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chorioretinopathy of fundus fluorescein angiography based on time
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Abstract
Purpose To detect the leakage points of central serous chorioretinopathy (CSC) automatically from dynamic images of fundus
fluorescein angiography (FFA) using a deep learning algorithm (DLA).
Methods The study included 2104 FFA images from 291 FFA sequences of 291 eyes (137 right eyes and 154 left eyes) from 262
patients. The leakage points were segmented with an attention gated network (AGN). The optic disk (OD) and macula region
were segmented simultaneously using a U-net. To reduce the number of false positives based on time sequence, the leakage
points were matched according to their positions in relation to the OD and macula.
Results With the AGN alone, the number of cases whose detection results perfectly matched the ground truth was only 37 out of
61 cases (60.7%) in the test set. The dice on the lesion level were 0.811. Using an elimination procedure to remove false positives,
the number of accurate detection cases increased to 57 (93.4%). The dice on the lesion level also improved to 0.949.
Conclusions Using DLA, the CSC leakage points in FFA can be identified reproducibly and accurately with a good match to the
ground truth. This novel finding may pave the way for potential application of artificial intelligence to guide laser therapy.
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Introduction

Central serous chorioretinopathy (CSC) is characterized by
serous retinal detachment (SRD) and/or pigment epithelial
detachment (PED) most often at the macular region. It is usu-
ally associated with fluid leakage through a defect in the ret-
inal pigment epithelium into the subretinal space. CSC gener-
ally resolves spontaneously within a fewmonths withminimal
sequelae, but chronic disease may lead to widespread RPE
damage, photoreceptor death, and permanent vision loss [1].
It is a leading cause of vision threat in the middle-aged male
individuals [2].

Optical coherence tomography (OCT) and fundus fluores-
cein angiography (FFA) are well-established diagnostic tools
to detect CSC. OCT is useful to provide objective, quantita-
tive, but static morphologic information of the retina for dis-
ease diagnosis and treatment monitoring [3]. FFA provides
detailed information on the structural and hemodynamic
changes of the chorioretinal vasculature to detect leakage
and blockage. Sometimes it could help distinguish CSC from
other retinal diseases by the classic FFA patterns of gradually
expanding leakages as “ink-blot” or “smoke-stack” [4–6].

Typically, CSC is a self-limited process; hence, observa-
tion is the appropriate first-line approach [1, 2]. In other
cases when refractory, persistent, and recurrent CSC ap-
pears, treatment options like anti-vascular endothelial
growth factor (VEGF) therapy, verteporfin photodynamic
therapy (PDT), laser photocoagulation, and subthreshold
micropulse laser (HSML) should be considered [5].
Although PDT stands out as the best available option with

positive randomized controlled trial data to support its use
[7], laser photocoagulation has solid evidences to hasten the
resolution of SRD as long-lasting SRD could increase pho-
toreceptor damage [8–10]. Considering the risk of scar and
CNV induction brought by laser photocoagulation, the need
to precisely identify the CSC leakage point(s) on FFA is
paramount for safety and effectiveness. Accurate detection
of the CSC leakage point(s) on FFA is therefore crucial
given its diagnostic and therapeutic values.

The literature is dominated by papers on using artificial
intelligence (AI) to detect common retinal lesions from color
fundus photographs, including diabetic retinopathy [11–16],
age-related macular degeneration [17, 18], and glaucoma [19,
20]. Similarly, AI-assisted detection of macular lesions from
OCT images, such as epiretinal membrane [21, 22], macular
edema [21–25], macular hole [22, 23], and age-related macu-
lar degeneration [23–26], has been well reported.
Nonetheless, there is paucity of literature on the use of AI
for dynamic lesion detection from FFA images. Since FFA
is a time sequence-based imaging procedure, the lesion detec-
tion is more valuable when taking the dynamic change into
consideration [27].

This study aims to use a deep learning algorithm (DLA) to
automatically detect leakage points from dynamic FFA im-
ages to aid clinical diagnosis and improve treatment accuracy.

Methods

The key steps in the detection of FFA leakage points are
summarized in Fig. 1. We used two networks, one for leakage
segmentation and the other for macula and optic disk (OD)

Key messages

Currently, medical image analyses using Artificial Intelligence (AI) to detect common retinal lesions were 
well developed, dominantly involving static images like color fundus photographs and optical coherence 
tomography (OCT). There is paucity of literature on the use of AI for dynamic lesion detection from FFA 
images.

Few researches have studied the leakage detection or automatic diagnosis of CSC in FFA images to date. 
We detected the leakage points of central serous chorioretinopathy (CSC) automatically from dynamic 
images of fundus fluorescein angiography (FFA) using a deep learning algorithm (DLA), taking advantage 
of the temporal information.

