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Abstract Reactive oxygen species are increased by hy-
perglycemia. Hyperglycemia, which occurs during dia-
betes (both type 1 and type 2) and, to a lesser extent,
during insulin resistance, causes oxidative stress. Free
fatty acids, which may be elevated during inadequate
glycemic control, may also be contributory. In this re-
view, we will discuss the role of oxidative stress in dia-
betic complications. Oxidative stress may be important in
diabetes, not just because of its role in the development
of complications, but because persistent hyperglycemia,
secondary to insulin resistance, may induce oxidative
stress and contribute to beta cell destruction in type 2
diabetes. The focus of this review will be on the role of
oxidative stress in the etiology of diabetic complications.
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Introduction

There is much evidence that oxidative stress is involved
in the etiology of several diabetic complications (Giug-
liano and Ceriello 1996; Feldman et al. 1997; Ruggiero et
al. 1997; McDonagh and Hokama 2000; Vinik et al. 2000;
Kowluru and Kennedy 2001; Chang et al. 2003). Oxida-
tive stress results when the rate of oxidant production

exceeds the rate of oxidant scavenging. During diabetes
or insulin resistance, failure of insulin-stimulated glucose
uptake by fat and muscle causes glucose concentrations in
blood to remain high. Consequently, glucose uptake by
insulin-independent tissues increases. Increased glucose
flux both enhances oxidant production and impairs anti-
oxidant defenses by multiple interacting pathways which
are described here and in Fig. 1. Glucose can cause non-
enzymatic glycation of proteins, which can be oxidants
(Baynes and Thorpe 1999). Free glucose activates aldose
reductase activity and the polyol pathway, which de-
creases NADPH/NADP+ ratios (Dunlop 2000). Excess
glucose may activate protein kinase C (PKC) by several
mech-anisms, including through de novo synthesis of
diacylglycerol (DAG), by activation of phospholipase C,
and by inhibition of DAG kinase (Xia et al. 1994, 1996;
King et al. 1996). PKC increases oxidative stress by ac-
tivating mitochondrial NADPH oxidase (Inoguchi et al.
2000). Increased oxidative glucose metabolism itself in-
creases mitochondrial production of the superoxide anion
(O2

.�), which will then be converted to the hydroxyl rad-
ical (OH.�), and hydrogen peroxide (H2O2) (Nishikawa et
al. 2000). In addition, mitochondrial O2

.� production may
inhibit activity of glyceraldehyde-3-phosphate dehydro-
genase (GAPDH) activity (Nishikawa et al. 2000). As a
result, glycolytic intermediates upstream of GAPDH ac-
cumulate, leading to increased substrate-directed activi-
ty of the de novo DAG synthetic pathway, which fur-
ther activates PKC and NADPH oxidase, as well as
the hexosamine biosynthetic pathway (Nishikawa et al.
2000). Glucosamine-6-phosphate, produced by the hexo-
samine biosynthetic pathway, inhibits activity of glucose-
6-phosphate dehydrogenase (G6PD), the rate-limiting
enzyme in the pentose shunt pathway (Kanji et al. 1976).
Since G6PD activity is coupled to reduction of NADP+ to
NADPH, activation of the hexosamine biosynthetic path-
way would further decrease NADPH/NADP+ ratios. De-
creased NADPH/NADP+ ratios, resulting from inhibition
of G6PD or stimulation of NADPH oxidase, can increase
oxidative stress by two mechanisms, first, by decreasing
the regeneration of the important cellular antioxidant,
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reduced glutathione (GSH) from oxidized glutathione
(GSSG), and second, by decreasing availability of
NADPH, thereby decreasing activity of catalase, the en-
zyme responsible for converting the reactive oxygen spe-
cies (ROS), H2O2, to H2O. Indeed, glutathione scaveng-
ing activity and NADPH content are decreased in vascular
endothelial tissues by high glucose conditions (Kashiwagi
et al. 1996). In addition, in vascular tissue, inflammation
can stimulate inducible nitric oxide synthase (iNOS) ex-
pression by macrophages and smooth muscle cells, lead-
ing to the free radical, nitric oxide (NO.). NO. can react
with O2

.� to produce the highly reactive peroxynitrite
(ONOO.�), which can increase lipid peroxidation, protein
nitration, and oxidize LDL (Griendling and FitzGerald
2003). In addition to oxidative stress resulting from glu-
cose flux and metabolism, metabolism of free fatty acids
(FFA), which are elevated in diabetes and insulin-resis-
tance, requires b-hydroxylation and utilizes acetyl-CoA.
FFA metabolism can increase oxidant status, as demon-
strated by activation of PKC activity and a decrease in the
NF-kB inhibitor, IkB-a (Itani et al. 2002). Thus, there is
no single pathway by which oxidative stress is increased
by diabetes-induced hyperglycemia. This being said, if
oxidative stress is ultimately responsible for the patho-
genesis of diabetic complications, it may be particularly
difficult to prevent or attenuate the adverse effects of
hyperglycemia, owing to the multiple pathways by which
hyperglycemia causes oxidative stress.

