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Abstract
The magnitude of cataract pathology is indeed significant as it is the principal cause of blindness worldwide. Also, the prom-
inence of this concept escalates with the current aging population. The burden of the disease is more tangible in developing
countries than developed ones. Regarding this concern, there is a gap in classifying the pathogenesis of the ultraviolet (UV)
radiation-induced cataracts and explaining the possible cellular and subcellular pathways. In this review, we aim to revisit the
effect of UVradiation on cataracts categorizing the cellular pathways involved. This may help for better pharmaceutical treatment
alternatives and their wide-reaching availability. Also, in the last section, we provide an overview of the protecting agents utilized
as UV shields. Further studies are required to enlighten new treatment modalities for UV radiation-induced pathologies in human
lens.

Keywords Ultraviolet radiation . Cataracts . Lens . Pathophysiology . Oxidative stress . Crystallin . Tryptophan . Phototoxicity .

Cellular pathways . Protecting agents

Introduction

Cataracts are the leading cause of blindness in the world [1–3].
For the most people, the detrimental effects of solar ultraviolet
(UV) radiation on the human eye are intangible as it has been
more popular for skin complications [4]. Nevertheless, the UV

radiation is a cumulative omnipresent hazard for every indi-
vidual [5]. It was more than a hundred years ago when
Widmark showed that UV radiation ruins the lens [6]. In con-
trast to UV’s late discovery, human history has been
acquainted with the phenomenon of cataracts. The earliest
documented case of cataracts goes back to centuries ago, circa
2460 B.C. [7]. Then, it was during 600 B.C. when cataracts
were further described in texts and surgical approaches were
established [8]. A detailed history of cataracts can be found in
a study by Rucker [9]. After centuries, scientific research shed
light on the exact risk factors and the extent of their associa-
tion with cataracts. In the literature, there has been a consid-
erable focus on UVB, yet the probable effects of UVA are less
investigated. In this review, we aim to gather the recent evi-
dence behind the association of UVradiation and the cataracts,
and cellular pathways responsible for this association. We
categorized the probable pathways in six groups, namely (a)
oxidative stress, (b) phototoxicity, (c) crystallin proteins, (d)
tryptophan, and (e) apoptosis. Generally, oxidative stress is
recognized as the fundamental mechanism igniting the apo-
ptotic precursors, aging pathways, and enhancing protein ag-
gregations [10]. On the other hand, crystallins and tryptophan-
related pathways are identified as natural protective entities.
The detailed exploration of these mechanisms may obviously
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be supportive for further pharmaceutical, environmental, and
public health research. Literature gaps and suggestions for
future research are further discussed in the conclusion section.

The UV radiation

The UVradiation is a high-energy electromagnetic field with a
broad range of wavelengths starting from 400 to 10 nm [11].
UVs with less than 200 nmwavelength have an ionizing effect
when passing through the atmosphere; thus, they never reach
the ground and are absorbed by atmospheric oxygen fluctuat-
ing in concentration in the ozone layer [12, 13]. There are
different sorts of classification with regard to different UV
properties from which the UVA, UVB, and UVC classifica-
tions are the most widely used ones in medical applications
[14]. Table 1 shows wavelengths of these three types of UV
radiation. With respect to this classification, it is not likely for
UVC (wavelengths between 280 and 100 nm) to pass through
the ozone layer [17]. Despite this fact, in a category of occu-
pations such as arc welding and food sterilization, there is a
large amount of UVC exposure and it is necessary for the
workers to protect themselves sufficiently against UVC expo-
sure. Nevertheless, UVA and UVB are primarily responsible
for medical harms and pathologies [18] and are of the main
focus in this study. Figure 1 demonstrates the percentage of
the UV transmittance through the atmosphere [17]. Generally,
UV transmittance depends on several environmental factors,
namely clouds, aerosols, and surface reflectivity [19]. As
shown in Fig. 1, a considerable amount of UVB attenuates
through the atmosphere by the effect of the clouds. Yet, ac-
cording to studies [20–22], UVB is the chief culprit for cata-
racts affliction. According to several studies [23–25], UVs of
less than 240 nm (UVC) are completely absorbed by cornea.
Also, it has been reported that UV radiation up to 295 nm of
wavelength, including all UVC band, is fully absorbed by the
cornea inducing acute photokeratitis and causing serious dam-
age to the cornea [26]. In addition, Dixon et al. reported that as
it is being completely absorbed, it does increase the risk of
cataracts [27]. Furthermore, the human lens can absorb UVs
of less than 370 nm (UVA and UVB). UVB is absorbed both
by cornea and the lens, approximately 70% and 30%
respectively.

