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RETINAL DISORDERS
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Abstract
Purpose The purpose of this study is to develop and validate the intelligent diagnosis of severe DR with lesion recognition 
based on color fundus photography.
Methods The Kaggle public dataset for DR grading is used in the project, including 53,576 fundus photos in the test set, 
28,101 in the training set, and 7,025 in the validation set. We randomly select 4,192 images for lesion annotation. Inception 
V3 structure is adopted as the classification algorithm. Both 299 × 299 pixel images and 896 × 896 pixel images are used as 
the input size. ROC curve, AUC, sensitivity, specificity, and their harmonic mean are used to evaluate the performance of 
the models.
Results The harmonic mean and AUC of the model of 896 × 896 input are higher than those of the 299 × 299 input 
model. The sensitivity, specificity, harmonic mean, and AUC of the method with 896 × 896 resolution images as input 
for severe DR are 0.925, 0.907, 0.916, and 0.968, respectively. The prediction error mainly occurs in moderate NPDR, 
and cases with more hard exudates and cotton wool spots are easily predicted as severe cases. Cases with preretinal 
hemorrhage and vitreous hemorrhage are easily identified as severe cases, and IRMA is the most difficult lesion to 
recognize.
Conclusions We have studied the intelligent diagnosis of severe DR based on color fundus photography. This artificial 
intelligence–based technology offers a possibility to increase the accessibility and efficiency of severe DR screening.
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Introduction

Diabetic retinopathy (DR) is one of the most important 
microvascular complications of diabetes mellitus. Visual 
threatening diabetic retinopathy (VTDR), including severe 
nonproliferative diabetic retinopathy (NPDR), proliferative 
diabetic retinopathy (PDR), and diabetic macular edema 
(DME), is the main cause of visual impairment and needs 
to be actively treated in clinic.

According to public reports and the results of DR 
screening in recent years, the incidence of diabetes in 
China has reached as high as 11.6%  [1, 2]. Patients with 
DR may have no obvious symptoms in the early stage. 
When they go to see the doctor after their vision has 
deteriorated, the best opportunity for treatment has been 
lost. Therefore, there is a need to carry out regular fun-
dus screening in diabetic patients; find DR as early as 
possible, especially VTDR; and provide timely treatment 
to delay the progress of DR and improve or stabilize the 
vision of patients to reduce the heavy economic burden to 
patients’ families and society in general. However, at pre-
sent, there are no more than 6,000 specialized doctors in 
retina diseases in China [3], which is far from the number 
of doctors needed for large-scale screening. Some primary 
general ophthalmologists have caused delays in diagnosis 
and treatment of DR due to the lack of experience in the 
diagnosis of ocular fundus diseases. In addition, some 
patients lack awareness of diabetic retinal complications, 
which may eventually lead to irreversible vision loss.

Key messages

DR diagnosis and screening comprise the most widely used field of artificial intelligence in ophthalmology and

is mainly used to screen DR patients who need to be referred based on color fundus photography, that is, to 

distinguish mild NPDR and moderate NPDR.  

In this study, on the basis of our experiences in referral DR screening, we have focused on the intelligent

diagnosis of severe DR with lesion recognition based on color fundus photography,including DR grading

analysis, lesion analysis, and heat map analysis.  

This artificial intelligence–based technology offers a possibility to increase the accessibility and efficiency of

severe DR screening. 

Expanding the scope of screening and assisting in 
improving the diagnosis and treatment of primary-level 
ophthalmologists through medical artificial intelligence 
is an effective way to resolve this contradiction. At pre-
sent, the diagnosis and screening of DR is the most widely 
used field of artificial intelligence in ophthalmology and 
is mainly used for screening diabetic patients who need 
to be referred to hospital based on color fundus photog-
raphy. However, much less work has concentrated on the 
recognition of severe DR, which also needs to be focused 
on in screening, and there are still many limitations on it. 
In this study, on the basis of our experiences in referral 
DR screening, we will focus on the intelligent diagnosis of 
severe DR with lesion recognition based on color fundus 
photography.

