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Abstract
Purpose To expedite and to standardize the process of image quality assessment in optical coherence tomography angiography
(OCTA) using a specialized deep learning algorithm (DLA).
Methods Two hundred randomly chosen en-face macular OCTA images of the central 3 × 3 mm2 superficial vascular plexus
were evaluated retrospectively by an OCTA experienced reader. Images were defined either as sufficient (group 1, n = 100) or
insufficient image quality (group 2, n = 100) based on Motion Artifact Score (MAS) and Segmentation Accuracy Score (SAS).
Subsequently, a pre-trained multi-layer deep convolutional neural network (DCNN) was trained and validated with 160 of these
en-face OCTA scans (group 1: 80; group 2: 80). Training accuracy, validation accuracy, and cross-entropy were computed. The
DLAwas tested in detecting 40 untrained OCTA images (group 1: 20; group 2: 20). An insufficient image quality probability
score (IPS) and a sufficient image quality probability score (SPS) were calculated.
Results Training accuracy was 97%, validation accuracy 100%, and cross entropy 0.12. A total of 90% (18/20) of the OCTA
images with insufficient image quality and 90% (18/20) with sufficient image quality were correctly classified by the DLA.Mean
IPS was 0.88 ± 0.21, and mean SPS was 0.84 ± 0.19. Discrimination between both groups was highly significant (p < 0.001).
Sensitivity of the DLAwas 90.0%, specificity 90.0%, and accuracy 90.0%. Coefficients of variation were 0.96 ± 1.9% (insuf-
ficient quality) and 1.14 ± 1.6% (sufficient quality).
Conclusions Deep learning (DL) appears to be a potential approach to automatically distinguish between sufficient and insuffi-
cient OCTA image quality. DL may contribute to establish image quality standards in this recent imaging modality.

Keywords Optical coherence tomography angiography . Image artifacts . Image analysis . Retina . Deep learning . Artificial
intelligence

Introduction

Due to the recent progress in artificial intelligence (AI), there
are new perspectives in medical research regarding automated
data analysis [1, 2]. In this context, deep learning (DL), in
particular, is of increasing interest. DL describes algorithms
that process and analyze data in a hierarchical manner with
artificial neural networks inspired from the organization of the
brain [3, 4]. These approaches are currently attracting increas-
ing interest in ophthalmologic imaging research [5–10].

Optical coherence tomography angiography (OCTA) is a
rapidly evolving approach in multimodal retinal imaging and
allows for a depth-selective visualization of blood flow in
retinal vessels without dye injection [11]. This technology
plays a steadily increasing role in clinical research as well as
in clinical practice offering new insights into various
chorioretinal diseases [12–14]. However, OCTA image
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quality achieved in healthy probands can often not be
reproduced in pathologically altered maculae due to motion
artifacts or segmentation errors [15–17]. Despite various im-
provements, such as eye tracking or increasing OCT imaging
speeds, image artifacts remain a key limitation in OCTA im-
aging [18–23]. Manufacturers, meanwhile, offer different
quality indices given after image recording, yet these indices
are non-transparent and do not account sufficiently for image
artifacts [17, 23]. At the moment, there is no other software
approach that provides automated and reliable OCTA image
quality assessment. It appears to be a timely issue whether
OCTA devices or users of OCTA devices can be assisted by
intelligent software solutions to handle the increasing amount
of image data more effectively by avoiding useless image data
of insufficient quality. The already existing DL approaches in
ophthalmologic imaging rather focus on the machine-based
interpretation of disease patterns in different imaging modal-
ities than on the assessment of image quality [24–31].
Interestingly, the first and recently FDA-approved AI imaging
device based on color fundus photography features an incor-
porated AI-based image quality assessment [32–34]. Thus, the
aim of our study was to pursue a similar approach and create
an automated image quality assessment for OCTA imaging
based on a DL concept. Therefore, a multi-layer deep
convolutional neural network (DCNN) was created and sub-
sequently evaluated in the automated assessment of en-face
OCTA image quality by creating a suitable DL classifier.

Methods

Demographics

Two hundred OCTA measurements were randomly selected
from the OCTA database of the medical retina clinic of the
Department of Ophthalmology at the University of Muenster
Medical Center. As numerous patients in the database had
received multiple imaging sessions, the selected 200 images
had been recorded in merely 82 eyes of 82 subjects. The
inclusion of multiple images per subject was accepted since
not the individual artifact formation but the detection of arti-
facts was to be evaluated. Consequently, the diagnosis was

registered but not a selection criterion. All subjects had an
unambiguous diagnosis of their pathology based on clinical
examination, multimodal imaging, perimetry, and, in some
patients, electrophysiological examination. Signal strength in-
dex (SSI) and implemented OCTA image quality score (IQS)
of all includedOCTA examinations were recorded. All images
included were recorded between 01.01.2016 and 01.04.2018.
All procedures adhered to the tenets of the Declaration of
Helsinki. Informed consent was obtained from all individual
participants included in the study.