The lens and cataracts

A cataract, the leading cause of blindness worldwide, is a
condition in which the human lens becomes colored occluding
the clear vision [28]. This process is mostly encouraged by
accumulative sun exposure during aging and other risk factors
including but not limited to smoking, diabetes, and alcohol
[29, 30]. Cataracts may account for almost half of theTa
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blindness round the world, being the most appalling in African
and developing countries, yet more benign in developed ones
[3]. Still, its trend is expected to be rising even in developed
countries including the USA as the population ages [31, 32].
But globally, those in low- or middle-income conditions are
more affected. Cataracts have been thought to afflict more
than half of the people at the age of 80 or higher [33]. In many
countries, surgical services are inadequate, and cataracts re-
main the leading cause of blindness [32]. Since the present-
day treatment of cataracts is still limited to surgery, high health
expenditures have been allocated to confront this ailment [34].
In developing countries, the present burden is as yet later
diagnosis, insufficient surgical facilities, or unaffordable costs
of surgery, which results in visional sequels [35].

There are various proteins in human lens absorbing the UV
radiation and protecting the eye from probable photo-induced
damage [36]. These low molecular–weighted proteins are clas-
sified into tryptophan and non-tryptophan florescent com-
pounds. Several studies have modeled the molecular effects

and optical properties of these proteins [37–40]. This gradual
and continuous filtering of UV radiation leads to clouding of
the lens and blurred vision [41]. From a clinical point of view,
there are mainly three types of non-congenital cataracts (i.e.,
nuclear, cortical, and posterior subcapsular) from which the
nuclear type, the most common one, is more associated with
aging [42]. Among these, there is abundant evidence showing
that cortical cataracts are more associated with UV radiation
and sun exposure [15]. This association might be in part due
to the differential lens UV transmittance pattern of human lens.
Pajer et al. have demonstrated that the anterior cortex of the lens
is mainly responsible for low transmittance rate of UV and
especially the substantial loss of transmittance of UVC [43].

Cataracts might be produced experimentally with UV la-
sers for research purposes. Ample research has been conduct-
ed to propose a new way of treatment, novel pharmaceutical
approaches, and preventive techniques to fight the conse-
quences following the cataracts [44–46]. However, practical
progress has not been adequately made with respect to its

Fig. 1 UVC does not pass
through the atmosphere, while
almost all of UVA reaches the
ground. The attenuation of UVB
is mostly dependent on the
meteorological conditions and
cloud properties
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prevention. Presently, the UV-filtering (sun)glasses and lenses
are the only ubiquitous and mostly known preventive practice
[47]. Also, several external factors, including contact lenses,
caffeine eye drops, zinc, vitamin E, and topical use of antiox-
idants, are proposed to protect the eye from UV-induced dam-
age. Caffeine eye drops decrease the activation of caspase-3,
so it has been reported to be a protective agent against cata-
racts [48]. Two other protective factors against UV exposure
are zinc and vitamin E which both act through calcium-
mediated mitochondrial apoptotic pathway to protect epithe-
lial cells of the lens [49]. Kador et al. showed that topical
antioxidant applications can protect the lens against UV-
induced damage [50].

In aphakic eyes, the risk of retinal damage increases exces-
sively [51]. Consequently, intraocular lenses (IOLs) absorbing
UV radiation could protect the retina. A spectrographic check
of UV transmittance by standard IOLs and UV absorbing
IOLs has shown that the UV absorbing IOLs block all radia-
tions below 400 nm [52, 53]. If diagnosed at earlier grades,
symptoms may alleviate with filtering glasses and lenses
blocking the UV radiation [54, 55]. In the last section, we will
provide a review of the protecting agents and protective mo-
lecular pathways.

