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Abstract
Purpose  To develop an artificial intelligence (AI) model for estimating best-corrected visual acuity (BCVA) using horizontal 
and vertical optical coherence tomography (OCT) scans of various retinal diseases and examine factors associated with its 
accuracy.
Methods  OCT images and associated BCVA measurements from 2,700 OCT images (accrued from 2004 to 2018 with an 
Atlantis, Triton; Topcon, Tokyo, Japan) of 756 eyes of 469 patients and their BCVA were retrospectively analysed. For each 
eye, one horizontal and one vertical OCT scan in cross-line mode were used. The GoogLeNet architecture was implemented. 
The coefficient of determination (R2), root mean square error (RMSE) and mean absolute error (MAE) were computed to 
evaluate the performance of the trained network.
Results  R2, RMSE, and MAE were 0.512, 0.350, and 0.321, respectively. R2 was higher in phakic eyes than in pseudophakic 
eyes. Multivariable regression analysis showed that a higher R2 was significantly associated with better BCVA (p < 0.001) 
and a higher standard deviation of BCVA (p < 0.001). However, the performance was worse in an external validation, with 
R2 of 0.19. R2 values for retinal vein occlusion and age-related macular degeneration were 0.961 and 0.373 in the internal 
validation but 0.20 and 0.22 in the external validation.
Conclusion  Although underspecification appears to be a fundamental problem to be addressed in AI models for predicting 
visual acuity, the present results suggest that AI models might have potential for estimating BCVA from OCT in AMD and 
RVO. Further research is needed to improve the utility of BCVA estimation for these diseases.
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Introduction

Multimodal imaging technologies support the manage-
ment of ophthalmic diseases, especially in the diagnosis, 
treatment, and prognostication of retinal diseases. One of 
the most widely available noninvasive imaging modalities 
for visualising retinal microstructures is optical coherence 
tomography (OCT). Many studies of OCT image features 
have explored the relationship among diseases, prognosis, 
and clinical significance, including drusen, [1–3] pigment 
epithelial detachment, [4] hyperreflective foci, [5–7] and 
macular oedema. [8, 9] Some of these features are associ-
ated with visual function. In particular, macular micro-
structures guide clinicians to roughly estimate patients’ 
visual acuity.

Numerous recent studies have reported the possible 
application of artificial intelligence (AI) to retinal imag-
ing modalities. AI models can detect and delineate the 
retinal fluid in conditions such as retinal vein occlusion 
(RVO), age-related macular degeneration (AMD), and 
diabetic macular oedema (DMO). [10, 11] Moreover, AI 
can not only detect exudative AMD, [12] but also pre-
dict AMD progression. [13, 14] Importantly, an AI cloud 
was reported to estimate BCVA from OCT imaging in 
a population of patients with AMD. [15] Some other 
reports have also estimated and predicted BCVA from 
OCT images, with two using patients who were enrolled 
in the HARBOR trial, [16, 17] two using patients who 
had exudative AMD, and other ones each using patients 
who had DMO and geographic atrophy. [15, 18–20] When 
baseline OCT was used to predict visual acuity, the accu-
racy was R2 = 0.21. [16] When the 3-month data were also 
used, the accuracy was R2 = 0.70. In another study, the 
regression model to predict BCVA obtained R2 = 0.24 in 
eyes with AMD. [17] In the other study, [18] the authors 

Key messages

What is known:

Deep learning algorithms could predict best corrected visual acuity (BCVA) based on horizontal optical coherence

tomography (OCT) of one disease.

What is new:

We developed a deep-learning algorithm using both horizontal and vertical OCT of various retinal diseases the

accuracy 0.521 of the coefficient of determination (R2).

The performances were generally lower when validated in external test sets; however, our model showed promising

performance in predicting BCVA in nAMD and RVO.

used OCT images of treatment-naïve, first-treated eyes of 
patients with exudative AMD and predicted future visual 
outcomes. Visual acuity at a distant point was predicted 
with R2 values of 0.80 and 0.70 after injection at 3 and 
12 months after baseline, respectively.

In the field of AI research on visual acuity prediction, 
several gaps needed to be addressed. First, previous reports 
focused mainly on a single disease entity (such as diabetic 
retinopathy [DR] and AMD) or specific features (such as 
drusen and macular oedema). Lack of training with various 
diseases or disease features limits the applicability of the 
trained model to other diseases or features. Second, factors 
associated with the accuracy of the visual acuity predic-
tion were not clarified previously. For example, although 
changes in lens status may have few discernible effects on 
OCT images, such changes may significantly affect patients’ 
visual acuity. Therefore, we trained/developed an AI model 
with vertical and horizontal OCT images of a variety of reti-
nal diseases to estimate BCVA and investigated the factors 
associated with its accuracy.