Dataset

The Kaggle public dataset for DR grading (https:// www. 
kaggle. com/c/ diabe tic- retin opathy- detec tion) is used in 
the project and includes a large number of high-resolution 
color fundus photos of diabetic patients. We will refer to the 
dataset as “Kaggle DR.” The test set of Kaggle DR, which 
contains 53,576 fundus photos, is used as the test set in this 
experiment; the training set of Kaggle DR, which contains 
35,126 fundus photos, is randomly divided into two parts in 
this study, including 28,101 photos as the training set and 
7,025 photos as the validation set (Table 1). The original 

Table 1  Dataset partition of our experiments

Normal Mild NPDR Moderate NPDR Severe NPDR PDR Sum

Training set 20,626 1,961 4,256 670 588 28,101
Validation set 5,184 482 1,036 203 120 7,025
Test set 39,533 3,762 7,861 1,214 1,206 53,576
Sum 65,343 6,205 13,153 2,087 1,914 88,702
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Table 2  International DR grading standard

Grading Fundoscopy after mydriasis

No DR Normal
Mild NPDR Only MA
Moderate NPDR Not only MA, but the lesion is lighter than severe NPDR
Severe NPDR Have any of the following and no signs of proliferative DR:

- There were more than 20 intraretinal hemorrhage points in any 
quadrant of four quadrants;

- More than two quadrants had clear venous beading;
- Clear microvascular abnormalities in retina in more than one 

quadrant
PDR One or more of the following changes occurred:

Neovascularization, vitreous hemorrhage or preretinal hemorrhage

Fig. 1  Interface of our web-based annotation system with the original fundus image (top row) and an enhanced version of the original fundus 
image (bottom row)
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training set of Kaggle DR is divided into two disjoint sub-
sets, one for training and the other for validation, by random 
sampling without replacement as follows. Images are first 
randomly shuffled by the Fisher-Yates shuffle algorithm [4]. 
Then, the first 80% of the shuffled images (28,101 in total) 
are used for model training, while the remaining 20% (7,025 
images) form the internal validation set. All images were 
classified by ophthalmologists according to the international 
grade of diabetic retinopathy (Table 2), including no DR, 
mild NPDR, moderate NPDR, and severe NPDR and PDR. 
Severe NPDR and PDR are called severe DR in this experi-
ment and need timely diagnosis and treatment.

Kaggle DR provides DR grading labels without lesion anno-
tations; therefore, we randomly select some images from the 
moderate NPDR, and severe NPDR and PDR cases of part of 
the test set by the Fisher-Yates shuffle algorithm for lesion anno-
tation. The characteristic fundus lesions of DR are included in 
the annotation, including microaneurysm, intraretinal hemor-
rhage, hard exudate, cotton wool spot, intraretinal microvas-
cular abnormality (IRMA), venous beading, neovasculariza-
tion elsewhere (NVE), neovascularization of the optic disk 
(NVD), preretinal hemorrhage, vitreous hemorrhage, retinal 
proliferative membrane, and retinal detachment. To simplify 
the manual annotation, we develop a web-based annotation sys-
tem and provide an adaptive enhanced version of the original 
image (Fig. 1). Each image is individually graded and annotated 
by at least three ophthalmologists. If the grades of the three 

(No DR, mild NPDR and moderate NPDR) in the training set 
(1,258/26,843), the strategy of weighted random sampling is 
used to make a balance between positive and negative cases 
in the training set. For model training, data augmentation 
in the form of random horizontal flip, rotation and random 
adjustment in brightness and contrast is performed in training 
images. The cross-entropy loss is used as the loss function. 
The initial learning rate is 0.001, and “reduce learning rate 
on plateau” is adopted to adjust the learning rate during train-
ing. SGD with a momentum of 0.9 is employed as the opti-
mizer. Class activation mapping (CAM) technology is used 
to give us an idea about where our model pays attention for 
severe and nonsevere DR categories. In our network, CAM 
is obtained by a weighted sum of the feature maps of the last 
convolutional layer. By upsampling the class activation map to 
the size of the input image, we can identify the discriminative 
image regions most relevant to a specific category.