Crystallins are the prominent absorbers of UVB [56, 57]. It
has been shown that the absorption of protein fractions in-
creases by aging. Post-translational modifications enhanced
by the aging process are a main cause of this phenomenon
[58–60]. Alternatively, the modified crystallins and non-UV
filter metabolites absorb the main portion of UVA [58, 61].
This is responsible for different protein aggregation pathways
in UVA compared to UVB. Nevertheless, the beginning of
both pathologies is roughly the same as seen in oxidative
stress induced by phototoxicity [52]. Cellular mechanisms
and pathogenesis of cataract are further discussed in detail in
the next section of this study.

Pathogenesis: oxidative stress, phototoxicity,
proteins denature, and apoptosis

Oxidative stress

Oxidative stress is known to be one of the central initiating
elements which trigger cellular aging pathways and apoptotic
cascades [10]. The imbalance between oxidative agents and
antioxidants favors this phenomenon. The production of reac-
tive oxygen species (ROS) and oxygen singlet after UVexpo-
sure is a known fact, yet the extent of this photodamage is of
scientific value [62]. In young lens, glutathione and pyruvate
are two natural protective mechanisms against oxidative stress
induced by UV [63–65]. Further, the increased expression of
numerous protective genes, including but not limited to super-
oxide dismutase, catalase, and glutathione peroxidase,

supports a defense against intracellular oxidative stress
[66–68]. However, according to a study by Bova et al., as
the lens ages, the efficacy of this natural filter declines with
a rate of 12% per decade [69]. Accumulated ROS gives rise to
crystallin and tryptophan denatures which are explained later
in this section. Also, an increased activity of xanthine oxidase
has been shown to be associated with the increased oxidative
stress in senile patients with cataracts [70]. Aside from these
pathways, a mitochondrial induced oxidative stress suggests
an increase in ROS driven out from UV-exposed respiratory
chain leading to phospholipid hyperperoxidase which, in turn,
enhances lipid peroxidation and cellular membrane damage in
lens epithelial cells [71–73]. Also, Wu et al. showed that dam-
aged gap junctions within the cell membrane induced by ox-
idative stress helps impair inter-cellular antioxidant communi-
cation [74]. Besides, It has been described that dysregulation
of Na+/K+ ATPase activity caused by oxidative stress deteri-
orates osmoregulatory function in the cell [75]. In respect to
genetic mechanisms responsible for oxidative stress in lens,
the possible types of DNA damage and the effects of miRNAs
are of considerable importance [76–78]. In this regard, Wu
et al. proposed regulated miRNA target genes via binding to
3’UTR and the TATA box regions of oxidative stress genes as
a cause of this occurrence [79]. Ayear later, Wang et al. dem-
onstrated an association between miRNA dysregulations and
H2O2 oxidative stress to explain pathogenesis of age-related
cataract [80]. Also, Zhu et al. showed that leucine-rich repeat
in G protein-couple receptor 4 decreases cellular tolerance to
oxidative stress in mice lens augmenting cataract [81]. In ad-
dition, Nrf2-Keap1 has been known as a chief defense mech-
anism against oxidative stress [82]. Nrf2 is one of the nuclear
transcriptional proteins which transcribe many antioxidant
genes including glutathione-S-transferase, glutathione reduc-
tase, and thioredoxin reductase. Keap1 supports Nrf2 to main-
tain a reasonable level within the cell. Dysregulation in this
system induces oxidative stress, which favors cataract [83].
Figure 2 summarizes the main pathways of oxidative stress
relating it to other pathogeneses.

Phototoxicity

Vola et al. reported phototoxicity on lens and retina by UV
radiation between 392 and 400 nm. During the first decade of
life, radiations in this wavelength interval are not absorbed by
the human cornea. Progressively, cumulative effect of near-
UVon the lens follows fluorescent chromophore formations,
reduced lens proteins synthesis, increased insoluble proteins,
and lens pigmentation [53]. In 1982, a study by Lerman dem-
onstrated photosensitized damage to the lens and retina with
psoralen plus UV radiation (320–400 nm) (PUVA) in experi-
mental animals and reported cataracts in patients undergoing
PUVA therapy [84]. An et al. revealed that even though there
were no significant differences in the retinal structures
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comparing UVB-treated mice and the control group, the ex-
pression of apoptotic marker proteins, such as Bax, cyto-
chrome c, and p21, decreased in the UVB-treated mice retinas
[44, 85]. They argue that cone photoreceptors may be more
susceptible to the low-energy UVB light than the other cell

types in the retina; thus, low-energy UVB irradiation does not
affect the retinal structure, yet it considerably alters cellular
protein expression leading to apoptosis and decreased cell
survival [85, 86]. Figure 3 shows the schematic view of path-
ogenesis in UV-induced cataract.

