p40phox, p47phox, and p67phox exist
in the cytosol, whereas p22phox and gp91phox are lo-
cated in the membranes, where they occur as a hetero-
dimeric flavoprotein, cytochrome b558. Upon cell stim-
ulation, p47phox becomes phosphorylated, the cytosolic
subunits form a complex, which then migrates to the
membrane where it associates with cytochrome b558 to
assemble the active oxidase, which now transfers elec-
trons from the substrate to O2 leading to ·O2

� generation
(Leusen et al. 1996; Babior et al. 2002). Whereas phos-
phorylation of p47phox and p67phox is critically in-
volved in the activation of NAD(P)H oxidase (Touyz et
al. 2003a), phosphorylated p40phox is not essential for
activation and has recently been reported to be a negative
regulator of the oxidase (Lopes et al. 2004).

It is now clearly established that NAD(P)H oxidase is
also functionally important in non-phagocytic cells. In
fact NAD(P)H oxidase is the primary source of ·O2

� in the
vasculature (Berry et al. 2000; Channon and Guzik 2002;
Touyz et al. 2002a; Lassegue and Clempus 2003) and is
functionally active in all layers of the vessel wall: in the
endothelium (Muzaffar et al. 2003), the media (Berry et
al. 2000; Touyz et al. 2002a), the adventitia (Rey and
Pagano 2002), and in cultured VSMCs, fibroblasts, and
endothelial cells (Griendling et al. 1994; Seshiah et al.
2002; Touyz et al. 2002a). Unlike phagocytic NAD(P)H
oxidase, which is activated only upon stimulation and
which generates ·O2

� in a burst-like manner extracellu-
larly (De Leo et al. 1996; Babior et al. 2002), vascular
oxidases are constitutively active, preassembled, and pro-
duce ·O2

� intracellularly in a slow and sustained fashion
and act as intracellular signaling molecules (Li and Shah
2002; Lassegue and Clempus 2003; Table 1).

Fig. 1 Generation of superoxide (·O2
�) and H2O2 from O2 in vas-

cular cells. Many enzyme systems, including NAD(P)H oxidase,
xanthine oxidase, and uncoupled nitric oxide synthase (NOS)
among others, have the potential to generate reactive oxygen spe-
cies (ROS). Superoxide acts either as an oxidizing agent, where it is

reduced to H2O2 by superoxide dismutase (SOD), or as a reducing
agent, where it donates its extra electron (e�) to form ONOO� with
NO. Hydrogen peroxide is scavenged by catalase, glutathione and
thioredoxin systems, and can also be reduced to generate ·OH in the
presence of Fe2+

Table 1 Characteristics of phagocytic and vascular NADPH oxidase

Characteristic Neutrophil Vascular

Activity in basal state Inactive Constitutively active
Inducible by: Cytokines, pathogens Vasoactive agents, growth factors, cytokines, physical factors
Nox2 homologues Nox2 Nox1/Nox2/Nox4/Nox5
Kinetics of ·O2

� release Burst-like Slow and sustained
·O2

� concentration High Low
Site of ·O2

� generation Extracellular Intracellular
Substrate NADPH NADH/NADPH
Small G protein Rac2 Rac1
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All of the phagocytic NAD(P)H oxidase subunits
are expressed, to varying degrees, in vascular cells. In
endothelial and adventitial cells p47phox, p67phox,
p22phox, and gp91phox are present (Rey and Pagano
2002; Lassegue and Clempus 2003; Touyz et al. 2003a).
The situation is more complex in VSMCs, where the
major subunits are not always detected. Only p47phox
and p22phox seem to be consistently expressed (Lassegue
and Clempus 2003). In rat aortic VSMCs, p22phox and
p47phox, but not gp91phox, are present, whereas in hu-
man resistance arteries, all of the major subunits, in-
cluding gp91phox, are expressed (Azumimi et al. 1999;
Touyz et al. 2002a; Yamawaki et al. 2003). Recent studies
demonstrated that the newly discovered gp91phox (Nox2)
homologs, Nox1, Nox4, and Nox5 (Nox for NAD(P)H
Oxidase) are found in the vasculature (Suh et al. 1999;
Cheng et al. 2001; Ago et al. 2004; Hilenski et al. 2004).
Nox1 mRNA is expressed in rat aortic VSMCs and may
be a substitute for gp91phox in these cells (Suh et al.
1999; Griendling et al. 2000b; Touyz et al. 2002a). Al-
though initial studies suggested that Nox1 is a subunit-
independent low capacity ·O2