Methods

Design

This retrospective study was approved by the institutional 
review board of Jichi Medical University (Jichi-CU19-094) 
and adhered to the tenets of the Declaration of Helsinki. 
The study procedures followed institutional guidelines, and 
informed consent was obtained in the form of opt-out on 
the website of the Department of Ophthalmology of Jichi 
Medical University. Individuals who declined to join the 
study were excluded. Where necessary, all patients pro-
vided informed consent to the procedures performed as 
part of their clinical management.
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Procedure

This study included 2,700 OCT scans from 756 consecutive eyes 
of 469 patients. The images were taken between 2014 and 2018 
at Jichi Medical University using swept source (SS)-OCT (Atlan-
tis, Triton; Topcon, Tokyo, Japan) as part of a clinical examina-
tion for retinal diseases. As a routine examination, a raster scan 
protocol comprising five lines centred on the fovea was used. 
Horizontal and vertical SS-OCT grey images centred on the 
fovea were obtained from each patient (S1 Fig). The assessing 
ophthalmologist determined the horizontal and vertical B-scan 
image closest to the centre of the fovea. All OCT images were 
assessed by a single ophthalmologist (SI) overseen by retinal spe-
cialists (H.T. and Y.I.). BCVA was measured by an experienced 
optometrist as decimal visual acuity on the same day the OCT 
image was taken. BCVA was converted to the logarithm of the 
minimum angle of resolution [logMAR] for statistical analysis.

Patients’ medical records were used to collect the fol-
lowing clinical data: disease condition, with eight condi-
tions delineated (AMD, DR, macular hole or epithelial 
retinal membrane [MH/ERM], RVO, central serous cho-
rioretinopathy [CSC], myopic choroidal neovasculopathy 
[mCNV], other, and normal OCT); and lens status, char-
acterised as either phakia or pseudophakia.

Deep learning

Ten-fold cross-validation was used to train and test this model. 
We randomly split the data into 10 folds: 9 folds for train-
ing and 1 for testing. No images from the same patient were 
included in the same fold. Although the validation set doubled 
as the testing set, their use was combined only in the first 
training. Moreover, because validation loss did not increase 

again and there was no overfitting, the number of iterations 
was not set before overfitting but after the validation loss 
reached the plateau. We set the training epochs to a sufficient 
number and the other nine training sets were trained using the 
same number of epochs without validation.

The original images had dimensions of 992 × 992 pixels, 
and the data were augmented with a horizontal flip and a ran-
dom 892 × 892-pixel crop. In our preliminary work, AlexNet, 
GoogLeNet, and ResNet were tested as baseline CNN mod-
els, which demonstrated that GoogLeNet performed best 
(data not shown). As such we decided to use GoogleNet in 
this study, and tuned the hyperparameters of the CNN model 
(Fig. 1). After the grid search, the base learning rate was 
1.0 × 10−7 and the training option ‘SDG’ was set to use sto-
chastic gradient descent with a momentum optimiser. The 
neural network comprised two units corresponding to the 
horizontal and vertical OCT images, each comprising 22 
layers of a convolutional neural network with an inception 
module. [21] The size and number of convolution filters were 
same as those in the original GoogLeNet. The two outputs 
were combined to generate a single output through a fully 
connected layer. To regularise the model and prevent over-
fitting of very deep networks, GoogLeNet utilises auxiliary 
classifiers, which are used during training to perform classi-
fication based on the inputs within the network's mid-section 
and then add the loss to the total loss of the network. In this 
study, as in the original GoogLeNet architecture, subnet-
works branched from the same two locations of the Goog-
LeNet network for each of the horizontal and vertical OCT 
images. The auxiliary loss was calculated by combining the 
losses from the subnetwork of the horizontal image and that 
of the vertical image. The auxiliary loss was multiplied by 
0.3, as in the original GoogLeNet. A regression layer was 
included at the end of the network to predict continuous data.

Fig. 1   Architecture of the neural network. The GoogLeNet archi-
tecture was implemented. The neural network comprised two units 
corresponding to the horizontal and vertical OCT images, each con-
taining 22 layers of a convolutional neural network with an inception 

module. The two outputs were combined to generate a single output 
through a fully connected layer. These two outputs in the middle of 
the network were also added to the concatenate layer with a weight 
of 0.3
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After a per-pixel mean subtraction, the fully randomly 
initialised neural network was trained. The epoch number 
was 300 and the learning time was 24 h.

