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Abstract
Purpose In vivo microenvironments are critical to tissue homeostasis and wound healing, and the cornea is regulated by a
specific microenvironment complex that consists of cell–cell interactions, air–liquid interfaces, and fluid flow stimulation. In
this study, we aimed to clarify the effects of and the correlations among these three component factors on the cell kinetics of
corneal epithelial cells.
Methods Human corneal epithelial–transformed (HCE–T) cells were cocultured with either primary rat corneal fibroblasts or
NIH 3T3 fibroblasts. We employed a double-dish culture method to create an air–liquid interface and a gyratory shaker to create
fluid flow stimulation. Morphometric and protein expression analyses were performed for the HCE–T cells.
Results Both the primary rat fibroblasts and the NIH 3T3 cells promoted HCE–Tcell proliferation, and the presence of fluid flow
synergistically enhanced this effect and inhibited the apoptosis of HCE–Tcells. Moreover, fluid flow enhanced the emergence of
myofibroblasts when cocultured with primary rat fibroblasts or NIH 3T3 cells. Extracellular signal-regulated kinase and p38
signaling were regulated either synergistically or independently by both fluid flow and cellular interaction between the HCE–T
and NIH 3T3 cells.
Conclusion The cell–cell interaction and fluid flow stimulation in the air–liquid interface synergistically or independently
regulated the behavior of HCE–T cells. Fluid flow accelerated the phenotypic change from corneal fibroblasts and NIH 3T3
cells to myofibroblasts. Elucidation of the multicomponent interplay in this microenvironment will be critical to the homeostasis
and regeneration of the cornea and other ocular tissues.

Keywords Corneal microenvironment . Shear stress . Cell–cell interaction .Wound healing

Introduction

The cornea is a transparent tissue and is composed of five
layers: the multilayered corneal epithelium, Bowman’s mem-
brane, the corneal stroma, Descemet’s membrane, and the cor-
neal endothelial layer (Fig. 1a) [1]. Both corneal epithelial
cells and stromal keratocytes possess the paracrine loop and
regulate the homeostasis and wound healing process of the
cornea [2]. The cornea exists in the air–liquid interface, which

is composed of lacrima (the covering watery fluid) and the
surrounding atmosphere [3]. In addition, corneal stromal cells
are exposed to interstitial fluid flow produced by the aqueous
humor from the anterior chamber [4].

In vivo microenvironments are critical for tissue homeo-
stasis and the wound healing process [5, 6]. The paracrine
loop that originates during cell–cell interaction is a cellular
factor of the microenvironment [7]. Physical stimulation
such as fluid shear is in turn a location-specific factor of
the microenvironment of a given tissue [8]. In cornea,
lacrima is stirred by palpebration and eye movement, and
corneal epithelial cells are constantly exposed to fluid flow
stimulation. In addition, these corneal epithelial cells are in
the air–liquid interface composed of lacrima and air at the
surface of the eye. We hypothesized that there may be a
connection, in the cornea, among interactions between ep-
ithelial and stromal cells, fluid flow stimulation, and the
air–liquid interface and that each of these three factors may
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have an important role to play in the homeostasis of cor-
neal tissue as a specific constituent of the microenviron-
ment. No culture models that can simultaneously recon-
struct cell–cell interaction, fluid flow stimulation, and
air–liquid interface are available. To the best of our knowl-
edge, we overcame this issue by establishing a simple cul-
ture model that could concurrently replicate the cellular
and physical microenvironments in the cornea.

This study aimed to clarify the effect of both the cellular
and physical microenvironments on the homeostasis and
wound healing in corneal tissue.

Methods

Cell lines and tissue samples

Human corneal epithelial–transformed (HCE–T) cell lines
were obtained from the RIKEN Cell Bank (Ibaraki, Japan)
and maintained in Roswell Park Memorial Institute
(RPMI) 1640 medium supplemented with 10% fetal bo-
vine serum (FBS), 0.5% dimethyl sulfoxide, 100 μ/mL
streptomycin, and 100 μ/mL penicillin. NIH 3T3 mouse
fibroblasts were obtained from the Japanese Cancer