�-generating enzyme in-
volved in the regulation of mitogenesis (Banfi et al.
2003), recent data indicate that Nox1 requires p47phox
and p67phox and that it is regulated by NoxO1 (Nox
organizer 1) and NoxA1 (Nox activator 1) (Banfi et al.
2003). The exact role of NoxO1 and NoxA1 in vascular
cells is currently unknown. Nox1 may be important in
pathological processes as it is significantly upregulated in
vascular injury (Lassegue and Clempus 2003). Nox4 ap-
pears to be abundantly expressed in all vascular cell types
(Wingler et al. 2001; Yamawaki et al. 2003) and may play
an important role in constitutive production of ·O2

� in
non-proliferating cells (Lassegue et al. 2001; Wingler et
al. 2001). Ago et al. (2004) recently reported that Nox4 is
the major catalytic component of endothelial NAD(P)H
oxidase. A unique p67phox homolog has also been
identified, but it is not yet known whether this isoform is
present in vascular cells (Gauss et al. 2002). The func-
tional significance of NAD(P)H oxidase subunit ho-

mologs in the vasculature is presently unclear and awaits
further clarification.

Vascular NAD(P)H oxidase is regulated by many hu-
moral factors, including cytokines, growth factors, and
vasoactive agents (Lassegue and Clempus 2003; Fig. 1,
2). Physical factors, such as stretch, pulsatile strain, and
shear stress also stimulate NAD(P)H oxidase activation
(Grote et al. 2003; Lassegue and Clempus 2003). Of
particular importance, with respect to hypertension, is
Ang II, which stimulates activation of NAD(P)H oxidase,
increases expression of NAD(P)H oxidase subunits, and
induces ROS production in cultured VSMCs, endothelial
cells, adventitial fibroblasts (Lassegue and Clempus
2003), and in intact arteries (Griendling et al. 1994; Se-
shiah et al. 2002; Touyz et al. 2002a; Yamawaki et al.
2003). Oxidase activation occurs acutely by stimulation
of intracellular signaling molecules (Griendling et al.
2000b; Lassegue and Clempus 2003) and chronically by
upregulation of NAD(P)H oxidase subunits (Touyz et al.
2002a; Lassegue and Clempus 2003). These effects are
mediated via AT1 receptors (Privratsky et al. 2003). In-
terestingly ROS regulate AT1 receptor gene expression,
which in turn modulates ROS formation (Nickenig et al.
2000).

Mechanisms linking Ang II/AT1 to NAD(P)H oxidase
and upstream signaling molecules regulating the oxidase
in vascular cells have not been fully elucidated, but PLD,
PLA, PKC, c-Src, PI3 K, RhoA, and Rac have been
demonstrated to be implicated in AT1 signaling to
NAD(P)H oxidase (Seshiah et al. 2002; Touyz et al.
2003a; Fig. 2). Platelet-derived growth factor (PDGF),
transforming growth factor-b (TGF-b), tumor necrosis
factor (TNF)-a and thrombin also activate NAD(P)H
oxidase in VSMCs (Marumo et al. 1997; De Keulenaer et
al. 1998; Gorlach et al. 2001; Brandes et al. 2002). En-
dothelin-1 increases NAD(P)H oxidase activity in human
endothelial cells (Duerrschmidt et al. 2000) and, in intact
vessels, this effect is mediated via ETA receptors (Li et al.
2003a). Activators of peroxisome proliferator-activated
receptors (PPARs), statins, and antihypertensive drugs,

Fig. 2 Upstream regulators of
NAD(P)H oxidase in vascular
cells. Vasoactive agents, such
as angiotensin II, which signal
through G protein-coupled re-
ceptors (GPCR), growth factors
and cytokines, which signal
through receptor tyrosine ki-
nases and physical factors, such
as stretch and pressure, stimu-
late NAD(P)H oxidase through
multiple signaling cascades. AA
Arachidonic acid, PLA2 phos-
pholipase A2, PLD phospholi-
pase D, PKC protein kinase C
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such as b-blockers, Ca2+ channel blockers, ACE in-
hibitors, and AT1 receptor blockers, downregulate ex-
pression of oxidase subunits and decrease NAD(P)H ox-
idase activity (Dandona et al. 2000; Dhalla et al. 2000;
Mantle et al. 2000; Ohtahara et al. 2001; Taddei et al.
2001; Diep et al. 2002; Wassman et al. 2002). These
actions may have therapeutic potential in cardiovascular
disease.