The receiver operating characteristic (ROC) curve and 
the area under the ROC curve (AUC) are used to evaluate 
the performance of the models. In addition, three criteria are 
also employed for evaluation, including sensitivity, specific-
ity, and their harmonic mean, which are defined as:

TP and TN represent the number of true positives 
and true negatives, respectively, while FP and FN rep-
resent the number of false positives and false negatives, 
respectively.

Our experiment is implemented with Python 2.7 and 
PyTorch 0.4.1 on a Linux server with 3 NVIDIA GeForce 
RTX 2080ti GPUs, configured with a 10-core CPU, 125 GPB 
memory, a 1 TB SSD hard disk, and an 11 TB mechanical 
hard disk. The study was approved by the Ethics Committee 
of the Peking Union Medical College Hospital. All inves-
tigations were carried out according to the Declaration of 
Helsinki.

sensitivity =
TP

TP + FN

specificity =
TN

TN + FP

harmonic mean = 2 × sensitivity × specificity∕(sensitivity + specificity)

Table 3  Results of different image resolutions using Inception V3

Sensitivity Specificity Harmonic mean AUC 

InceptionV3_299 0.886 0.909 0.897 0.959
InceptionV3_896 0.925 0.907 0.916 0.968

ophthalmologists are inconsistent, an extra retinal specialist 
will arbitrate. The union of the three annotations is taken as the 
final lesion annotation. In addition, a trained quality control 
inspector will check the consistency of pathological content, 
which means that the lesions that conflict with the labeled DR 
grade are removed. As a result, 196 images are excluded. We 
ultimately obtain 4,192 images with lesion annotations.

Method

Inception V3 [5] structure is adopted as the classification 
algorithm. The grading of DR is based on the recognition 
of different lesions. Some lesions (i.e., microaneurysm) are 
tiny, and some lesions (i.e., IRMA) are difficult to recognize, 
which leads to the difficulty in DR grading. Therefore, con-
sidering that image resolution has a great impact on grad-
ing, images are downsized to 299 × 299 pixels and 896 × 896 
pixels, respectively, for comparison. Among them, 299 × 299 
pixels is the image size used in another study on the detec-
tion of VTDR [6]. Due to the imbalance of the proportions 
of severe DR (severe NPDR and PDR) and nonsevere cases 
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Results

The experimental results are shown in Table 3, and the ROC 
curves are shown in Fig. 2. It can be seen from the results that 
the harmonic mean and AUC of model of 896 × 896 input are 
higher than those of 299 × 299 input. Further analysis for the 
results of the method with 896 × 896 resolution images as input 
is made in the following subsections.

DR grading analysis

Table 4 shows the number of severe DR and non-severe 
DR cases predicted by the model in each grade of DR. 
Moderate NPDR belongs to the category of nonsevere DR, 

but a certain proportion of cases (3,421/7,861 = 43.5%) is 
predicted to be severe. The ratio of mispredicted images in 
moderate NPDR to the number of all mispredicted images 
is 0.691 (3,421/(1,103 + 248 + 3,421 + 114 + 67)), which to 
some extent means the prediction error mainly occurs in 
moderate NPDR.

Lesion analysis

In the 4,192 images with lesion annotations, the DR grade 
distributions of predicted severe DR and predicted nonsevere 
DR are shown in Table 5. According to Table 5, 68 cases of 
severe NPDR and 29 cases of PDR are predicted as nonsevere 
DR. Among the 97 cases of severe DR that are not reported, 

Fig. 2  ROC curves of models 
using Inception V3 architecture 
with 299 × 299 pixel images and 
896 × 896 pixel images as input 
individually

Table 4  The actual DR grades of the predicted severe DR set and the predicted nonsevere DR set

Normal Mild NPDR Moderate NPDR Severe NPDR PDR Sum

Predicted severe 1,103 248 3,421 1,100 1,139 7,011
Predicted nonsevere 38,430 3,514 4,440 114 67 46,565
Sum 39,533 3,762 7,861 1,214 1,206 53,576
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11 cases have IRMA (11/97, 11.3%), 5 cases have retinal neo-
vascularization (5/97, 5.2%), and 7 cases have proliferative 
membrane (7/97, 7.2%).