Fig. 1 Corneal microenvironment and experimental design. a Corneal
physical and cellular microenvironment. The cornea exists with an air–
liquid interface composed of the covering watery lacrimal fluid and the
surrounding air. The cornea itself consists of three cellular layers: the
epithelial layer, the corneal stroma, and the endothelial layer. The inter-
action between the epithelial and stromal layers constitutes a specific
cellular microenvironment of the cornea. b Histologic features of corneal
ulcers. In this illustration, alpha-smooth muscle actin (αSMA)–positive
myofibroblasts are located beneath the epithelial layer and the surface of
the eroded corneal stroma (arrowhead). Cytokeratin (CK) AE1/AE3

immunostaining shows epithelial cell invagination into the corneal stroma
(arrow). c Coculture models of human corneal epithelium–transformed
(HCE–T) cells seeded on collagen gel discs embedded with corneal fi-
broblasts or NIH 3T3 cells. As a control, HCE–T cells were seeded on
collagen gel discs without stromal cells. d Double-dish air–liquid inter-
face (ALI) culture method. To replicate the air–liquid interface, the cul-
ture fluid level of outer dish was adjusted to the height of collagen gel of
the inner dish. e Continuous fluid flow–generating system. To generate
fluid flow, culture dishes were placed on a gyratory shaker in a CO2

incubator
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Research Bank, Osaka. NIH 3T3 cell lines were main-
tained in RPMI 1640 medium supplemented with 10%
FBS, 100 μ/mL streptomycin, and 100 μ/mL penicillin.
Primary corneal fibroblasts were isolated from the corneal
tissue of 4- to 6-week-old Wistar rats. To isolate cells, the
corneas were incubated in a 3-mg/mL collagenase A solu-
tion for 1 h at 37 °C with a stirring device. The digest was
then immediately placed in a monolayer culture and main-
tained in RPMI 1640 medium supplemented with 10%
FBS, 100 μ/mL streptomycin, and 100 μ/mL penicillin.
Under the culture condition, isolated keratocytes lost their
phenotype and differentiated into fibroblasts in the pres-
ence of FBS [9]. All cell lines were incubated in a humid-
ified atmosphere of 5% CO2 and 20% O2 at 37 °C in a
CO2 incubator.

Air–liquid interface cell culture system

To analyze the cell–cell interaction and kinetics of HCE–T
cells, we developed a double-dish culture system (Fig. 1c)
[10, 11]. First, corneal fibroblasts or NIH 3T3 cells were
mixed with a collagen gel solution (Cellmatrix, type I-A;
Nitta Gelatin Co. Ltd., Osaka). Next, 1 mL of the mixture
(including 5 × 105 keratocytes or NIH 3T3 cells) was poured
into 30-mm-diameter Millicell-CM dishes (Millipore,
Bedford, Massachusetts, USA). After the gel was solidified
at 37 °C for 30min, 2 × 105 HCE–Tcells were seeded onto the
surface of each dish. These dishes were then placed in larger
(90-mm-diameter) outer dishes (Sumitomo Bakelite, Japan)
containing 9 mL of complete medium in an air–liquid inter-
face condition (Fig. 1d). To serve as controls, HCE–T cells
were also seeded on collagen gel dishes without mesenchymal
cells. Primary corneal keratocyte cells isolated from the cor-
neal tissue of Wistar rats were cocultured with HCE–T, as
previously described.

Fluid flow–generating system

The fluid flow–generating system was slightly modified from
a method used previously [12]. One day after HCE–T cells
were seeded, dishes were incubated in a system that generated
fluid flow. The culture dishes were incubated in an atmosphere
of 5% CO2 and 20% O2 at 37 °C in a CO2 incubator; to
generate flow, the dishes were placed on a gyratory shaker
(MIR–S100C; Panasonic, Tokyo, Japan) that rotated at a
speed of 45 rpm (Fig. 1e). Control dishes were placed in the
CO2 incubator when static, and the culture medium was
changed every other day. In this way, the HCE–T cells were
exposed to both an air–liquid interface and a fluid flow con-
dition, which mimicked the in vivo physical microenviron-
ment of the cornea.