Other enzymatic sources of ROS in the vasculature

Nitric oxide synthase (NOS), the enzyme primarily re-
sponsible for NO production, can also generate ·O2

� in
conditions of substrate (arginine) or cofactor (tetrahydro-
biopterin; BH4) deficiency (Milstien and Katusic 1999;
Cosentino et al. 2001). These findings have led to the
concept of “NOS uncoupling”, where the activity of the
enzyme for NO production is decreased in association
with an increase in NOS-dependent ·O2

� formation. eNOS
uncoupling has been demonstrated in atherosclerosis
(Vasquez-Vivar et al. 2002), diabetes (Bagi and Koller
2003), hyperhomocysteinemia (Virdis et al. 2003), and
hypertension (Landmesser et al. 2003; Podjarny et al.
2003). Landmesser et al. (2003) reported that, in hyper-
tension, increased NAD(P)H oxidase-derived ·O2

� leads to
augmented ROS bioavailability, which causes oxidation of
BH4 and consequent uncoupling of eNOS, further con-
tributing to ROS production. Gene transfer of GTP cy-
clohydrolase (GTPCH) I, the enzyme responsible for re-
generating BH4, restored arterial GTPCH I activity and
BH4 levels, reduced ROS, and improved endothelium-
dependent relaxation and NO release in DOCA-salt hy-
pertensive rats, in which endothelial dysfunction results
from NAD(P)H-dependent oxidant excess (Zheng et al.
2003). The potential role of uncoupling of NOS as a
source of ROS in hypertension is also supported in human
studies where increased endothelial ·O2

� production in
vessels from diabetic and hypertensive patients is inhibited
by sepiapterin, a precursor of BH4 (Guzik et al. 2002;
Higashi et al. 2002a). The relative importance of NOS-
versus NAD(P)H oxidase-mediated ·O2

� generation in
hypertension probably relates, in part, to the magnitude
of endothelial dysfunction, since most conditions in
which ·O2

� is derived from NOS are associated with
marked endothelial dysfunction (Channon and Guzik
2002.

Other enzymatic sources capable of generating ROS in
the vasculature are xanthine oxidase, cytochrome P450,
mitochondrial respiratory chain enzymes, and phagocyte-
derived myeloperoxidase (Taniyama and Griendling
2003; Fig. 1). However, the contribution of these enzymes
to vascular generation of ROS is relatively minor com-
pared with NAD(P)H oxidase.

Signaling pathways and molecular targets of ROS

Although ROS have been shown to be involved in many
signal transduction pathways (Fig. 3), the exact molecu-
lar targets have not yet been clearly defined. Addition
of exogenous ROS activates mitogen-activated protein
(MAP) kinases, including ERK1/2, p38MAP kinase,
JNK, and ERK5, important in cell growth, inflammation,
apoptosis, and cell differentiation, respectively (Torres
2003). In cultured VSMCs, generation of endogenous
ROS by Ang II influences activation of p38MAP kinase,
JNK, and ERK5, but not of ERK1/2 (Ushio-Fukai et
al. 1998; Viedt et al. 2000; Touyz et al. 2003b, 2004).
However, serotonin-mediated ERK1/2 activation in
smooth muscle cells is redox-sensitive, but in fibroblasts
it is not (Lee et al. 1999), suggesting that redox-regulation
of MAP kinases may be ligand- and cell-specific. Al-
though MAP kinases are redox-sensitive, they are prob-
ably not direct substrates of ·O2

� and H2O2. Upstream
modulators such as MEKs, tyrosine kinases, and phos-
phatases are likely direct targets (Lee and Esselman
2002).