Disease groups

The OCT images were examined and grouped into dis-
ease groups, with the images classified according to the 
patients’ macular structure rather than their diagnosis. 
Specifically, eyes with no DR were not classified into DR 
groups, even if that patient had been diagnosed with dia-
betic mellitus. AMD groups included patients over the 
age of 50 years whose eyes had a choroidal neovascular 
membrane (CNV) confirmed by indocyanine green angi-
ography (ICGA), avascular serous pigmented epithelial 
detachment (PED), soft drusen, or drusenoid PED. DR 
groups included eyes with DMO, subretinal haemorrhage 
involving the macular area, and a proliferative membrane 
with/without traction. MH/ERM groups included eyes with 
MH, ERM, a vitreomacular traction membrane, pseudo 
MH, and retinal detachment induced by MH. RVO groups 
included branch or central RVO. The CSC group included 
eyes with subretinal fluid involving the macula and diffuse 
and/or focal leakage on fluorescein angiography ICGA. 
Eyes with CNV, other maculopathy, active intraocular 
inflammation, or infection were not classified into CSC 
groups. The mCNV group included eyes with CNV and 
pathologic myopia, namely, a refractive error > 6 dioptres, 
axial length > 26 mm, or staphyloma on OCT. Eyes without 
CNV and pathologic myopia were classified as ‘other’.

The eyes categorised into the other group included reti-
nitis induced as uveitis (number of eyes; n = 18), reattached 
retina after surgery (n = 11), retinitis pigmentosa (n = 11), 
and others (S1 Table).

Performance statistical index

Three indices—the coefficient of determination (R2), 
root mean square error (RMSE), and mean absolute error 
(MAE)—were selected to evaluate errors. The calculation 
formulae were as follows.

Here, Ypred is the estimated BCVA and Yobs is the actual 
BCVA. Thus, R2 can take a negative value, such as when 
the estimated value is very different from the actual value.

Statistical analyses

Statistical analyses were performed using JMP Pro ver. 
15.0.0 (SAS Institute, Cary, NC). A paired t-test was used 
to evaluate the association between the estimated and actual 
BCVAs for each disease group and phakia or pseudopha-
kia. Three validity indices—R2, RMSE, and MAE—were 
measured to evaluate the prediction model in terms of each 
disease group and phakia or pseudophakia.

Univariate regression was used to evaluate the associations 
among the three validity indices and the number of images, 
mean BCVA, standard deviation (SD) of BCVA, mean age, 
and SD of age for each disease group. A multivariable logistic 
regression model was used to evaluate the association of the 
three validity indices with variables selected by stepwise vari-
able selection. The model was also used to evaluate the associa-
tion between the square of the difference between the estimated 
and actual BCVAs and age, sex, phakia/pseudophakia, and 
actual BCVA. Statistical significance was defined as p < 0.05.

Results

Patients’ demographic characteristics

The characteristics of the patients in this study are summa-
rised in Table 1. Mean age was 69.6 (SD, 11.9) years, and 249 

R2 = 1 −

∑
i(Ypred, i − Yobs, i)2

∑
i (Yobs, i − Yobs)

2

RMSE =

�∑
i (Yobs, i − Ypred, i)2

n

MAE =

∑
i �Yobs, i − Ypred, i�

n

Table 1   Patient characteristics

AMD, age-related macular degeneration; DR, diabetic retinopathy; MH/ERM, macular hole or epiretinal membrane; RVO, retinal vein occlu-
sion; CSC, central serous chorioretinopathy; mCNV, myopic choroidal neovascularization; OCT, optical coherence tomography

AMD DR MH/ERM RVO CSC mCNV Other Normal OCT All (N)

N (patients) 167 44 101 35 24 13 94 278 469
Male sex (%) 62% 75% 15% 43% 75% 8% 44% 53% 53%
Age (SD), y 74.8 (9.0) 63.4 (10.3) 71.9 (10.0) 70.4 (10.9) 60.5 (13.8) 67.6 (14.0) 64.7 (13.1) 69.2 (12.1) 69.6 (11.9)
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(53%) were men. The most and least frequent diseases were 
AMD (n = 167 patients) and mCNV (n = 13 patients). S2 and 
S3 Tables summarise the characteristics of the images. The 
most and least frequent images were AMD (n = 1017 images) 
and DR (n = 73 images). Patients with phakia were younger 
than those with pseudophakia. There were about twice as 
many phakic eye images as pseudophakic eye images. The 
estimated BCVA of each disease group was significantly asso-
ciated with the actual BCVA (all p < 0.001).