Histology and immunohistochemistry

After 14 days of culturing, we performed histological exami-
nations with hematoxylin–eosin staining. Tissues were fixed
with 10% formalin, routinely processed, and embedded in
paraffin, before deparaffinized sections were used for staining.
A mouse monoclonal anti-pan–cytokeratin (CK) AE1/AE3
antibody was used to detect HCE–Tcells, and a mouse mono-
clonal alpha-smooth muscle actin (αSMA) antibody (Dako,
Glostrup, Denmark) was used to evaluate the myofibroblasts.
Proliferative and apoptotic cells were labeled with a mouse
monoclonal anti-Ki-67 antibody (Dako) and a rabbit mono-
clonal cleaved caspase-3 antibody (Cell Signaling
Technology, Danvers, Massachusetts), respectively. For im-
munofluorescence analyses, a rabbit monoclonal anti-αSMA
antibody conjugated with Alexa Fluor 488 was used. Alexa
Fluor 568-conjugated goat anti-mouse immunoglobulin G
(Invitrogen, Carlsbad, CA) was used as the antibody second-
ary to CK AE1/AE3 antibody. Images were analyzed with an
Axio Imager 2 light microscope and Apotome.2 system (Carl
Zeiss Co. Ltd., Oberkochen, Germany).

Morphometric analysis

A total of 1000 cells were counted (low magnification, × 10
objective) at five randomly chosen noncontiguous and non-
overlapping fields of the stained sections. The percentages of
Ki-67-positive cells and cleaved caspase-3–positive cells were
then determined as indicators of proliferation and apoptosis,
respectively. The epithelial cell layer thickness was measured
at ten points in the five randomly chosen areas. The depth of
HCE–T cell invagination was measured from the basement
membrane to the deepest part of the HCE–T cells.

Western blot analysis

Experiments were performed with the samples in submerged
conditions for the protein analysis. HCE–Tcells and NIH 3T3
cells were cocultured in inserts with 8-μm pore sizes (Falcon
Cell Culture Insert; Becton Dickinson, Franklin Lakes, N.J.).
NIH 3T3 cells embedded in collagen gels were placed on the
outside bottom of the inserts, and HCE–T cells were seeded
inside the inserts. The inserts were then placed in 10-cm-
diameter dishes in 20 mL of complete medium and were ad-
justed to the air–liquid interface condition. After culturing for
48 h, the collagen gels were stripped from the inserts. The
HCE–T cells were lysed in 400 μL of M-PER Reagent
(ThermoFisher Scientific, Waltham, Massachusetts) contain-
ing Protease/Phosphatase Inhibitor Cocktail (Cell Signaling
Technology). Lysates containing an equal quantity of protein
were separated by sodium dodecyl sulfate–polyacrylamide gel
electrophoresis in 12% bis-tris gels and transferred to
polyvinylidene difluoride membranes. The membranes were
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incubated overnight at 4 °C with antibodies against extracel-
lular signal–regulated kinase (ERK) 1/2, p-ERK1/2, p38, and
p-p38 (Cell Signaling Technology). A chemiluminescent
immunodetection system (Western Breeze; ThermoFisher
Scientific) was used to detect antibody-bound antigens on
membranes. Band densities were determined using a Fusion
system (Vilber–Lourmat, Eberhardzell, Germany), analyzed
with Image J software (http://rsb.info.nih.gov/ij/), and
presented as ratios relative to control values.

Statistical analysis

Data obtained from three to five independent experiments
were analyzed with Student’s t tests or Wilcoxon tests, de-
pending on the results of equality of variance. Values are pre-
sented as means ± standard deviations, together with the num-
ber of experiments carried out. Mean values of replicates in
experiments were used to determine statistical significance;
p values of less than 0.05 indicated statistically significant
differences. All statistical analyses were performed using
JMP 13 for Windows (SAS, Cary, N.C.).

Results

Synergism of mesenchymal cells and fluid flow
in HCE–T cells at the air–liquid interface

Because the air–liquid interface is an essential microenviron-
ment for corneal cell culture [10, 11], all experiments were
performed in this condition.

To clarify mesenchymal paracrine and fluid flow stimu-
lation effects, we cultured HCE–T cells with primary cor-
neal fibroblasts derived from rat corneal tissue or NIH 3T3
fibroblasts in the static and fluid flow conditions, as men-
tioned previously. The HCE–T cells cultured without mes-
enchymal cells showed a flat cytoplasm with a one- to two-
layer structure in the static conditions (Fig. 2a). When they
were cultured with primary keratocytes, however, cellular
hypertrophy was induced, and the thickness of the HCE–T
cell layer increased. When they were cultured with NIH

3T3 cells in the static conditions, there was mild cytoplas-
mic hypertrophy with increased sheet-like thickness of
cells. Both fibroblasts and NIH 3T3 cells triggered HCE–
T cell invagination into the collagen gel layer, which was
not present in the monoculture group, in both static and
fluid flow conditions.