Receptor and non-receptor tyrosine kinases are also
influenced by ROS (Yang et al. 2000). Exogenous H2O2
induces tyrosine phosphorylation and activation of
PDGFR and EGFR, probably due to ROS-mediated in-
hibition of dephosphorylation of PDGFR and EGFR by
inactivation of membrane-associated protein tyrosine
phosphatases (Yang et al. 2000; Droge 2001). Oxygen
intermediates, which are produced in response to tyrosine
kinase receptor activation, are also involved in transacti-
vation of PDGFR and EGFR by Ang II. Under patho-
logical conditions associated with oxidative stress, such
as hypertension, ROS may directly activate cell surface
receptors, thereby amplifying the process of ·O2

� gener-
ation. Non-receptor tyrosine kinases such as Src, JAK2,
Pyk2, and Akt, all of which have been implicated in
cardiovascular remodeling and vascular damage, are also
regulated by ROS (Griendling et al. 2000a; Touyz and
Schiffrin 2000; Droge 2001; Touyz et al. 2002b).

The best-established direct targets of ROS signaling
are protein tyrosine phosphatases (Lee et al. 1998; Meng
et al. 2002) and transcription factors (Haddad 2002;
Turpaev 2002). All tyrosine phosphatases have a con-
served 230-amino acid domain that contains a reactive
and redox-regulated cysteine, which catalyses the hy-
drolysis of protein phosphotyrosine residues by the for-
mation of a cysteinyl-phosphate intermediate (Brigelius-
Flohe et al. 2004). Oxidation of this cysteine residue to
sulfenic acid by H2O2 renders the tyrosine phosphatase
inactive (Brigelius-Flohe et al. 2004). Thus ROS inhibit
activity of tyrosine phosphatases, resulting in increased
tyrosine phosphorylation, which influences oxidative
stress-induced activation of receptor protein tyrosine ki-
nases, such as the EGFR, IGF-1R, and PDGFR (Kamata
et al. 2000), and non-receptor tyrosine kinases, such as
Src, FAK, PI3 K, and JAK2.

Transcription factors, including nuclear factor kB
(NFkB), activator protein 1 (AP-1), c-Myb, Sp-1, p53,
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early growth response-1 (egr-1), and hypoxia-inducible
factor (HIF-1) are directly activated by ROS (Haddad
2002; Turpaev 2002). NFkB and AP-1 induce expression
of pro-inflammatory genes, including monocyte chemo-
tactic protein-1 (MCP-1), adhesion molecules, and inter-
leukins (Brigelius-Flohe et al. 2004), that play a role in
vascular inflammation associated with hypertension and
atherosclerosis. Most redox-sensitive transcription factors
possess conserved cysteines, which are susceptible to
oxidative modification (Haddad 2002). It has been sug-
gested that the reactive cysteines constitute redox-sulf-
hydryl switches that directly regulate gene expression
(Kamata et al. 2000). Another mode of redox regulation
of transcription factor activity is by the redox sensitivity
of protein degradation. Increased activation of vascular
NFkB and AP-1 and associated inflammatory and mito-
genic responses have been demonstrated in hypertensive
rats (Taddei et al. 2001). These actions have been at-
tributed, in part, to oxidative excess.

In addition to influencing cellular processes associated
with growth and inflammation, ROS modulate intracel-
lular free Ca2+ concentration ([Ca2+]i), a major determi-
nant of vascular contraction/dilation. Superoxide and

H2O2 increase [Ca2+]i in VSMCs and endothelial cells
(Lounsbury et al. 2000). These effects have been at-
tributed to redox-dependent inositol trisphosphate-in-
duced Ca2+ mobilization, increased Ca2+ influx, and de-
creased Ca2+-ATPase activation (Lounsbury et al. 2000;
Ermak and Davies 2001). Plasma membrane K+ channels
in VSMCs controlling hyperpolarization-elicited relax-
ation are opened by mechanisms associated with thiol
oxidation by ROS (Touyz and Schiffrin 2000; Droge
2001; Ermak and Davies 2001; Touyz et al. 2002b). These
redox-regulated Ca2+ processes may be more important in
stress responses than in receptor-mediated signaling by
growth factors or cytokines and may play a role in altered
vascular contractility in hypertension. Contractile re-
sponses to H2O2 are exaggerated in arteries from spon-
taneously hypertensive rats (SHR) compared with nor-
motensive counterparts (Gao and Lee 2001), suggesting
that in addition to impaired endothelium-dependent va-
sodilation (due to increased quenching of NO by ·O2

�),
redox-sensitive Ca2+ changes could contribute to altered
vascular contractility in hypertension.