Fig. 2 Pathogenesis of cataracts.
Various cellular pathways are
shown in the figure. SOD
superoxide dismutase, GP
glutathione peroxidase, UV
ultraviolet

Fig. 3 A thorough schematic view of pathogenesis in UV-induced cataracts
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Crystallin proteins

Through a series of transparent tissues, light is transmitted to
reach the retina. Despite the fact that the vitreous is not much
optically active, cornea and lens play a vital role in filtering the
UV radiation. For a young eye, the cornea filters out all radi-
ations with wavelengths less than 295 nm, yet the lens is
responsible for absorbing both UVA and UVB [87]. The most
abundant component of human lens is composed of a family
of proteins called crystallins which cannot be repaired or fixed
in case of any damage [88, 89]. α-Crystallins make up about
40% of eye lens proteins. Aside from its role in preventing the
formation of aggregates which scatters the light, it plays an
important role in sustaining the refractive index of the lens
[89]. α-Crystallins are composed of αA and αB components
[90]. Investigations on these subunits have shown that A sub-
unit is more susceptible to UVA in contrast to B subunit; thus,
the B subunit lingers in its function and keeps a protective role
[90]. On the other hand, the B subunit is susceptible to high
temperatures leaving the A subunit as the guardian of the lens
in hot conditions [91].

In 2004, Fujii et al. investigated the effect of gamma and
UVC radiation on the activity of crystallins. They showed that
both radiations may affect these proteins. As stated in their
research, it is noteworthy that the amount of gamma radiation
needed for these effects is far more than the amount one may
be exposed to in daily life. However, the situation is different
for UVC. The observed effect is seen at lower levels of UVC
with which people are actually exposed to on a daily basis
[92]. In addition, it has been shown that mutation R116C
can regulate α-crystallin capacity to resist stress-induced ap-
optosis [93]. Besides, it has been revealed that factors other
than UV alone can impress the process of aggregation. For
instance, hypericin, which is used mostly as an herbal treat-
ment of depression, can make α-crystallins more susceptible
to UV light and even incidental visible light [94].

The next key crystallins are the γD-crystallins in the nucle-
us of the lens. Photooxidation of γ-crystallins is thought to be
the major cause in age-related and congenital cataracts which
involvesmisfolding of the proteins and aggregates formations.
Moran et al. suggested UVB irradiation as a cause of amor-
phous amyloid fibers aggregates which leads to cataracts [95].
To date, it has been proven that a wide variety of mutations in
γ-crystallin gene make individuals susceptible to cataracts. In
this regard, it has been reported that a mutant human γD-
crystallin may cause congenital nuclear cataract in afflicted
individuals [96]. There have been extensive bio-molecular
investigations, mostly in vitro, in order to find out the mech-
anisms involved in the process of cataracts. In 2013, an
in vitro investigation of Schafheimer et al. showed that tryp-
tophan (Trp) clusters protect γ-crystallins by absorbing the
energy of UVB light. They further hypothesized that aromatic
subunits may absorb light energy protecting from free radicals

production. In a further study, they have also found that
tyrosine/cysteine clusters sensitize γD-crystallins to UV-
induced aggregations [97, 98]. In a study on molecular dy-
namics simulations carried out in 2013, Xia et al. demonstrat-
ed that transformation of Trp to kynurenine (Kyn) under UV
exposure affects the stability of γD-crystallins. Besides, they
showed that Kyn draws extra water and other polar side chains
owing to its additional amino and carbonyl groups on the
damaged Trp side chains. Consequently, it breaks through
the integrity of the adjacent dry center regions formed by
two Greek key motifs in each domain. Large instabilities in
the Tyr-Trp-Tyr sandwich-like hydrophobic clusters caused
by the damaged Trp residues, in turn, break key hydrogen
bonds bridging two b-strands in the Greek key motifs at the
“tyrosine corner” [99]. Roskamp et al. investigated different
pathways of γS-crystallin aggregations and suggested UVA
exposure as the main cause of deamination and oxidation
which subsequently leads to protein aggregations. They also
proposed that there might be factors other than UV exposure
involved in the process of crystallin aggregation. It was ob-
served that wild-type γS-crystallins necessitate a low pH en-
vironment to form amyloid fibrils in body temperature [100].