Next, we added fluid flow stimulation to the cell cultures to
investigate the role of the physical microenvironment. HCE–T
cells in the monoculture group showed cytoplasmic hypertro-
phy and a thickened cellular layer in conditions of fluid flow
stimulation (Fig. 2a). The presence of fibroblasts or NIH 3T3
cells also induced greater cell numbers, a greater ratio of nu-
clear cells to cytoplasmic cells, and an increase in
multistratified layers in HCE–T cells. The respective thick-
nesses of cellular layers in the groups in the static and fluid
flow conditions were 16.3 ± 7.1 μm and 28.0 ± 13.3 μm, re-
spectively, for HCE–T monocultures; 29.7 ± 7.9 μm and
116.8 ± 5.1 μm, respectively, for HCE–T cells plus fibro-
blasts; and 37.4 ± 7.3 μm and 72.6 ± 10.3 μm, respectively,
for HCE–T cells plus NIH 3T3 cells.

In static conditions, there was a difference between the
groups cocultured with fibroblasts and those cocultured with
NIH 3T3. Fluid flow significantly increased the ratio of Ki-67-
positive HCE–T cells cocultured with either fibroblasts or
NIH 3T3 cells, in comparison with these groups in static con-
ditions. The respective Ki-67 labeling index percentages in the
groups in static and fluid flow conditions were 40.7% ± 20.7%
and 52.9% ± 12.6%, respectively, for HCE–T monocultures;
27.5% ± 14.4% and 54.6% ± 24.1%, respectively, for HCE–T
cells plus fibroblasts; and 41.2% ± 5.2% and 56.7% ± 9.8%,
respectively, for HCE–T cells plus NIH 3 T3 cells (Fig. 2c).

Fibroblasts and NIH 3T3 cells had a lower labeling index
of HCE–T cells positive for cleaved caspase-3 than did the
monoculture group in static and fluid flow conditions
(Fig. 2d). Fluid flow did not affect the cleaved caspase-3 la-
beling index in any group. The respective percentages for the
cleaved caspase-3 labeling indexes in the groups in static and
fluid flow conditions were 6.9% ± 4.3% and 5.1% ± 3.8%,
respectively, for HCE–T monocultures; 3.4% ± 2.4% and
2.7% ± 1.2%, respectively, for HCE–T cells plus fibroblasts;
and 3.6% ± 2.5% and 2.3% ± 1.4%, respectively, for HCE–T
cells plus NIH 3T3 cells.

Mesenchymal cells and fluid flow promote HCE–T cell
invagination into collagen matrix at the air–liquid
interface

Corneal damage induces keratocytes to differentiate into
myofibroblasts [13]. These then regulate the deposition
and organization of extracellular matrix in corneal wounds
and are responsible for corneal wound contraction [14],
and both the epithelial–mesenchymal transition of epithe-
lial cells and the activated stromal niche regulate
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�Fig. 2 Effects of stromal cells and fluid flow on the cellular kinetics of
HCE–T cells. a At day 14, both keratocyte and NIH 3T3 cells synergis-
tically promoted cellular hypertrophy and thickened epithelium layer in
HCE–T cells in conditions of fluid flow. HCE–T cells cultured with fi-
broblasts and NIH 3T3 cells invaded the corneal stroma. Upper and lower
pictures show low and high magnification images, respectively.
Abbreviation: Mono, monoculture. Bar, 100 μm. b Immunostaining of
Ki-67 ad cleaved caspase-3. c Thickness of epithelial cell layers. d
Immunostaining for Ki-67 and the percentages of positive cells. e
Immunostaining for cleaved caspase-3 and percentages of positive cells.
Data are shown as means ± standard deviation of the mean for three
measures. *p < 0.05. White and blue bar charts indicate the static and
fluid flow conditions, respectively

http://rsb.info.nih.gov/ij/


Fig. 3 Stromal cells and fluid flow promote frequent myofibroblast
emergence and HCE–T cell invagination a Myofibroblasts emerged be-
neath the epithelial layer in the group cocultured with fibroblasts or NIH
3T3 cells in the static condition. NIH 3T3 cells promoted more frequent
myofibroblast emergence compared with the fibroblasts. Fibroblasts and
NIH 3T3 cells induced HCE–T cells to invaginate into the collagen gel.
Fluid f low enhanced this invaginat ion of HCE–T cel ls .
Immunofluorescence images of border area of epithelial cell layers and

mesenchymal cells (green,αSMA; red, cytokeratin [CK] AE1/AE3; blue,
DAPI). αSMA and cytokeratin AE1/AE3 double–positive cell is difficult
to detect. b Depth of epithelial cell invagination area. Data are shown as
means ± standard deviation of the mean for three measures. Bar, 100 μm.
*p < 0.05. White and blue bar chart indicates the static and fluid flow
conditions, respectively. Abbreviations: Mono, monoculture; αSMA,
alpha-smooth muscle actin
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intrastromal invasion of limbal epithelial cells [15]. Any
disarrangement of corneal epithelial cells and keratocytes
then induces corneal opacity [16].