Fig. 3 Redox-dependent signaling pathways in vascular cells. In-
tracellular ROS influence the activity of protein tyrosine phos-
phatases (PTP) by modifying cysteine residues. Oxidation of the
cysteine residue to sulfenic acid by H2O2 renders PTPs inactive,
whereas reduction renders PTPs active. Activated PTP decreases
activity of protein tyrosine kinases (PTK) and mitogen-activated
kinases (MAPK), whereas inactivated PTP have opposite actions.
ROS also influence gene and protein expression by activating
transcription factors, such as NFkB and AP-1. ROS stimulate ion

channels, such as plasma membrane Ca2+ and K+ channels, leading
to changes in cation concentration and matrix metalloproteinases
(MMPs), which influence extracellular matrix proteins (ECM)
degradation. Activation of these redox-sensitive pathways results in
many cellular responses, which, if uncontrolled, could contribute to
altered vascular tone, increased vascular smooth muscle cell
(VSMC) growth, inflammation, and increased deposition of extra-
cellular matrix protein, leading to vascular remodeling in hyper-
tension. # Decreased effect, " increased effect
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Vascular effects of ROS

Vascular growth and inflammation

Reactive oxygen species stimulate growth factor-like
cellular responses, such as intracellular alkalinization,
MAP kinase phosphorylation, tyrosine kinase activation,
DNA synthesis, and increased expression of proto-onco-
genes (Rao and Berk 1992; Droge 2001). During vascu-
lar damage in hypertension when oxidative stress is in-
creased, redox-sensitive growth processes may lead to
accelerated proliferation and hypertrophy, further con-
tributing to vascular injury and remodeling (Rao and Berk
1992; Griendling et al. 2000a; Touyz 2003a; Fig. 4). In
addition to growth-promoting actions, ROS induce ap-
optosis and differentiation under certain circumstances.
This differential response appears to relate to the specific
species generated, the concentration of ROS, and the
cellular localization of ROS (Deshpande et al. 2002; Li et
al. 2003b). At high concentrations (>100 mmol/l) H2O2
and peroxynitrite are pro-apoptotic and induce anoikis
(cell detachment and shedding), whereas at lower con-
centrations they stimulate growth and differentiation
(Deshpande et al. 2002; Li et al. 1999, 2003b).

Reactive oxygen species also modulate vascular struc-
ture in hypertension by increasing deposition of extra-
cellular matrix proteins, such as collagen and fibronectin.
Superoxide anion and H2O2 influence activity of vascular
MMP2 and MMP9, which promote degradation of base-
ment membrane and elastin, respectively (Rajagopalan et
al. 1996b). Redox-sensitive inflammatory processes, in-
cluding expression of proinflammatory molecules, such
as MCP-1, osteopontin, and interleukin-6, expression of
adhesion molecules, including vascular cell adhesion
molecule-1 (VCAM-1) and intracellular adhesion mole-
cule-1 (ICAM-1), lipid peroxidation, and cell migra-
tion, further contribute to vascular remodeling in hyper-
tension (Muller et al. 2000; Luft 2001; Suematsu et al.
2002).

Oxygen radicals induce endothelial permeability with
extravasation of plasma proteins and other macromo-
lecules, and recruitment of inflammatory proteins and
cells, which also impair endothelial function and aggra-
vate vascular damage (Alexander 1995; Kristal et al.
1998). Peripheral polymorphonuclear leukocytes, which
generate ·O2

�, participate in oxidative stress and inflam-
mation in patients with hypertension (Alexander 1995;
Rajagopalan et al. 1996b; Kristal et al. 1998). The co-
existence of an inflammatory reaction with oxidative
stress induces endothelial dysfunction. Many of the re-
dox-sensitive vascular changes that occur in hypertension
also exist in atherosclerotic vessels.

Vascular contraction/dilation

Impaired endothelium-mediated vasodilation in hyper-
tension and hypercholesterolemia has been linked to de-
creased NO bioavailability. This may be secondary to
decreased synthesis of NO and/or to increased degrada-
tion of NO because of its interaction with ·O2

� to form
ONOO� (Tschudi et al. 1996; List et al. 1997; Somers and
Harrison 1999). Peroxynitrite is a weak vasodilator com-
pared with NO and has pro-inflammatory properties
(Szabo 2003). In experimental models of hypertension,
hypercholesterolemia, and diabetes and in hypertensive
patients, endothelial function is improved by anti-oxidant
vitamins, probucol, SOD, or sepiapterin (a stable pre-
cursor of BH4) (Virdis et al. 2003; Mitchell et al. 2004).