Mechanisms by which oxidative stress may
be responsible for the pathology
of diabetic complications

There is increasing evidence that acute changes in redox
status of enzymes and transcription factors, as well as
changing ratios of NAD+ cofactors, participates in sig-
naling during normal cellular physiology. For example,
H2O2, resulting from mitochondrial metabolism, can ac-
tivate the c-Jun N-terminal kinase (JNK) and inhibit
glycogen synthase activity (Nemoto et al. 2000), and
production of H2O2 is necessary to activate DNA syn-
thesis in response to growth factors such as PDGF
(Sundaresan et al. 1995). Expression of circadian rhythm-
responsive genes has recently been shown to be regulated
by fluctuations of NADP+ and NADPH (Rutter et al.
2001), and NAD+ increases the association of GAPDH
with a transcriptional complex that activates expression of
the gene encoding histone H2B during S phase (Zheng et
al. 2003).

However, chronic or excessive increases in oxidant
production can adversely affect cellular physiology and
function. For example, if PKC or NOS activities are
necessary for normal tissue function, excessive PKC and
NOS activities may disturb the normal function of af-
fected tissues. Furthermore, while physiological produc-
tion of H2O2 promotes cell cycle progression in response
to growth factors, excessive production of H2O2 does not
accelerate DNA synthesis, but, paradoxically, may induce
cell cycle arrest by oxidation-induced degradation of
Cdc25C (Savitsky and Finkel 2002). Chronic or excessive
oxidative stress may interfere with the normal function of
tissues affected by diabetic hyperglycemia, by increasing
blood flow and disturbing hemodynamics in the retina

Fig. 1 Schematic diagram of
pathways that contribute to ox-
idative stress in response to in-
creased glucose flux
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(Kunisaki et al. 1995; Kowluru and Kennedy 2001),
contractility of vascular smooth muscle cells (Sharpe et
al. 1998), and decreasing neural conductivity in peripheral
nerves (Hounsom et al. 2001). These defects may, in part,
be due to altered activities of signaling pathways that
regulate differentiated function of these tissues. In addi-
tion, differentiation of progenitor cells that serve to re-
pair and regenerate differentiated tissues may be impaired
(Stepanovic et al. 2003). In diabetic complications, the
effects of oxidative stress may not be sufficient to elicit
massive tissue destruction, nevertheless, oxidant damage
in individual cells may reach sufficient threshold to cause
DNA strand breaks and induce cell death (Du et al. 2003),
and this may impair the integrity and function of the en-
tire tissue.

In addition to affecting the static function of signaling
pathways, hyperglycemia-induced oxidative stress can
affect gene expression. Oxidative stress induces expres-
sion of genes which attempt to protect cells from oxidant-
induced damage of proteins, DNA, and lipids. For ex-
ample, genes encoding free radical scavenging enzymes,
and enzymes that regulate DNA repair or cell cycle arrest,
including genes which stabilize p53, are induced by oxi-
dative stress (Hancock et al. 2001; Liu et al. 2001; Napoli
et al. 2001; Owuor and Kong 2002; Nicoletti and Stella
2003). Many of these genes are regulated by NF-kB. Nor-
mally, NF-kB is maintained in an inactive state in the
cytoplasm due to association with IkB, however, in re-
sponse to cellular disturbances, such as inflammation or
oxidative stress, IkB is phosphorylated by Ik-kinase, and
NF-kB is released to activate genes to restore appropriate
redox homeostasis (Garcia-Ruiz et al. 1995; Ozes et al.
1999; Yamamoto and Gaynor 2001). If restoration of
homeostasis is unsuccessful, or of sufficient magnitude,
oxidative stress will induce cell death through activation
of signal transduction pathways, including the p38/mito-
gen-activated protein kinase (MAPK) pathway, and cas-
pases, poly-ADP-ribosyltransferase (PARP), and p53-de-
pendent activation of proapoptotic genes and repression
of antiapoptotic genes (Owuor and Kong 2002; Nicoletti
and Stella 2003; Oren 2003). Oxidation can also alter
DNA binding of transcription factors such as NF-kB and
p53 by oxidizing or nitrosylating free thiols in the DNA
binding regions (Marshall et al. 2000). There are likely to
be other mechanisms by which oxidative stress can reg-
ulate gene expression that do not involve NF-kB. For
example, oxidative stress inhibits expression of the de-
velopmental control gene, Pax3 (Chang et al. 2003), and
the segment of DNA which is required for oxidative stress
inhibition does not contain a binding element for NF-kB
or any other redox-recognized transcription factor (Wang
and Loeken, unpublished results).