In comparison,β-crystallins are identical to γ-crystallins in
structure and play an important role in the maintenance of lens
refractive index. Unlike γ-crystallins, β-crystallins have vari-
ous forms of homomers and heteromers and become easily
denaturized both thermally and chemically [101]. Domain
substitution and N- and C-terminal extensions account for
their oligomerization. This undergoes various modifications
as the organism ages [102]. In 2012, Xu et al., in an in vitro
investigation, showed that A2V mutations are linked with
congenital cataracts by impairing tetramer formation and in-
creasing βB2-crystallin aggregation [103].

Tryptophan proteins

The human eye protects itself against harmful effects of UV
light through its UV filter compounds [104]. These proteins
have extremely weak photosensitizing properties despite their
high absorbance of UV light; thus, they can dissipate the en-
ergy from UV to heat and vibration efficiently [105]. The
main compounds with such properties are derived from the
amino acid Trp via the Kyn pathway. These compounds in-
clude Kyn, 3-hydroxykynurenine (3OHKyn) and 3-
hydroxykynurenine-O-beta-D-glucoside (3OHKG) and reside
in the central part of the human lens—i.e., its nucleus [105].
These compounds are abundant in human lens and have plen-
tiful concentrations until the middle age, after which they de-
crease in concentration and become involved in chemical re-
actions, which renders them ineffective and rather harmful in
the process of cataractogenesis. It has been shown that these
molecules in their free forms can exert their protective effects
against UV lights, but when bound to the proteins of the lens
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(which consists of highest protein concentration in the body
with 35% of its wet mass being proteins), they have harmful
effects such as production of reactive oxygen species [40,
104]. The process of protein binding of Trp derivatives starts
with spontaneous deamination of these compounds to form
alpha1-beta unsaturated carbonyls [105]. These carbonyls in
turn bind to various residues on lens proteins and glutathione
(e.g., cysteine, lysine and histidine residues). Binding to these
proteins, Trp derivatives become far better photosensitizers
compared to their free counterparts and cause deleterious ef-
fects such as cross-linking of lens proteins, conformational
changes in these proteins, and oxidative stress in the lens
environment. These effects in turn cause alterations in the
properties of lens proteins and make them less soluble and
more prone to precipitation in the lens [105]. The oxidative
stress caused by photosensitization of protein-bound Trp de-
rivatives also increases oxidation of lens proteins and com-
bined with decreased anti-oxidant effectiveness in the aging
process, which makes the lens more prone to oxidative dam-
age from UV [104, 106]. Other pathways can also cause ox-
idation of Trp derivatives, one of which is increasing concen-
trations of Cu(II) and Fe(III). These elements can decrease the
amount of free Trp derivatives through UV-independent redox
reactions [105].

The non-enzymatic degradation of Trp due to type I and II
photosensitivity reactions is another pathway of oxidative Trp
degradation. In these reactions, Trp degrades to compounds
such as Trp and oxindolealanine. These reactions happen in
the presence of UV light and substances such as riboflavin and
advanced glycation end-products (AGEs) [104, 107]. This
causes decreased levels of lens protective filters and contrib-
utes to cataractogenesis caused by UV in the aged population.
AGEs play a key role in cataractogenesis of diabetic and old
individuals [108, 109]. A study by Linetsky et al. has revealed
the production of AGEs via the ascorbate photooxidation by
protein-bound kynurenines induced by UVA [110]. It has also
been shown that through aging and UVexposure, the concen-
tration of riboflavin bound Trp increases, which can cause
protein aggregation in the lens and contribute to
cataractogenesis [111].

Apoptosis

Post-UVexposure apoptosis is a natural protectivemechanism
directed to remove damaged cells and prevent neoplastic
changes; however, it may lead to several complications
[112]. It is believed that human lens epithelial cell (HLEC)
apoptosis is an initiating element in cataract development
[113]. UVB-induced cataract initiates with damages to
HLECs triggering apoptosis [71, 114]. In general, UVB-
induced apoptosis is regulated by a number of molecular pro-
cesses which target mitochondria initiating the cell death path-
way. Besides, caspase activities may be initiated by the

released cytochrome c (Cyt c) from mitochondria [115].
Herein, we discuss and review the studied molecular
pathways.