Accuracy

Estimated BCVA was significantly associated with actual 
BCVA (p < 0.001). Figure 2 shows the distribution of the 
actual and estimated BCVAs (estimated – actual). R2, 
RMSE, and MAE were 0.512, 0.350, and 0.321, respec-
tively (Table 2). The distribution of the absolute error of 

the estimation |ε| is illustrated in Fig. 3. Error distributions 
were non-symmetrical with a long tail. Overall, 89% of all 
estimates were within an absolute error of 0.5.

The phakia group had smaller errors compared with the 
pseudophakia group (Fig. 4), and the errors in the normal 
OCT and CSC groups were smaller than the average median 
absolute error |ε| (S3 Fig).

R2 of the phakic group was higher compared with the pseu-
dophakic group in all images (Table 2). Accuracy by disease 
group is shown in S4 Table; R2, RMSE, and MAE ranged 
from − 1.233 to 0.961, from 0.003 to 0.669, and from < 0.001 
to 0.446, respectively. R2 values for RVO, AMD, and mCNV 
were 0.961, 0.373, and 0.355, respectively. However, lens 
status had somewhat different effects on accuracy among the 
different disease groups (S4 Table). In the AMD group, R2 
was higher in phakic eyes than in pseudophakic eyes, but was 
higher in pseudophakic eyes than in phakic eyes in the RVO 
group. Figure 5 shows representative OCT images together 
with the estimated BCVA and accuracy to illustrate the char-
acteristics of images with good and poor accuracy.

Factors associated with accuracy

Univariate linear regression analysis revealed that 
a higher RMSE and MAE were significantly associ-
ated with better mean BCVA and higher SD of BCVA 

Fig. 2   Distribution of the 
actual BCVA and estimated 
BCVA. The dotted line is an 
approximate line. BCVA, best-
corrected visual acuity

Table 2   Difference between phakia and pseudophakia

RMSE, root mean square error; MAE, mean absolute error

R2 RMSE MAE Number of images

All 0.512 0.350 0.321 2700
Phakia 0.651 0.304 0.336 1798
Pseudophakia 0.184 0.428 0.290 902
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Fig. 3   Distribution of the 
absolute difference between 
the actual BCVA and estimated 
BCVA (|ε|). The error distribu-
tions were nonsymmetrical with 
a long tail. BCVA, best-cor-
rected visual acuity

Fig. 4   Median difference 
between the actual BCVA 
and estimated BCVA (ε). The 
phakia group had smaller errors 
than the pseudophakia group. 
BCVA, best-corrected visual 
acuity
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Fig. 5   Representative OCT images together with estimated and actual 
BCVA. Representative OCT images together with the estimated best-
corrected visual acuity (BCVA) and accuracy to illustrate the char-
acteristics of images with good and poor accuracy. *, LogMAR; 
A-BCVA, actual best-corrected visual acuity; AMD, age-related mac-

ular degeneration; BCVA, best-corrected visual acuity; CSC, central 
serous chorioretinopathy; DR, diabetic retinopathy; E-BCVA, esti-
mated best-corrected visual acuity; mCNV, myopic choroidal neovas-
cularisation; MH/ERM, macular hole or epithelial retinal membrane; 
OCT, optical coherence tomography; RVO, retinal vein occlusion

Table 3   Association between 
validity and factors in univariate 
linear regression

RMSE, root mean square error; MAE, mean absolute error. Values in bold indecates sigmificance