Vasomotor tone may also be modulated through direct
ROS effects. Reactive oxygen species appear to elicit
both contraction and dilation, depending on the vascular
bed and type of species generated. Hydrogen peroxide
causes vasodilation of pulmonary, coronary, and mesen-
teric arteries and has been considered to be an endothe-
lium-derived relaxing factor (Somers and Harrison 1999;
Yada et al. 2003). In rat aorta, Ang II stimulates vaso-
constriction via H2O2-dependent mechanisms (Torrecillas
et al. 2001), whereas in human and porcine vessels, acute

Fig. 4 Vascular effects of re-
active oxygen species (ROS).
Increased bioavailability of
ROS influences cellular pro-
cesses leading to vascular
smooth muscle cell (VSMC)
growth, inflammation, migra-
tion, and extracellular matrix
(ECM) protein deposition as
well as endothelial damage.
MMP Matrix metalloproteinas-
es
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vasoconstriction by Ang II is not mediated via ROS
(Schuijt et al. 2003; Touyz 2003b). In aortic and mesen-
teric arteries from SHR, redox-mediated contractile ef-
fects are enhanced (Gao and Lee 2001). Major factors
underlying these differential vascular responses to acti-
vated oxygen metabolites could relate to the blood vessel
studied, the presence or absence of the endothelium, the
concentration and species of free radical studied, and the
compartment in which ·O2

� or H2O2 predominate (Touyz
2003b). At present it is still unclear exactly what the
functions of ·O2

� and H2O2 are with respect to vascular
contraction/dilation in physiological and pathophysio-
logical conditions.

Reactive oxygen species in hypertension

Oxidative stress in genetic models of hypertension

Reactive oxygen species play an important pathophysio-
logical role in hypertension. This is evidenced by find-
ings that oxidative stress is increased in hypertension and
that treatment with antioxidants or agents that inhibit
NAD(P)H oxidase-driven generation of ROS reduces, and
may even prevent, blood pressure elevation in hyperten-
sive animals. Genetic models of hypertension, such as
SHR (Zalba et al. 2000) and stroke-prone SHR (SHRSP)
(Chen et al. 2001) exhibit enhanced NAD(P)H oxidase-
mediated ·O2

� generation in resistance arteries (mesen-
teric), conduit vessels (aorta), and kidneys (Zalba et al.
2000; Chen et al. 2001; Fig. 5). These processes are as-
sociated with increased expression of NAD(P)H oxidase
subunits, particularly p22phox and p47phox, and in-
creased activity of the enzyme (Lassegue and Clempus
2003). 8-Hydroxy-20-deoxyguanosine, a marker for oxi-
dative stress-induced DNA damage, and protein car-
bonylation, a marker for oxidation status of proteins that
are enhanced in aorta, heart, and kidney, are markedly
suppressed in SHR and SHRSP compared with normo-
tensive Wistar Kyoto rats, as is the expression of the re-
dox regulating protein thioredoxin (Tanito et al. 2004).
Male SHR have a higher vascular ·O2

� concentration than
female counterparts, a phenomenon that has been linked
to upregulation of AT1 receptors in male SHR arteries

(Dantas et al. 2004). Several polymorphisms in the pro-
moter region of the p22phox gene have been identified in
SHR, which could contribute to enhanced NAD(P)H ox-
idase activity (Zalba et al. 2001b). These findings may
have clinical relevance since an association between a
p22phox gene polymorphism and NAD(P)H oxidase-me-
diated ·O2

� production in the vascular wall of patients
with atherosclerosis and hypertension has been described
(Diez et al. 2003; Moreno et al. 2003). Increased ex-
pression of p47phox has been demonstrated in the renal
vasculature, macula densa, and distal nephron from young
SHR, suggesting that upregulation of renal NAD(P)H
precedes development of hypertension (Chabrashvili et al.
2002). The importance of p47phox was demonstrated in
p47phox�/� mice, which failed to develop hypertension
in response to Ang II infusion (Landmesser et al. 2002).
Diminished NO bioavailability as a consequence of en-
hanced vascular ·O2

� generation may also contribute to
oxidative stress in SHR and SHRSP. Treatment with an-
tioxidant vitamins, NAD(P)H oxidase inhibitors, SOD
mimetics, BH4, and AT1 receptor blockers decrease vas-
cular ·O2

� production and attenuate, to varying degrees,
the development of hypertension in these genetic models
of hypertension (Sharma et al. 1996; Schnackenberg et al.
1999; Chen et al. 2001; Hong et al. 2001). Lifelong
treatment with antioxidants can even prevent develop-
ment of hypertension in SHR (Zhan et al. 2004).