Bax/Bcl-2

It has been well characterized that apoptosis is regulated by
imbalance between bcl-2 and Bax as a pro-apoptotic factor
[116]. Ji et al. proved that UVB-induced apoptosis in
HLECs leads to lens opacification and cataract. According
to the study, the apoptosis occurs by the promoted expression
of pro-apoptotic Bax gene and an inhibited expression of anti-
apoptotic Bcl-2 gene at both transcript and protein levels.
Notably, the ratio of Bax/Bcl-2 displayed a high positive cor-
relation with the proportion of apoptotic HLECs [71].

Caspase-3

It is believed that caspase-3 plays an important role in the
execution of apoptosis [117, 118]. Also, the role of caspase-
3 activity in HLECs has been noted in the formation of cata-
racts [118, 119]. After exposure to UV light, the activated
caspase-3 is significantly increased in the cell which favors
apoptosis [114, 119]. Kim and Koh exposed cultured HLEC
lines to UV light and showed an increased expression of
NOXA gene and caspase-3 without any increase in the expres-
sion of p53. This may suggest that UV-induced apoptosis is
caused by a p53-independent pathway in human lens cells
[114].

JNK cascade

Ultraviolet-B-induced c-Jun N-terminal kinase (JNK) activa-
t ion preceded DNA fragmentation in lens [120].
Phosphorylation and activation of JNK are reported to occur
prior to caspase-3 cleavage. Long et al. reported JNK activa-
tion as an early event in UVB-induced apoptosis which occurs
within 30 min subsequent to UVB irradiation. Later, activa-
tion of caspase-3 occurs after 1 h and peaks 6 h after UV
exposure [113].

MAPK cascade

Evidence suggests that MAPKs are critical in regulating lens
apoptosis and cataractogenesis [113, 121]. The intracellular
activation of MAPK cascade is a mechanism by which UV
radiation mediates cellular responses. Bomser concluded that
protein kinase C (PKC) and phosphatidylinositol 3-kinase
(PI3-K) activities are not required for UVR-induced MAPK
activation; thus, this is not a receptor-mediated event [121].
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CALML3

Overexpression of calmodulin-like 3 (CALML3) reverses the
effects of UVB irradiation on apoptosis in human lens by
decreasing the expression of caspase-3 and Bax and increas-
ing the expression of Bcl-2. In fact, silencing CALML3 had
similar effects on UVB irradiation and inhibited the activation
of JNK1/2 and ERK1/2 pathways [120].

CRTAC1

Recently, novel mechanisms have been taken into consider-
ation regarding the role of Cartilage acidic protein 1
(CRTAC1). Ji et al. studied the role of CRTAC1 gene in
UVB-induced apoptosis in lens and revealed the inhibitory
effect of CRTAC1 on oxidative stress and inflammatory re-
sponse. This is accomplished by inactivating the calcium-sig-
naling, p38, and JNK1/2 signal pathways. This, eventually,
reduces UVB-induced apoptosis in HLECs, representing it
as a novel target for cataract treatment [122].

Protecting agents

Along many degenerative diseases and abnormalities
caused by DNA damage response (DDR) systems, various
methods have been introduced in order to reduce the

harmful effect of UV on the lens [123]. Various clinical
in vitro and in vivo studies have been conducted examin-
ing the effect of various agents and their relative outcome.
A noteworthy merit of these studies has been the use of
diabetic models to evaluate the effect of protective agents
[124]. Another merit of these studies is ROS and their
corrosive effect on the lens. ROS are able to induce the
DDR cascade leading to the activation and cross linking
of DNA damage sensors, which in part activates transduc-
ers of DNA damage [125]. The two most efficient medi-
ators discussed in these articles are ATM/CHK2 and ATR/
CHK1 pathways [126]. These molecular structures acti-
vate downstream effector molecules such as p53 and are
able to activate complementary systems of cellular stress,
such as the VHL/HIF-alpha pathway. This pathway plays
a critical role in the appearance of the dusky lens, typi-
cally evidenced in cataract. This pathway has also been
the focus of various studies, including those exposing the
lens to anti-VGEF agents [127]. The convergence of the
DNA repair machinery and the angiogenesis cascade has
led some researchers to use anti-ROS agents, as a therapy
and prevention for UV-induced cataract. They argue that a
single blow to the cellular genome and intracellular struc-
tures causes the avalanche of signaling which results in
cataract [128]. Various agents have been used and the first
results have remained rather controversial, as no definitive
agent has been proposed, while the ones showing any

Table 2 Recently used UV protective agents are shown in the table

Agent UV wavelength
spectrum

Main molecular targets Effect Ref.