Most AI-based applications in medicine focus on the diagnosis or screening and few are involved with 
treatment. On the basis of the previous work, this study is an in-depth study from computer-aided diagnosis 
to treatment, which may pave the way for potential application of AI to guide laser therapy.
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region segmentation. The macula and OD were used as the
fixed anatomic landmarks, serving as the reference points to
localize the leakage points. Then a false-positive elimination
procedure was applied by analyzing the change of the spatially
corresponding leakage points.

Dataset and annotation

This was a retrospective cross-sectional study of patients from
the Eye Center at the Second Affiliated Hospital of Zhejiang
University from November 2017 to July 2019. All patients
underwent FFA using tabletop systems HRA-II at 30°
(Heidelberg Engineering, Heidelberg, Germany) at 768 ×
768 pixels. The diagnosis of CSC was made based on clinical,
FFA, and OCT findings. Patients with prior treatment (e.g.,
laser treatment) or other fundus diseases (e.g., diabetic reti-
nopathy, age-related macular degeneration, choroidal neovas-
cularization) were excluded. FFA images of poor quality due
to extensive retinal hemorrhage and media opacities were
excluded.

Three ophthalmologists (KJ, YX, and YW) separately
delineated the borders of the leakage points on FFA. The
final ground truth map was generated by assessing the

interobserver consistency and finally achieving consensus
through discussion. A binary map for each FFA image was
created using the flood-fill algorithm, an algorithm which
identified the annotated borders and then replaced the area
within and outside the borders with two specified colors.
The manual annotation results provided the ground truth
for algorithm training and evaluation. The FFA images in
this study were normalized digitally for luminosity and
contrast using an enhancement algorithm. The OD region
and macula region were then annotated similarly using the
same method.

Leakage detection

We used an algorithm called attention gated network (AGN)
for leakage segmentation, which was constructed by integrat-
ing an attention gate model on a convolutional neural network
(CNN). The aim of attention gate is to suppress feature acti-
vations in irrelevant regions. In comparison to the standard
CNN model, AGN is proved to achieve better performance
in a variety of tasks on medical image analysis [28].

Multiple patches were generated from different locations of
the retina using a sliding window with a size of 256 × 256

Fig. 1. The procedure for detecting CSC leakages in the FFA sequences. Abbreviations: FFA, fundus fluorescein angiography; OD, optic disk; AGN,
attention gated network; CSC, central serous chorioretinopathy
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pixels and a stride of 128 pixels (demonstrated in Fig. 1). As a
result, each FFA image was cropped into 25 patches. The
patches were then input into the AGN. Figure 1 shows the
architecture of AGN. The successively connected
convolutional layers transformed the input image and propa-
gated output information into the next layer. Four attention
gates were used to filter the features propagated through the
skip connections. Cross entropy was used as the loss function
and stochastic gradient descent (SGD) was used as the opti-
mization algorithm. The batch size was set to 64. The initial
learning rate was set to 0.01 and dropped to 10−3 and 10−4 at
the 40 and 50 epochs. The weight decay coefficient and the
momentum are set to 10−4 and 0.9, respectively. The resulting
output was a probability map indicating the probability value
(from 0 to 1) of each pixel on the FFA image.

Then a range of threshold value (from 0 to 1) was applied to
create a detection map by thresholding the probability values
in the probability map. Each pixel which exceeded the thresh-
old value would be estimated to be a positive pixel. Then each
connected component by the positive pixels was considered to
be a detected lesion. Thus, every threshold value had a corre-
sponding result of detection map.

Three metrics were used to evaluate the model performance
across different thresholds—dice, precision, and recall. They are
calculated based on true positives (TP), false positives (FP), and
false negatives (FN), respectively. The following equations de-
fine how these parameters relate to the three metrics:

Precision ¼ TP= TP þ FPð Þ
Precision ¼ TP= TP þ FPð Þ

Dice ¼ 2*TP= 2*TP þ FP þ FN
� �

TP expresses the region presented both in the detection
result and the ground truth. FP expresses the region detected
as a leakage but not presented in the ground truth. FN ex-
presses the region presented in the ground truth but not detect-
ed by the model. Recall has the same meaning as TP rate,
while precision is the ratio of TP divided by the sum of the
TP and FP. Dice represents the degree of similarity (contact
ratio) between the detecting result of the proposed model and
the ground truth. A precision-recall curve (PR curve) was
plotted to represent model performance, with its X and Y axes
defined as recall and precision, respectively.