Oxidative stress and experimentally induced hypertension

Oxidative excess has been demonstrated in various
models of experimental hypertension, including Ang II-
induced hypertension (Laursen et al. 1997; Virdis et al.
2004), Dahl-salt-sensitive hypertension (Tojo et al. 2002),
lead-induced hypertension (Ding et al. 2001), obesity-
associated hypertension (Dobrian et al. 2001), mineralo-
corticoid hypertension (Wu et al. 2001; Virdis et al.
2002), 2-kidney, 1-clip hypertension (Welch et al. 2003),
and postmenopausal hypertension (Fortepiani et al. 2003;
Table 2). Increased activation of vascular NAD(P)H ox-
idase (Lassegue and Clempus 2003) and xanthine oxidase
(Fortepiani et al. 2003) and uncoupling of eNOS (Milstien
and Katusik 1999; Cosentino et al. 2001; Vasquez-Vivar
et al. 2002) have been implicated in enhanced ·O2

� gen-
eration in experimental hypertension. Inhibition of ROS
generation with apocynin or allopurinol and scavenging
of free radicals with antioxidants or SOD mimetics de-
creases blood pressure and prevents development of hy-
pertension in most models of experimental hypertension
(Sharma et al. 1996; Chen et al. 2001; Frenoux et al.
2002; Park et al. 2002; Tanito et al. 2004). These bene-
ficial effects have been attributed to improved endothelial
function, vascular regression, and reduced vascular in-
flammation (Touyz 2000; Wilcox 2002). Interestingly,
norepinephrine-induced hypertension is not associated
with enhanced vascular oxidative stress and SOD does not
decrease blood pressure in this model (Laursen et al.
1997). These findings suggest that blood pressure itself

Fig. 5 Detection of vascular superoxide by dihydroethidine fluo-
rescence in hypertensive rats. Shown are baseline superoxide levels
in aorta from normotensive control Wistar Kyoto rats (WKY) and
stroke-prone spontaneously hypertensive rats (SHR-SP) treated or
not with the NAD(P)H oxidase inhibitor, apocynin. The increase in
superoxide involves all layers within the vessel wall. E Endothe-
lium, M media, A adventitia
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may not be the primary cause of oxidative excess in hy-
pertension.

Oxidative stress in human hypertension

Clinical studies have demonstrated that essential hyper-
tensive patients produce excessive amounts of ROS
(Prabha et al. 1990; Sagar et al. 1992; Lacy et al. 2000;
Minuz et al. 2002; Stojiljkovic et al. 2002) and have de-
creased antioxidant capacity (Russo et al. 1998). In most
of these studies, hypertensive patients are salt-sensitive
and exhibit some degree of renal dysfunction (Manning et
al. 2003). Oxidative stress has also been demonstrated in
patients with renovascular hypertension (Higashi et al.
2002b), malignant hypertension (Lip et al. 2002), and in
pre-eclampsia (Lee et al. 2003). Most of these findings
are based on increased levels of plasma and urine TBARS
and 8-epi-isoprostanes, systemic markers of lipid perox-
idation and oxidative stress (Sagar et al. 1992; Minuz et
al. 2002; Stojiljkovic et al. 2002). In never-treated mild-
to-moderate hypertension lipid peroxidation is not in-
creased (Cracowski et al. 2003), suggesting that oxidative
stress may not be important in mild hypertension.