The monoculture group had no αSMA-positive cells in the
static or fluid flow conditions, but αSMA-positive
myofibroblasts emerged beneath the HCE–T cells in the
groups cocultured with fibroblasts or NIH 3T3 cells in the
static conditions (Fig. 3a). The frequency of myofibroblast
emergence was higher in the group cocultured with NIH
3T3 than in the group cocultured with fibroblasts. Away from
the epidermal layer, neither fibroblasts nor NIH 3T3 cells
showed αSMA-positive phonotypes. Compared with the stat-
ic condition, fluid flow increased the number of
myofibroblasts in the affected area in both the keratocyte
and the NIH 3T3 coculture groups. Compared with the static
condition, fluid flow also increased the distributed range and
depth of myofibroblasts from fibroblasts and NIH 3T3 cells in
the affected area. Myofibroblasts emerged inside the thick-
ened epithelial layers cocultured with fibroblasts and
NIH3T3 cells under fluid flow condition, but the CK AE1/
AE3 and αSMA double-positive cell was not observed.
During corneal regeneration, corneal epithelial cells often in-
vaginate into the stroma in the manner of rete ridges of the
skin [17]. To assess this, we measured the invagination depths
of HCE–T cells into collagen gel. In the absence of mesen-
chymal cells, HCE–Tcells did not invaginate into collagen gel
in either the static or fluid flow condition. In contrast, the
presence of fibroblasts and NIH 3T3 cells induced invagina-
tion, and this was promoted by fluid flow. The respective
depths of invagination in groups in the static and fluid flow
conditions were 0 μm and 0 μm, respectively, for HCE–T
monocultures; 11.6 ± 1.7 μm and 37.0 ± 9.9 μm, respectively,
for HCE–T cells plus fibroblasts; and 21.0 ± 6.0 μm and 43.9
± 3.9 μm, respectively, for HCE–T cells plus NIH 3T3 cells.

Fibroblasts and fluid flow modulate ERK1/2 and p38
expression in HCE–T cells

Mitogen-activated protein kinase (MAPK) pathways are in-
volved in the proliferation, epithelial–mesenchymal transition,
and migration of many cell types, including those of the cor-
nea [18]. To achieve reproducible results, we used NIH 3T3
cells as the representativemesenchymal cell, and we evaluated
ERK1/2 and p38 expression to clarify the kinetics of HCE–T
cells.

The total ERK expression of HCE–T cells did not differ
significantly between the monoculture and NIH 3T3
cocultured groups in the static or fluid flow conditions
(Fig. 4). Fluid flow caused significant downregulation of the
total ERK expression in the monoculture group, in compari-
son with the static condition. There was no difference in the
ratios of phosphorylated ERK1/2 to total ERK1/2 in the
monoculture group in the static and fluid flow conditions. In

comparison with the static condition, fluid flow caused signif-
icant upregulation of the ratio of phosphorylated ERK1/2 to
total ERK1/2 in the monoculture group, in comparison with
the NIH 3T3 coculture group.

There was no significant difference in total p38 expression
of HCE–T cells between the monoculture and NIH 3T3 co-
culture groups in the static or fluid flow conditions. The ratio
of phosphorylated p38 to total p38 was significantly lower in
the monoculture group than that in the NIH 3T3 coculture
group in the static condition. Fluid flow caused upregulation
of the ratio of phosphorylated p38 to total p38 in the mono-
culture group in comparison with the static condition but
caused downregulation of that ratio in the NIH 3T3 coculture
group.

Discussion

In this study, we demonstrated that three microenvironments—
interaction between cells, stimulation by fluid flow, and the
presence of an air–liquid interface—synergistically regulated
the behavior of corneal epithelial cells. We assessed this syner-
gy by using a new three-dimensional culture system.