Elimination of FP based on time sequence

To eliminate FP, an elimination procedure is needed. This
procedure involves the following steps.

The view of every frame in an FFA report varies in general,
so the macula and the OD were used as the fixed anatomic
landmarks, serving as the reference points to localize the leak-
age points. Thus a U-net [29] was built to segment the borders
of the macula and OD simultaneously. We chose the cross

entropy as the loss function in the macula area and OD area.
The optimizer of the model is adaptive moment estimation
(Adam). The batch size was set to 4. The initial learning rate
was set to 0.01 and dropped to 10−3 and 10−4 at the 45 and 60
epochs. The weight decay coefficient and the momentum are
set to 10−4 and 0.9, respectively. The center of the detected
macula region was estimated to be the center of the fovea. A
circle with a radius of 100 pixels centered on the OD was
masked as an area of exclusion, because the leakage points
of CSC are predominantly located around the macula region.
Its exclusion was able to improve the detection performance
by reducing sources of false targets.

Each identified leakage is marked with the indices α, m, n,
and S. α is the angle between the line from the center of the
macula to the leakage (its distance is measured as m) and the
line from the center of the OD to the leakage (its distance is
measured as n). S represents the area of the particular leakage
point. In each FFA report, the same leakage point in different
images can be identified by calculating the differences in the
angle and distance indices (Fig. 2), and the change of the
leakage area can be illustrated by the differences in the area
index. A true leakage point is defined if meeting both the
following two criteria: (a) appearance in spatially correspond-
ing regions in the consecutive imaging frames and (b) differ-
ence of the area index between the first and last appearance of
a leakage meeting or exceeding 500 pixels. The value of 500
pixels was determined by the repeated trials during training.
Choosing a value that is too small results in the weakening
ability to eliminate FP, and a value too big will inversely cause
the misidentification of FP.We set a list of optional arguments
including 200, 300, 400, 500, 600, and 700 pixels. The value
of 500 pixels performed best through the assessment of FP
detection rate.

Results

We retrospectively collected 2104 FFA images from 291 FFA
sequences of 291 eyes (137 right eyes and 154 left eyes) from
262 patients (mean age 44.7±7.9 years old; male and female
ratio 2.73:1). The whole dataset was segmented into training
set (1229 FFA images from 169 FFA sequences), validation
set (439 FFA images from 61 FFA sequences), and test set
(440 FFA images from 61 FFA sequences). Table 1 describes
the demographics of the study subjects.

The models were trained in a system with two NVIDIA
2080Ti (11GB RAM) graphics card and an Intel Core i7 pro-
cessor. During the test, one NVIDIA 2080Ti (11GB RAM)
graphics card was used and the average execution time re-
quired for one single test (including the detection of optic disk,
macula, and leakage regions in one FFA sequence, as well as
its FP elimination part) was approximately 900 ms.
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Results of leakage detection

The training set consisted of 1229 FFA images from 169 FFA
sequences. Each FFA image was cropped into 25 patches.
Figure 3 shows the precision-recall curves of the proposed
algorithm before the FP elimination. Depending on different
preset threshold value, the performance in detecting leakage
varies. When the threshold value increases, the precision in-
creases, while the recall decreases. The precision-recall curve
shows the trade-off between precision and recall for different
threshold. At a threshold of 0.5, the dice value was 0.79.

In particular, the lesion level performance at the threshold
of 0.5 was conducted by calculating the number of TP results,
FP results, and FN results per case, which were determined by

the overlapping region between the detection result and the
ground truth. In 37 of 61 cases (60.7%), the detected leakages
perfectly matched the ground truth. The detection results of
the other 24 cases (39.3%) were listed in Supplementary
Table 1. The dice value on the lesion level was 0.811.

Results of FP elimination

In the segmentation of the macula and the OD by U-net, the
training set consisted of 1229 FFA images from 169 FFA
sequences. The dices of macula region and OD region were
0.92 and 0.85, respectively. To present the effects of elimina-
tion procedure in a direct and intuitive manner, detection maps
are obtained at a threshold of 0.5 before and after FP

Fig. 2. Illustration of the
registration pattern, showing how
a leakage point is localized and
how to identify the spatially
corresponding regions in different
FFA frames. Two presented FFA
images are from the same FFA
sequence. The top image shows
the earlier frame from 0:35.13,
and the bottom image shows the
later frame from 5:35.48. Each
identified leakage (green region)
is marked with (α,m, n, S), where
α is the angle between the line
from the center of the macula (the
red region) to the leakage
(measured asm) and the line from
the center of the OD (the blue
region) to the leakage (measured
as n) and S represents the area of
the leakage area. The leakage
points are spatially aligned when
the conditions listed in the dashed
box are met, which means they
are the same leakage point on the
retina