The predicted severe DR and nonsevere DR and their cor-
responding labeled lesions are listed in Table 6. Regarding the 
lesion analysis of severe DR, we have the following conclu-
sions from the experiment: (1) In moderate NPDR, cases with 
more hard exudates and cotton wool spots are easily predicted 
as severe cases; (2) cases with preretinal hemorrhage and vitre-
ous hemorrhage are easily identified as severe cases; and (3) 
IRMA is the most difficult lesion to recognize in DR cases.

Heat map analysis

We apply CAM to visualize which areas of the input image 
play an important role in models’ decision-making. The 
visualization examples using CAM are shown as follows 
(Fig. 3).

Discussion

DR diagnosis and screening comprise the most widely 
used field of artificial intelligence in ophthalmology and 
are mainly used to screen DR patients who need to be 
referred based on color fundus photography, that is, to 

distinguish mild NPDR and moderate NPDR; for more 
severe cases, it is recommended to see a doctor in the hos-
pital. There have been many studies in this field. In 2015, 
in the DR detection competition organized by Kaggle [7], 
more than 35,000 color fundus images were used to train 
algorithms for predicting disease severity. The results of 
four teams out of 661 were higher than that of humans. In 
2016, Gulshan et al. developed and validated a deep learn-
ing algorithm for the detection of diabetic retinopathy in 
retinal fundus photographs and comprehensively analyzed 
DR detection [8]. Its performance was equivalent to that of 
a group of seven certified ophthalmologists, with sensitiv-
ity and specificity of more than 90%. Similar studies on 
intelligent diagnosis of DR cases that need to be referred 
have also been found in multiple literatures [7–11], with 
sensitivity of more than 90% and specificity of more than 
80% [12]. In 2018, the U.S. Food and Drug Administration 
(FDA) approved the artificial intelligence product IDX-DR 
for DR detection, which became the world’s first artificial 
intelligence medical equipment for disease diagnosis.

At present, there are few studies on artificial intelli-
gence–assisted VTDR diagnosis. To our knowledge, studies 
on the intelligent diagnosis of VTDR that can be retrieved 
in the literature mainly include the following works: (1) 
in 2016, Abràmoff et al. [7] used IDx-DR × 2.1 system to 
recognize VTDR, and the sensitivity and specificity were 
100.0% and 90.8%, respectively; (2) in 2017, Ting et al. [10] 
used a deep learning system to identify DR, and the sensi-
tivity and specificity of VTDR recognition were 100% and 
91.1%, respectively; (3) in 2018, Li et al. [6] detected VTDR 
based on convolutional neural network. The sensitivity and 
specificity reached 97.0% and 91.4% on the internal valida-
tion dataset and 92.5% and 98.5% on the external independ-
ent multiethnic dataset. In our study, we use the network 

Table 5  DR grade distributions of the predicted severe DR set and 
the predicted nonsevere DR set employed for lesion analysis

Moderate NPDR Severe NPDR PDR Sum

Predicted severe 1,096 795 718 2,609
Predicted nonsevere 1,486 68 29 1,583
Sum 2,582 863 747 4,192

Table 6  The labeled lesions by retinal specialists in 4,192 images of the test set