Physical stress, especially fluid flow, has been implicated
in the physiologic response to endothelial cells [19, 20]. Shear
stress and fluid flow constitute critical microenvironmental
factors in various cell types, including stem cells and cancer
cells [21, 22]. In the eye, corneal epithelial cells and stromal
cells are surrounded continuously by lacrimal and aqueous
humor, respectively. These two fluids are involved in fluid
flow during blinking, eye movement, and aqueous outflow.
Several researchers have reported that the cell kinetics of cor-
neal epithelial cells or endothelial cells are individually affect-
ed by the resulting shear stress [23–27]. However, these re-
searchers used only two-dimensional, single-cell culture
models and did not consider the air–liquid interfaces that are
key for organs covering or covered by the body (e.g., eyes,
skin, and gastrointestinal tract). According to previous reports,
reconstructing this particular physical environment in a cul-
ture model affected cellular proliferation, apoptosis, differen-
tiation, and stemness in several normal and cancer tissues [10,
28–30]. It is therefore essential that investigators replicate the
tissue architecture, cell–cell interactions, and specific physical
microenvironment in a three-dimensional culture system that
in order to interpret cell kinetics and remodeling accurately.

Cell–cell interaction is critical for maintaining tissue ho-
meostasis and regeneration of both normal and cancer tissue
[31, 32], and a mesenchymal paracrine effect is attributed to
cell–cell interaction and exerts proliferative, anti-apoptotic,
and anti-inflammatory effects to parenchymal cells [33, 34].
Our culture model also replicated the anti-apoptotic paracrine
effect of fibroblasts and NIH 3T3 cells in corneal epithelial
cells independently of fluid flow stimulation. In contrast, the
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effect of physical stimulation on cell–cell interactions is not
fully understood. In this study, we demonstrated that a pheno-
typic change from keratocyte or fibroblast to myofibroblast
was promoted by fluid flow stimulation in the air–liquid in-
terface. Moreover, MAPK signaling was synergistically or
independently regulated by the interaction between cells and
the stimulation by fluid flow. Our simple culture model helped
us determine the factors that affected the behavior of corneal
epithelial cells in order to evaluate the kinetics of corneal cells
in a manner consistent with the in vivo environment.

Corneal ulceration can be highly detrimental to visual acu-
ity, potentially causing loss of vision in the most severe cases
[35]. Such ulcers have been attributed to the loss and defor-
mation of the extracellular matrix material of corneal tissue.
Several researchers have also reported that injury-induced ac-
tivation and phenotypic transformation from fibroblasts to
myofibroblasts regulate the deposition and organization of
extracellular matrix in corneal wounds [14, 36].
Myofibroblasts play a central role in the control of an inter-
connected meshwork of cells and extracellular matrix that
deposits regenerative matrix and contracts corneal wounds
[37]. In addition, epithelial–mesenchymal transition is recog-
nized to occur in a limbal site in cases of corneal injury and is
involved in the fibrotic process of corneal regeneration.
Pathological fibrotic and re-epithelizing processes cause
vision-threatening diseases such as severe ocular surface fi-
brosis [38]. Although the importance of myofibroblasts is
widely recognized, no suitable application for in vitro analysis
was previously established. In this study, we proposed that
replication of both corneal cell–cell interaction and the specif-
ic microenvironment is essential for understanding the corneal
wound healing process.

The activation of MAPK signaling is a key factor in the
transition of fibroblasts to myofibroblasts [39, 40]. However,
our data showed that with fluid flow stimulation, the number
of myofibroblasts increased and phosphorylation of ERK and
p38 of HCE–Tcells cocultured with NIH 3T3 cells decreased.
We previously demonstrated that fluid flow stimulation pro-
moted peritoneal fibrosis via epithelial–mesenchymal transi-
tion of mesothelial cells [12]. In addition, fluid flow stimula-
tion inhibited both the total expression and phosphorylation
ratio of ERK1/2 and p38 of mesothelial cells, and ERK and
p38 inhibitors replicated the fibrotic change caused by meso-
thelial cells without fluid flow stimulation in the samemanner.

Fluid flow stimulation may regulate non-ERK or non-p38
signaling, and the signaling of an unknown entity may in-
crease the emergence of myofibroblasts and inhibit the expres-
sion of ERK and p38.

In conclusion, we established a reconstruction model for
concurrently investigating the cellular and physical microen-
vironments of corneal tissue. This alternative culture model is
a promising tool to aid with further therapeutic investigation
into cornea-damaging disease.
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