R2 RMSE MAE

Adjusted R2 p value Adjusted R2 p value Adjusted R2 p value

Mean age  − 0.0452 0.942 0.045 0.164  − 0.009 0.390
SD of age  − 0.0417 0.781  − 0.042 0.781  − 0.041 0.760
Mean BCVA  − 0.0159 0.432 0.141 0.040 0.302 0.003
SD of BCVA 0.103 0.070 0.338 0.002 0.424  < 0.001
Number of images  − 0.0079 0.375  − 0.0445 0.890  − 0.041 0.771
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(Table 3). Meanwhile, multivariable regression anal-
ysis determined that R2 was significantly higher 
with a smaller mean BCVA and higher SD of BCVA 
(Table 4). Finally, factors significantly associated with 
the square of the difference between the estimated and 
actual BCVA were actual BCVA (p < 0.001), phakia/
pseudophakia (p < 0.001), age (p = 0.005), and sex 
(p = 0.021) in the multivariable analysis (Table  5). 
Actual BCVA (p < 0.001) and phakia/pseudophakia 
(p < 0.001) were selected via stepwise variable selec-
tion. Because the estimation depended on actual BCVA, 
we divided the full BCVA range into five, using the first 
values of the 16th, 8th, 4th, and 2nd quantiles of the 
value as the boundaries, and calculated the median |ε| 
within each segment. Figure 6 shows that the metrics 
increased with the values of the index.

Validation study

We aimed to validate our model using data from another 
institution, either with or without standardisation of the 
OCT image size. The validation study was performed 
using data from Saitama Medical Center (Saitama, Japan), 
which included 678 images of AMD, DR, RVO, macular 
telangiectasia, and uveitis, with a resolution of 1143 × 622 
pixels due to the use of a different scanning mode. The 
scans were cropped to 992 × 992 pixels and the margin 
was filled with black for standardisation. R2, RMSE, and 
MAE were 0.19, 0.30, and 0.223, respectively. For each 

disease group, the R2 of AMD, RVO, DR, and others was 
0.22, 0.20, 0.036, and − 0.59, respectively.

Discussion

The AI model in this study estimated BCVA with an R2 
of 0.512, RMSE of 0.350, and MAE of 0.321, using OCT 
images of various retinal diseases. R2 was higher in phakic 
eyes than in pseudophakic eyes in all images. Multivari-
able regression analysis also revealed that R2 was signifi-
cantly higher with better BCVA and a higher SD of BCVA. 
Finally, a smaller square of the difference between the esti-
mated and actual BCVA was significantly associated with 
better actual BCVA and phakic eyes. However, the perfor-
mance was worse in an external test set, with an R2 of 0.19.

Surprisingly, R2 was higher in phakic eyes than in pseudopha-
kic eyes in all images. We hypothesised that one of the reasons 
for the moderate accuracy (R2, 0.512) might be the data used, 
namely, only OCT data. Although some studies reported that SS-
OCT could evaluate cataract density [22–24], SS-OCT images 
include little information regarding other ocular conditions, 
including the condition of the cornea, lens, vitreous humour, and 
ophthalmic nerve. Strong corneal opacity or opacitas corporis 
vitreous can blur the resolution of SS-OCT images. There are 
no data in OCT images on ocular aberrations, including astigma-
tism and higher-order aberrations. In addition, with slight corneal 
opacity or opacitas corporis vitreous, images should be relatively 
clear, even when the ocular condition is sufficient to decrease 
the actual BCVA. Thus, we hypothesised that a lack of anterior 
or intermediate segment information might worsen the validity 
index. This assumption did not hold, possibly because the opacity 
of intraocular lens or after cataracts would affect BCVA or OCT 
images in the same way as lens opacity.

Here, R2 was significantly higher with better BCVA and 
a higher SD of BCVA. We can suggest some reasons why 
a worse BCVA was associated with poor validity. First, we 
measured BCVA as decimal value and converted it to log-
MAR units for statistical analysis. This conversion approach 
characteristically overestimates visual acuity, especially at 
lower levels [25]. Images of eyes with better BCVA might be 

Table 4   Association between 
validity and factors in 
multivariable linear regression

RMSE, root mean square error; MAE mean absolute error; SD, standard deviation; BCVA, best-corrected 
visual acuity. Values in bold indecates sigmificance

R2 RMSE MAE

Estimation p value Estimation p value Estimation p value

Mean age  − 0.042 0.026 0.007 0.272 0.0007 0.854
SD of age  − 0.137 0.0033 0.0015 0.301 0.008 0.383
Mean BCVA  − 1.92  < 0.001 0.149 0.363 0.196 0.075
SD of BCVA 3.99  < 0.001 0.342 0.245 0.267 0.164
Number of images 0.0005 0.155  − 0.000009 0.398  − 0.000002 0.790

Table 5   Association between factors and the square of the difference 
between the estimated and actual BCVA in multivariable analysis