Pred1, predicted as severe DR; Pred0, predicted as nonsevere DR

Moderate NPDR Severe NPDR PDR

Pred1 Pred0 Pred1 Pred0 Pred1# Pred0#

MA 1,039 1,283 747 62 548 20
Intraretinal hemorrhage 1,064 1,211 790 63 669 17
Preretinal hemorrhage 0 0 13 0 72 0
Vitreous hemorrhage 0 0 3 0 31 0
Hard exudate 706 535 606 27 445 6
Cotton wool spot 382 284 434 11 180 4
Venous beading 0 0 91 2 72 1
IRMA 0 0 197 9 162 2
NVD 0 0 15 0 165 0
NVE 0 0 53 4 202 1
Proliferative membrane 0 0 4 0 160 3
Drusen 121 194 47 6 25 6
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structure of Inception V3 to classify DR into severe and non-
severe cases, and the sensitivity and specificity reach 92.52% 
and 90.67%. Both 299 × 299 pixel images and 896 × 896 
pixel images are used in this experiment as the input size, 
and the former were used in the research of Li et al. [6]. We 
find that the value of both harmonic mean of sensitivity and 
specificity and AUC are higher in 896 × 896 pixel images 
than those in 299 × 299 pixel images. Compared to the for-
mer studies, our study has the following advantages. First, 
the strategy of weighted random sampling is used to make a 
balance between positive and negative cases in the training 
set. Second, lesion analysis is included in our study, which 
is the exploration on the interpretability of models. Third, 
different pixel-resolution images are used in this experiment 
as input sizes to identify an optimal one.

Although the sensitivity and specificity of the published 
studies and our study are all above 90%, there are some 
limitations.

First, the positive and negative samples of the public 
datasets are seriously imbalanced. At present, public data-
sets are used for the training and testing of models in many 
studies. The number of DR patients is limited in these pub-
lic datasets, which is far less than the number of normal 
people. If only DR samples are tested, the sensitivity and 
specificity will decrease to some extent or even a large 
extent.

Second, the positive predictive value of severe DR cases 
is relatively low and there is a lack of interpretability. In 
the study of Abràmoff [7], the positive predictive value of 
VTDR was only 56.4%. In the study of Li [6], the 77.3% 
false negative rate was because IRMA in fundus images was 
not recognized. In our study, 43.5% (3,421/7,861) of moder-
ate NPDR patients are recognized as severe cases. Because 
of the “black box” of the machine learning model, it is dif-
ficult to explain why these misdiagnoses are caused. This 
issue needs to be addressed with the professional knowledge 

Fig. 3  CAM-based visualiza-
tion examples. Left column: 
the original fundus images; 
middle column: the fusions of 
heat maps and original fundus 
images; right column: the heat 
maps. (A) A case of moderate 
NPDR is correctly predicted 
as nonsevere DR. (B) A case 
of severe NPDR is correctly 
predicted as severe DR. (C) 
A case of moderate NPDR is 
predicted as severe DR because 
hard exudates and cotton wool 
spots were activated. (D) A case 
of PDR is correctly predicted as 
severe DR, but only a few of the 
retinal neovascularizations are 
activated on the heat map, and 
some large new blood vessels 
are not activated
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of ophthalmologists and the development of interpretability 
of the machine learning model.

Third, DME is an important part of VTDR, which is often 
difficult to identify manually from color fundus photos. At pre-
sent, it mainly depends on OCT for diagnosis and follow-up, 
but due to the limitations of conditions, DR screening does not 
involve an OCT device in many cases. Therefore, if we can 
use artificial intelligence to diagnose DME accurately accord-
ing to the color fundus photos and get rid of the dependence 
on OCT, we can easily solve this contradiction. The problem 
was not solved in the abovementioned studies concerning 
VTDR screening. In our study, only the recognition of severe 
NPDR and PDR is involved, and the recognition of DME is not 
included. In 2019, Arcadu et al. [13] retrospectively analyzed 
17,997 color fundus photos and their corresponding OCT and 
made a preliminary exploration of predicting macular thick-
ness from color fundus photos using deep learning. The sensi-
tivity was 80.0 ~ 90.0%, and the specificity was 85.0 ~ 94.0%. 
However, there are no other relevant reports at present. The 
recognition of DME in color fundus photography is the next 
step we need to study.

In conclusion, we have studied the intelligent diagnosis of 
severe DR based on color fundus photography, including DR 
grading analysis, lesion analysis, and heat map analysis. Pre-
diction errors mainly occur in moderate NPDR, and images of 
moderate NPDR are prone to be misreported as severe cases. 
Preretinal hemorrhage and vitreous hemorrhage are easily 
identified as lesions of severe cases, while IRMA is the most 
difficult lesion to recognize. Moderate NPDR with relatively 
more hard exudates and cotton wool spots is easily predicted as 
severe cases, while severe NPDR and PDR with relatively less 
intraretinal hemorrhage are easily predicted as nonsevere cases.
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