Imaging and manual image analysis

All OCTA images were obtained with the same commercial
spectral domain OCT system (AngioVue, RTVue XR Avanti
SD-OCT, Optovue, Fremont, CA, USA). The device was set to
the same calibration for all images. Technical detailed informa-
tion of the device is described elsewhere [35]. Images were in-
cluded irrespective of the SSI, IQS, and expression of image
artifacts due to motion, projection, or segmentation errors. In
contrast to the other quality parameters used here, the SSI is
implemented in the proprietary software of the Optovue device.
The superficial vascular layer was selected based on the automat-
ed segmentation of the device. For image grading, the OCTA en-
face image of the superficial plexus and corresponding OCT b-
scans were considered. Pathological changes, e.g., drusen or
epiretinal membrane, were visible to the graders. Yet, the appli-
cation of the scores is independent of the presence of pathology.
Nevertheless, a certain grader bias remains, which is unavoid-
able. All images were assigned to an image quality group
(Table 1) with regard to the expression of motion artifacts fol-
lowing a motion artifact score (MAS), to the expression of seg-
mentation errors following a segmentation accuracy score (SAS),
to the visibility of small capillaries, and to the centering of the
fovea. Both scores of MAS and SAS were recently described in
detail elsewhere [17, 23]. OCTA image data were separately
evaluated by two independent readers for MAS and SAS levels.
In case of any discrepancy, a third grader was asked to arbitrate.
Group 1 includes all images with sufficient image quality
(Fig. 1). If an image did not meet all four criteria for sufficient
image quality, it was assigned to group 2 (insufficient image
quality) (Fig. 2).

Table 1 Definition of the two
main groups of image quality
assessment of the superficial
vascular plexus

Group 1:

Sufficient image quality (n = 100)

Group 2:

Insufficient image quality (n = 100)

MASa 1 or 2 MAS 3 or 4

Centered fovea Decentered fovea

Clear presentation of the small capillaries Insufficient visibility of the small capillaries

SASb 1 (> 95% correct segmentation) SAS 2A or 2B (> 5% error rate of automated segmentation)

aMAS, motion artifact score
b SAS, segmentation accuracy score
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Automated image analysis using deep learning

Toautomatically assess thequalityofOCTAimages, amulti-layer
DCNN classifier was built, using the open-sourceDL framework
TensorFlow™ (Google Inc.,MountainView,USA) [36, 37]. The
method was previously described by our research group for the
detection of exudative age-related macular degeneration (AMD)
[7, 38]. For the present study, the last layer of the neural network
was trained and validated with 160 OCTA en-face images (suffi-
cient image quality: n= 80; insufficient image quality: n = 80) in
500 training steps. For each training step, the performance of the
training procedure was evaluated by determining the training ac-
curacy (the performance [%] of theDLA in correctly classifying a
pre-trained image set), the validation accuracy (performance [%]
of the DLA in correctly classifying a not pre-trained image set),
and the cross entropy (functiongiving information about the train-
ing progress and aiming in minimizing value) [39].

In a next step, to evaluate the applicability of the classifier in
determining the image quality of untrained images, another 40
randomly selectedOCTA en-face scans (sufficient image quality:
n = 20; insufficient image quality: n = 20) were to test the perfor-
mance of the createdDCNNclassifier. Therefore, for every tested
image, a sufficient image quality probability score (SPS) and an
insufficient image quality probability score (IPS) were automati-
cally computed.

The scores express the probability of correct pattern
recognition. The scores were calculated for each single
image. Following, a mean value of all images was given.
The value of the score ranges between 0 and 1. A score of 1
describes a probability of 100%, defining the best possible
association between an image and an image quality group.
The allocation to the diagnosis Bsufficient image quality^
or Binsufficient image quality^ was made according to the
higher numerical value of the two probability scores in
each case.

The entire DL process, including training/validation and
testing, was repeated a second time to provide valid infor-
mation about the repeatability.

Statistical methods

We used SPSS Statistics version 23 (IBM Corporation,
Somers, NY, USA) and Microsoft Excel 2010 (Microsoft
Excel 14.0.7, Microsoft, Redmond, USA) for data man-
agement and statistical calculations. Averaged values are
given as mean ± standard deviation. Groups were com-
pared using the non-parametric Mann–Whitney U test
for independent samples. Statistical significance was set
at p < 0.05.