In addition to altering expression of genes that are
involved in cell survival or death, oxidative stress can
interfere with the expression of genes that are necessary
for differentiated cell function. For example, hypergly-
cemia-induced pathways activate expression of genes
encoding the IGF-1 receptor, TGF-bI, plasminogen acti-
vator I, and endothelin 1 in renal glomeruli (Sugimoto et

al. 1996; Hoffman et al. 1998; Benigni et al. 2000; Gold-
berg et al. 2002) (although inhibition of endothelin 1 has
also been reported; Shin et al. 1995), and activate ex-
pression of vascular endothelial growth factor in vascular
smooth muscle cells (Natarajan et al. 1997). Yet, whether
altered expression of these genes is precipitated by oxi-
dative stress, and whether altered gene expression is pri-
marily responsible for the pathogenesis of the diabetic
complication can be difficult to demonstrate. However, in
diabetic embryopathy, a diabetic complication in which
the early embryo of a mother with diabetes develops
congenital malformations, there is evidence that oxidative
stress-induced alteration of gene expression is primarily
responsible. Many laboratories have shown that oxidative
stress is increased in rodent embryos in experimental
models of diabetic embryopathy (Hagay et al. 1995; Tro-
cino et al. 1995; Eriksson and Siman 1996; Sivan et al.
1996; Viana et al. 1996; Siman and Eriksson 1997a, b;
Yang et al. 1997; Wentzel and Eriksson 1998; Wentzel et
al. 1999). Hyperglycemia-induced oxidative stress is as-
sociated with altered expression of genes that regulate
redox status in embryos (Forsberg et al. 1996; Wentzel et
al. 1999; Cederberg et al. 2000). Maternal hyperglycemia
alters expression of genes that control essential develop-
mental processes, such as Pax3, which controls neural
tube and neural crest development (Phelan et al. 1997;
Fine et al. 1999), and oxidative stress mediates the ad-
verse effects of hyperglycemia to inhibit Pax3 expression
(Chang et al. 2003). As a consequence of insufficient
Pax3 expression, differentiation of Pax3-dependent tis-
sues fails, and malformations such as neural tube and
cardiac outflow tract defects occur. There are likely to be
other developmental control genes whose expression is
impaired by oxidative stress and lead to maldevelopment
of other organs. Thus, determining how oxidative stress
disturbs expression of genes which control differentiation
or differentiated function will reveal essential processes in
the progression of diabetic complications.

Is oxidative stress responsible for pathology?

The previous discussion cites evidence that diabetes- or
insulin resistance-induced hyperglycemia causes oxida-
tive stress, and that if oxidant induction of homeostatic
mechanisms are insufficient to restore physiologic redox
status, normal cellular function could be impaired, and
tissue integrity could be affected. However, demonstra-
tion that hyperglycemia-induced oxidative stress is pri-
marily responsible for the pathology of diabetic compli-
cations has been difficult, and may be tissue-specific. For
example, certain microvascular complications, such as
retinopathy and nephropathy, fail to occur in nondiabetic
insulin-resistant patients, even though these tissues gen-
erate increased O2

.� production in response to excess
glucose and FFA. This could indicate that other metabolic
disturbances subsequent to the onset of diabetes con-
tribute to these complications, or else that there is a
threshold effect required to elicit tissue damage. On the
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other hand, there is evidence, both from in vivo and in
vitro studies with animal models, that ameliorating oxi-
dative stress can prevent or attenuate several diabetic
complications, including nephropathy, retinopathy, mac-
rovasculopathy, and embryopathy. Specifically, vitamin E
normalizes retinal blood flow and PKC activity in vas-
cular tissue of diabetic rats (Kunisaki et al. 1995, 1996).
Diabetic embryopathy of rat or mouse embryos is pre-
vented by vitamin C, vitamin E, superoxide dismutase, N-
acetyl-cysteine, or glutathione ethyl ester (Sivan et al.
1996; Viana et al. 1996; Siman and Eriksson 1997b;
Wentzel et al. 1997; Chang et al. 2003). In addition, in-
hibition of the polyol pathway with aldose reductase in-
hibitors may reduce the effects of hyperglycemia on di-
abetic nephropathy, and this appears to be due to de-
creased oxidative stress (Dunlop 2000). Moreover, pre-
venting mitochondrial O2

.� production by an inhibitor of
electron transport or an uncoupler of oxidative phos-
phorylation, or increased expression of superoxide dis-
mutase, prevent the increase in PKC activity, formation of
advanced glycation end-products, activity of the polyol
pathway, and NF-kB activation in cultured bovine endo-
thelial cells (Nishikawa et al. 2000).