Table 1 Population
characteristics of the population
studied

Total Training set Validation set Test set

FFA sequences/eyes 291 169 61 61

FFA images 2108 1229 439 440

Age (mean±SD) 44.71±7.94 44.99±8.63 44.33±7.39 44.32±6.30

Male and female ratio 2.73:1 2.67:1 2.81:1 2.81:1

OD/OS 137/154 72/97 32/29 33/28
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elimination for illustration. Figure 4 shows an example which
is accurately detected, and Figure 5 shows two examples to
illustrate the effect of the elimination procedure on the detec-
tion maps. Supplementary Table 1 summarizes the cases with
improvement in the number of missed or wrongly detected
leakage points after the elimination of FP set at threshold of
0.5. After the elimination procedure, 57 of 61 cases (93.4%)
were accurately detected, with 27 of 31 FP lesions eliminated.
The dice value on the lesion level improved to 0.949.

The experiment also carried out the qualitative comparison
of segmentation results for leakage, optic disk, and macular
region versus three ophthalmologists. As shown in Fig. 6, the
proposed algorithm exhibits superior performance in the seg-
mentation of these three regions, which is comparable to the
human experts.

Discussion

We proposed a novel method to automatically detect CSC
leakages that occur during dynamic FFA imaging. The dice
value on the lesion level reached 0.949 at the threshold of 0.5,
up from 0.811 before the FP elimination. Fifty-seven of 61
cases (93.4%) were accurately detected. The improvement in
detection performance suggests that the applied FP elimina-
tion procedure resulted in a satisfactory outcome. Some typi-
cal examples (cases 18 and 30) which benefited from the
elimination procedure are presented in Fig. 5 to show the
improved detection results. The detected areas were removed
by the FP elimination procedure for these 2 cases as they did
not meet the inclusion criteria for a true leakage point. The use
of a single-frame detection strategy is limited by the problem
of wrong or missed detection. The DLA used in this study
yielded superior detection rates as it accounted for changes
in the lesion with time in dynamic FFA imaging by using
spatially corresponding regions.

To investigate the FPs that failed to be eliminated in this
study, we manually reviewed the remaining FPs to determine
their cause(s). Figure 7a shows an example with several close-
ly spaced leakage points that fuse together in the late phase of
angiography. Figure 7b shows an example with the wrongly
detected leakage point first appearing in the last FFA frame. A
possible explanation for this phenomenon is the use of un-
evenly paced image frames which are not uncommon in
real-world clinical imaging. Applying a standardized imaging
protocol may address this problem.

To detect the leakage point, an AGN is used. This a deep
learning model that is adept at leverage salient regions in
medical images. It improves model performance for global
and dense label predictions by suppressing feature activations
in irrelevant regions despite small leakages. However, if the
entire image is used as the input, the overwhelmingly higher

Fig. 4. Representative segmentation results of the proposedmethod. Four
original FFA images of case 13 are showed in the top row, with the four
images displayed in the second row showing the corresponding detection
results before FP elimination. The larger image on the right illustrates the

detection result after FP elimination. The green regions indicate the
identified leakage, while the blue regions indicate the segmented OD
and the red regions indicate the segmented macula

Fig. 3. The precision-recall curves of the proposed algorithm before the
FP elimination
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number of negative pixels will overshadow the positive pixels
and compromise training of the network. To resolve this prob-
lem, the images are cropped into patches with a size of 256 ×
256 pixels and a stride of 128 pixels to focus on the area of
interest only. Several researches have successfully applied this
strategy to analyze medical images in ophthalmology [30–32].

Few researches have studied the leakage detection or auto-
matic diagnosis of CSC in FFA images to date. Zhao et al. [33]
proposed a saliency-based framework to detect three types of
FFA leakage in malarial retinopathy. They reported sensitivi-
ties of 98.1, 88.2, and 82.7% in detecting large focal, punctate
focal, and vessel segment leakage, respectively. But their
work was based on single-frame FFA images without any
temporal information. As a time sequence–based imaging pro-
cedure, FFA interpretations will not be reliable without com-
parisons between consecutive FFA frames. Phillip et al. [34,
35] used one early and one late FFA frame tomeasure macular
leakage in diabetic maculopathy based on the rate of fluores-
cence change. An accuracy rate of 97% was reported.
However, the proposed method required manual alignment

during image acquisition and was unable to avoid FP. The
FPs are due to lesions that exhibit increasing fluorescencewith
time, such as drusen and peripapillary scleral crescent, but are
not true leakages. Moreover, using only two frames to detect
leakage is not ideal and inadequate for diagnosis in FFA in-
terpretations. Rabbani et al. [27] subtracted the mean early
frame from the mean late frame to detect leakage areas in
FFA images of diabetic retinopathy patients. This study which
involved 24 eyes had a mean accuracy of 86%.