Ursodeoxycholic acid Not specified DDR-caspase 12 Reduced cataract formation via UV rays in
diabetic mice

[135]

4-coumaric acid Not specified Undefined Cataract formation was reduced by all group
of UV light

[136]

Chaperon-like anticataract UVB Cellular stress–ROS pathways A significant reduction was seen in the rate in
which cataract was induced in rat models

[137]

Vitamins E and C UVA ROS pathway Controversial results—may be useful in pre-
vention in low duration contact

[138]

Caffeine UVB Cell membrane signaling A positive effect was witnessed in reducing
levels of glutathione, a surrogate of the
negative action of UV light

[139, 140]

Pyruvate UVB ROS scavenger Initial results support a role for pyruvate in
reducing the magnitude of cataract
involvement.

[141]

Carnosine UVC Inhibiting calpain proteolysis Carnosine reduced the degeneration of lens
proteins after UVexposure

[142]

Pirenoxine UVC Cellular stress pathway—UVC Amelioration of selenite- and
calcium-induced lens protein turbidity

[143]

L- and D-carnosine Not specified Alpha-crystallin amyloid fibril Formation of deformed fibrils was reduced
after exposure to carnosine.

[144]

Thioltransferase UVB Disulfide bonds Causes a reduction in mixed disulfides and
prevents them to be oxidized and less water
soluble

[145]

Heat shock protein 27
(HSP27)

Not specified Apoptosis pathway Extends the cell viability responding to the
apoptotic stimuli

[146]
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significant effect have limited availability in clinical con-
texts [129].

Other studies have suggested that initial molecules of the
DDR machinery should be the main target of therapy and
prevention. In a study by Zhao et al., it is reported that if the
DNA repair machinery is sufficiently activated, or in some
instances deactivated, it is possible to completely reverse the
effects of ROS and aging, via directing cells to conservative
genome repair pathways [130]. The MRN complex, RPA, and
the 9-1-1 molecules have been of special interest in this regard
[131, 132]. The in vitro and in vivo studies conducted had no
follow-up clinical trials.

Most studies conducted on human subjects have used more
invasive methods as protection strategies against cataract.
Some scholars have proposed the use of intraocular lenses to
reduce the harmful effects of the UV light. The trials
pertaining to these methods have shown a significantly favor-
able clinical outcome, as rates of sever cataract have dropped
and patients have gained functions such as sleep and dexterity
[133]. Regardless of their benefits, these methods have not
been without disadvantages, as no case selection has been
proposed so far. In addition, the methods themselves are ex-
tremely invasive compared to the previously mentioned strat-
egies which aim to reach optimal prevention using supple-
mentary medication [134].

List of studies examining the effectiveness of some recent-
ly used agents in UV protection is mentioned in Table 2.

Conclusion

Due to the unquestionable significance of cataracts, in this
review, we aimed to revisit the role of ultraviolet radiation
in cataracts and to review the cellular pathways behind
this ailment. Unlike age as a principal risk factor, ultravi-
olet radiation exposure can be modified and prevented. In
the case of affliction, surgery has been the sole treatment
alleviating the disease; however, in accordance with path-
ogenesis of cataract, more focus on its prevention and
novel treatment modalities is expected in the future re-
search. A cost-effective treatment strategy would be in-
deed indispensable, especially for developing countries
as they face grave adversity of outnumbered blindness.
The advent of pharmaceutical agents will help avoid con-
siderable expenditure on surgical approaches. Also, new
surgical methods and techniques might be clinically and
economically facilitative. Further studies are required to
enlighten a more detailed picture of signaling pathways in
cataractogenesis. In addition, a preventive and curative
approach on these pathways will offer original strategies
fighting the onerous burden of disease. This review was
written to bridge the gap for a detailed classification of
ultraviolet effects on cataracts.
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