BCVA, best-corrected visual acuity; VIF, variance inflation factor

Estimated p value VIF

Actual BCVA 0.52  < 0.001 1.04
Phakia/pseudophakia  − 0.036  < 0.001 1.13
Age  − 0.0015 0.005 1.16
Sex  − 0.0013 0.021 1.00
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measured more accurately, whereas those of eyes with worse 
BCVA might be overestimated. Second, eyes with worse 
BCVA may have some factors affecting BCVA, such as the 
condition of the ophthalmic nerve or a subtle lens opacity, 
that cannot be assessed using OCT. A recent study evaluated 
regression-based BCVA estimation using classified training 
data, showing that one of their AI models achieved a lowest 
RMSE of 0.028 and a highest R2 of 0.654 [26]. They also 
showed their AI model focused on the optic disc in addition 
to the area near the macula and blood vessels. Using fun-
dus images and/or optic disc OCT scans as training data in 
addition to macular OCT images is a possible strategy for 
improving our AI model in the future.

In the internal test set, the R2 for prediction was 0.512, 
which was relatively high compared with a previous study 
of the HARBOR trial (R2, 0.21). [16] However, the gener-
alisability of an AI algorithm to predict visual acuity has 
never been explored. Therefore, we validated our model with 
OCT images from another institution. The results were dis-
appointing. For example, R2 was 0.19, which was almost the 
same as that obtained from our pseudophakia data. Although 
actual BCVA may be associated with R2, one of our present 
results—the mean actual BCVA of the validation study data 
was 0.326 ± 0.33—was similar to that of our previous data. 
There are several possible reasons for this. First, this result 
might be due to overtraining; however, we selected a hyper-
parameter with no overfitting. Second, the OCT images used 
for the external test set were obtained with an OCT machine 

that was different from that used for training and valida-
tion (DRI OCT Triton Plus, Topcon). Although the optics 
of that system are the same as that of the machine used for 
development (Atlantis, Topcon), as well as being from the 
same company, the acquisition protocols and image size are 
different, which might have caused the relatively poor R2. As 
for the R2 values for each disease group, the trend was simi-
lar in the validation study; that is, the R2 of AMD and RVO 
were higher than that of DR. This is possibly because eyes 
with chronic diseases might have acquired paracentral fixa-
tion, unlike eyes with acute disease. Therefore, the BCVA 
measurements will be more dependent on the examiners’ 
skills and patients’ cooperation in acute diseases and thus 
highly variable, even for patients with similar fundus find-
ings. Even for the same patient, the repeatability of BCVA 
measurement is not high, especially for patients with acute 
severe vision loss. As mentioned earlier, R2 was significantly 
higher with better BCVA. Additionally, our R2 values were 
better in chronic diseases than in acute diseases (R2 values 
from RVO [0.96], AMD [0.37], and mCNV [0.36] were bet-
ter than those from MH/ERM [0.09], DR [− 0.12], and CSC 
[− 0.22]), further supporting this idea.

The present study has three main strengths. The first is 
the high versatility of our BCVA prediction model, which 
was trained with OCT images of various retinal diseases. The 
AI predicted BCVA from OCT images even in the presence 
of various other retinal diseases. Second, we developed the 
model based on horizontal and vertical OCT images from 
each patient. Such images are usually taken in the clinical set-
ting, and horizontal and vertical surrounding macular images 
of the eye provide more information for AI model training. 
Some recent studies have trained AI models for estimation of 
BCVA by using colour fundus photograph (CFP) [26, 27]. 
Since CFP has a wider field of view compared to macular 
OCT scans, it may provide more information, such as diseases 
of the optic disc; however, on the contrary, it is intuitively 
obvious that OCT contains more information about the retina. 
Finally, a novel aspect of this study is that a linear function 
was estimated, which might replace image analysis, which 
contrast to the recent studies which estimated visual acuity as 
a level classification [26, 27]. Although the validity is thus far 
poor, it should be improved with further work.

There are also some limitations. One limitation is com-
mon to this type of prospective analysis of institutional 
data. All of the study participants were Japanese. The 
number of participants was relatively small, particularly 
in some groups. It would be interesting to see how much 
the results improve with vertical scans; however, this is 
beyond the scope of the present study.

In conclusion, this study confirmed that AI (neural 
network) could estimate BCVA only with OCT images. 
Further studies are nonetheless warranted to evaluate the 
broader applicability of this approach.

Fig. 6   Relationship between the actual BCVA and the difference 
between the actual BCVA and estimated BCVA. The entire range of 
the actual BCVA was divided into five segments using the first value 
of the 16th, 8th, 4th, and 2nd quantiles and the median |ε| within 
each segment was calculated. The |ε| increases as the actual BCVA 
decreases. BCVA, best-corrected visual acuity
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