Decreased antioxidant activity and reduced levels of
ROS scavengers such as vitamin E, glutathione, and SOD
(Sagar et al. 1992) and increased activation of vascular
NAD(P)H oxidase may contribute to oxidative excess in
hypertensive patients (Berry et al. 2000; Bengtsson et al.
2003). Activation of the renin–angiotensin system has
been proposed as a major mediator of NAD(P)H oxidase
activation and ROS production in human hypertension
(Touyz 2003a). In fact some of the therapeutic blood
pressure-lowering effects of AT1 receptor blockers and
ACE inhibitors have been attributed to inhibition of

NAD(P)H oxidase activity and decreased ROS production
(Ghiadoni et al. 2003). It has also been suggested that
p22phox polymorphisms may play a role in altered
NAD(P)H oxidase-generated ·O2

� production in human
cardiovascular disease (Schachinger et al. 2001; Zalba et
al. 2001b; Moreno et al. 2003; Dantas et al. 2004). In
particular the -930(A/G) polymorphism in the p22(phox)
promoter may be a novel genetic marker associated with
hypertension (Zalba et al. 2001b). However, to confirm
that these polymorphisms are indeed markers for hyper-
tension, studies in large populations are necessary.

Based on experimental evidence and clinical studies
that oxidative stress plays a key role in vascular damage,
there has been great interest in developing strategies that
target ROS in the treatment of hypertension and other
cardiovascular diseases. Therapeutic approaches that have
been considered include mechanisms to increase antiox-
idant bioavailability through diet or supplementation and/
or to reduce generation of ROS by decreasing activity
of ·O2

�-generating enzymes and by increasing levels of
BH4 (Brown and Hu 2001; Cai et al. 2003). Findings from
clinical trials have been conflicting. Until definitive data
become available, antioxidants should not be recom-
mended in the prevention and management of hyperten-
sion (Galley et al. 1997; Taddei et al. 1998; Chappell et
al. 1999; HOPE Investigators 2000; Brown and Hu 2001;
Digiesi et al. 2001; Khaw et al. 2001; Kim et al. 2002; Wu
et al. 2002; Vivekananthan et al. 2003).

Conclusions

Reactive oxygen species are produced in the vessel wall
in a controlled and tightly regulated manner. Superoxide
and H2O2 have important signaling properties, mainly
through oxidative modification of proteins and activation
of transcription factors that maintain vascular function
and structure. In hypertension, dysregulation of enzymes
such as NAD(P)H oxidase, NOS, xanthine oxidase, mi-
tochondrial enzymes, or SOD that generate ·O2

�, H2O2,
and ·OH, altered thioredoxin and glutathione systems, or
reduced scavenging by anti-oxidants, results in increased
formation of ROS, which has damaging actions on the
vasculature. Reactive oxygen species in hypertension
contribute to vascular injury by promoting VSMC growth,
extracellular matrix protein deposition, activation of ma-
trix metalloproteinases, inflammation, endothelial dys-
function, and increased vascular tone. In experimental
hypertension oxidative stress is increased. Clinical data
suggest that hypertensive patients, especially those with
severe hypertension, salt-sensitive hypertension, and reno-
vascular hypertension, exhibit oxidative excess. Although
inconclusive at present, treatment strategies to alter ROS
bioavailability by decreasing production and/or by in-
creasing radical scavenging, may regress vascular re-
modeling, prevent further vascular injury, and reduce
blood pressure and associated target organ damage in
hypertensive patients. With greater insights and under-
standing of processes regulating vascular ROS metabo-

Table 2 Clinical and experimental forms of hypertension which
exhibit oxidative stress. (" Increase, – no change, SHR sponta-
neously hypertensive rats, SHRSP stroke-prone SHR)

Type of hypertension Reactive oxygen
species bioavailability

Human hypertension
Mild essential hypertension –
Severe hypertension "
Salt-sensitive hypertension "
Malignant hypertension "
Renovascular hypertension "
Pre-eclampsia "

Genetic forms of hypertension
SHR "
SHRSP "

Experimentally induced hypertension
Angiotensin II-infused "
Norepinephrine-infused –
Salt-sensitive (Dahl SS, salt-loaded

SHRSP)
"

Lead-induced "
Obesity-associated "
2-kidney 1-clip "
Postmenopausal "
Mineralocorticoid "
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lism and identification of molecular pathways that tip the
equilibrium to states of oxidative stress which cause
vascular damage, it may be possible to target therapies
more effectively so that detrimental actions of vascular
oxygen free radicals can be reduced and beneficial effects
of NO· can be enhanced. Such therapies may be useful in
the treatment of hypertension and in the prevention of
target-organ damage.
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