The impetus for this study is the growing demand for nav-
igated laser photocoagulation systems such as NAVILAS
[36–39] that is FFA image-guided. This system takes refer-
ence from imported FFA images to tailor and monitor laser
applications, thus enabling precision and customization. The
use of NAVILAS increased the microaneurysm hit accuracy
of laser photocoagulator from 72 to 92% in the treatment of
diabetic macular edema [37] and permitted the resolution of
subretinal fluid in 75% of the chronic non-resolving CSC
patients [39]. However, the target region and the forbidden
zone of laser (the OD and macula region) were detected

Fig. 5. Illustrative examples of the FP elimination procedure in case 18 (a) and case 30 (b). The detected regions indicated by the yellow arrows got
eliminated in the FP elimination procedure
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manually, and the registration operation was unable to run in
an automated pattern. Although interpreting the leakage point
from FFA is not a tough task in most cases, there is plenty that
AI can do. Conventionally, doctors would analyze the leakage
sites from FFA reports beforehand and then conduct the laser
procedure bymemory, which seemed a bit slow and laborious.
What’s more, deviation will be inevitably induced. What we
mainly focused on was not all about avoiding the misinterpre-
tation of FFA leakage point by doctors but approving the
doctors’ efficiency and reducing the introduced deviation
mentioned above. We believe the accurate detection of true
leakage points will largely pave the way for that purpose.

In addition, as an invasive therapy, laser photocoagulation
needs to be very cautiously chosen and conducted. We have
made the following efforts to minimize the avoidable damage.
On the one hand, the distance between the detected leakage
and the center of the macula was measured as “m,” which is
supposed to serve as a “gatekeeper” before conducting the
laser treatment in case of the misdiagnosis of the normal retina
near the macula as the leakage point. When “m” is less than

Fig. 6. Qualitative comparison of segmentation results for leakage, optic
disk, and macular region versus three ophthalmologists

Fig. 7. Two illustrating examples showing the FP failed to be eliminated by the proposed algorithm. a In case 07, several closely spaced leakages fuse
together in the late phase of angiography (5:54.52). b In case 25, the leakage area spreads too far to be identified as one single leakage
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500 μm, the leakage would be highlighted and need special
approval before laser treatment. On the other hand, the
planned target region of a true leakage point should be traced
back to the FFA frame where it first appeared. This is only
possible with our proposedmethod in this study. For example,
in case 13 showed in Fig. 4, the detected leakage first appeared
in 1:02.64. It would be most appropriate if the segmentation
area in this frame could serve as the laser target.

It is worth noting that we expect our method to have wider
clinical applications. Considering the complex temporal varia-
tion of retinal leakages, we preliminarily used typical CSC
sequences as “ink-blot” or “smoke-stack” pattern. Given the
promising results of the present study, the work could hopeful-
ly expand to detect leakages in other retinal diseases after prop-
er adjustment, such as diabetic retinopathy. In addition, taken
another perspective, a “time sequence” could also be formed by
an array of imaging data at each follow-up visit. The interpre-
tation of such “time sequence”might serve as an aid to monitor
the progression, recovery, or activity of the certain disease.

There are some limitations to our study. First, it is limited by
being a single-center, pilot study with a small sample size.
There will be a need for further studies with a larger study
population to verify our study results. Second, although the
applied sliding window method showed promising results, bias
is inevitably introduced by the predefined patch size and stride
length. The optimal size of the patch is difficult to determine.
Choosing a size that is too small results in an increase of the
computational time per image, and a size too big will weaken
the detection performance. Third, poorly aligned FFA frames
may result in the exclusion of the OD or macula region, making
accurate lesion localization difficult and causing segmentation
error. Fourth, given the variation in the appearance and duration
of the leakage point, the FFA frames are taken in different
timings. Therefore, there is no fixed time sequence in the
FFA images. This differential time sequence results in problems
in segmentation and lesion localization. Applying a standard-
ized imaging protocol can be part of the solution. However, the
time variation that came from different blood circulation times
in different subjects remained insoluble.

Our study demonstrated the benefits of using a DLA to
analyze consecutive FFA images over a temporal sequence
to automatically detect leakage points in CSC. The detection
performance of the DLA is improved with the employment of
a FP elimination procedure.
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