Despite this experimental evidence, results of clinical
studies have not provided compelling evidence that an-
tioxidants prevent the progression of diabetic complica-
tions. In support of positive benefit from antioxidant
treatment, a-lipoic acid has provided relief from diabetic
neuropathy, but this could, in part, be due to increased
glucose transport into fat and muscle, thereby decreasing
oxidant production (Greene et al. 2001; Konrad et al.
2001; Packer et al. 2001). Tests of vitamin C, alone or in
combination with vitamin E, have been shown to improve
microalbuminuria and endothelium-dependent vasodila-
tion (Beckman et al. 2001; Gaede et al. 2001). In an 8-
month-long study of 36 patients with type 1 diabetes for
less than 10 years duration, high doses (1,800 IU/day)
of vitamin E restored normal retinal blood flow and re-
nal filtration (Bursell et al. 1999). Similarly, in two oth-
er studies (Secondary Prevention with Antioxidants of
Cardiovascular Disease in End-Stage Renal Disease, or
SPACE, and Cambridge Heart Antioxidant Study, or
CHAOS) of patients (not necessarily diabetic) who either
had preexisting ischemic heart disease or were on kidney
dialysis, 400 or 800 IU vitamin E prevented myocardial
infarction (Stephens et al. 1996; Boaz et al. 2000). How-
ever, these studies were of relatively short duration and
small sample size. Notably, in the 4-year-long Heart
Outcomes Prevention Evaluation (HOPE) study of more
than 3,600 diabetic patients, some of whom already dis-
played microalbuminuria, 400 IU/day of vitamin E in
combination with an ACE inhibitor did not provide mi-
crovascular or cardiovascular protection (Lonn et al.
2002). There are several differences in design of each of
these studies which may reconcile these seemingly con-
tradictory observations. First, antioxidants may provide
short-term relief of oxidative stress and restore normal
function, but it may be difficult to provide sufficient an-
tioxidants like vitamin E or vitamin C that are not enzy-

matically regenerated (unlike GSH) at sufficient concen-
trations to scavenge free radicals on a long-term basis.
Second, in tissues of patients with long-standing diabetes
and preexisting structural and functional pathology, it
may be impossible to eliminate or reverse tissue damage.
Third, if patterns of gene expression have been altered by
oxidative stress, it may not be possible to reverse this
process and restore normal patterns of gene expression.

Therapeutic potential to prevent diabetic
complications by blocking oxidant effects

As indicated above, it may not be possible to completely
reverse diabetic complications with antioxidants once
they have been established, but further investigation is
needed to determine whether it may be possible to slow
down progression, or prevent the onset of complications
by preemptive therapy prior to the development of tissue
damage. Certainly, use of uncouplers to prevent the in-
crease in mitochondrial O2

.� production would not be of
therapeutic value. However, inhibition of specific path-
ways that are activated as a consequence of increased
oxidative stress and glucose flux may be sufficient to
prevent certain complications. For example, use of spe-
cific PKC inhibitors slows the progression of diabetic
vascular dysfunction in rats (Ishii et al. 1996) and may be
useful to treat diabetic retinopathy and nephropathy in
patients. There may be novel agents, such as the thiamine
derivative, benfotiamine, which can prevent the stimula-
tion of the hexosamine pathway, PKC activity, and pro-
duction of advanced glycation end-products, through ac-
tivation of the pentose shunt pathway (Hammes et al.
2003). While use of high doses of a natural antioxidant
such as vitamin E may seem preferable to pharmacologic
intervention, whether accumulation of the lipid-soluble
vitamin following long-term administration could have
adverse consequences should be investigated. It should
also be remembered that oxidative stress may not be the
precipitating event leading to all diabetic complica-
tions. For example, individuals with insulin resistance are
exposed to hyperglycemia and FFA-induced oxidative
stress, and yet they do not develop the pathology of the
retina and kidney that occur in diabetic patients. Simi-
larly, oxidative damage accumulates during natural aging,
and yet retinopathy and nephropathy do not occur in the
elderly who do not have diabetes. Therefore, there may be
specific effects of diabetes on some tissues that leads to
pathology at the tissue level, in which oxidative stress is
not the primary factor.
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