Fig. 1 Multiple optical coherence tomography angiography en-face im-
ages of the superficial plexus showing sufficient image quality following
criteria given in Table 1 with motion artifact score (MAS) 1 or 2,

segmentation accuracy score (SAS) 1, centered fovea, and a clear presen-
tation of the small capillaries (a–o)

Graefes Arch Clin Exp Ophthalmol (2019) 257:1641–1648 1643



Results

The 200 randomly selected images (group 1: n = 100; group 2:
n = 100) could be attributed to 23 healthy eyes of 23 subjects
(61 images) and to 59 eyes of 59 patients with retinal pathol-
ogies (139 images). Images from eyes diagnosed with early/
intermediate AMD with drusen and/or pigmentary changes
(n = 54), late stages of AMD with choroidal neovasculariza-
tion (n = 35) or geographic atrophy (n = 3), central serous
chorioretinopathy (n = 4), retinal vein occlusion (n = 21), ret-
initis pigmentosa (n = 4), and epiretinal membrane (n = 17)
were included. Mean SSI was 68.8 ± 8.63 in group 1 and
55.87 ± 9.27 in group 2 (p < 0.001, range 47–84 (group 1)
and 28–86 (group 2)). Mean IQS was 7.79 ± 0.92 in group 1
and 5.55 ± 1.92 in group 2 (p < 0.001, range 5–9 (group 1) and
1–9 (group 2)).

Image quality assessment using deep learning

Training accuracy, validation accuracy, and cross entropy of
the DCNN were calculated during the training and validation
procedure. The graphical curves of the training and validation
accuracy display a steep rise in the beginning of the procedure,
followed by a continuous increase up to a final training accu-
racy of 97% and a final validation accuracy of 100%. The

curve of the cross entropy proved to be consistent in a recip-
rocal manner with a final value of 0.12. Figure 3 displays the
curves of training accuracy (a), validation accuracy (a), and
cross entropy (b). The mean IPS scores were 0.84 ± 0.19 in
group 1 and 0.12 ± 0.21 in group 2. The mean SPS scores
were 0.16 ± 0.19 in group 1 and 0.88 ± 0.21 in group 2. The
differences between the SPS and the IPS scores for both
groups were highly significant (p < 0.001) (Fig. 4). Eighteen
of all images with sufficient image quality were correctly de-
tected. Classification was wrong in two images. In case of
insufficient quality, there were also two images with a classi-
fication differing from the human reader (Fig. 5). The mean
difference of the initial testing procedure and the repeated
testing procedure was 0.01 ± 0.01 for the values of the IPS
and 0.01 ± 0.01 for the SPS. The coefficients of variation were
0.96 ± 1.9% for the insufficient images and 1.14 ± 1.6% for
the sufficient images. Sensitivity, specificity, and accuracy of
the classifier were 90.0%.

Discussion

For the first time, the Food and Drug Administration (FDA)
approved of a medical device based on AI in April 2018. In
clinical studies based on color fundus photography, it was able

Fig. 2 Multiple optical coherence tomography angiography en-face im-
ages of the superficial plexus showing insufficient image quality due to
motion artifacts (e.g., a, g, j), segmentation errors (only visible in

corresponding b-scans), decentration of the fovea (e.g., b), and/ or an
insufficient visibility of the small capillaries (e.g.,m, d), following criteria
given in Table 1
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to correctly identify the presence of more than mild diabetic
retinopathy in 87.4% and it was able to correctly identify those
patients who did not have more than mild diabetic retinopathy
in 89.5% [32–34]. Interestingly, this AI device has two core
algorithms—an image quality algorithm and the actual diag-
nostic algorithm. The image quality algorithm is based on
criteria such as retinal area, focus, color balance and exposure
to detect sufficient color fundus photography image quality
that allows the diagnostic algorithm, in a second step, to rule
out diabetic retinopathy. This very first example of an FDA-

approved AI imaging device illustrates the indispensable need
to incorporate an automated image quality assessment into
any intelligent image analysis device.

Therefore, this study aimed at training and subsequently
evaluating a DCNN in the automated quality assessment of
en-face OCTA images. We found that the trained neural net-
work classifier reached a high prediction accuracy in discrim-
inating sufficient and insufficient OCTA image quality in the
validation dataset.

Since the first description of structural OCT imaging in the
early nineties, the technology has made remarkable advances
with regard to image quality and availability [8, 14, 17,
40–42]. Consequently, OCT-based criteria for disease classi-
fication and therapeutic indications, such as disease activity
criteria in neovascular AMD, are well-established. In contrast,
OCTA represents the most recent imaging modality still being
in the early stages of development [43]. As there are aspects of
OCTA that are not yet fully understood and still technical
issues to address, such as projection artifacts, motion, and
segmentation artifacts, it appears currently too early to apply
DL to OCTA for making diagnoses or predicting therapeutic
decisions. However, in the field of OCTA, image quality DL
can very well be an interesting tool.

Al-Sheik and co-workers studied the effect of different im-
age quality levels on a quantitative analysis of OCTA images
in healthy eyes and found that the frequency of artifacts was
higher, and the repeatability of vessel density measurements
was lower in images of reduced quality [18]. These phenom-
ena become even more evident in patients with pathologically
altered maculae. Thus, warranting high image quality is a key
to further establish OCTA [17, 19, 23].

Themanufacturers of OCTA devices already offer an easily
accessible image quality assessment by displaying parameters
like the SSI or a proprietary image quality score. The sensi-
tivity and specificity of the SSI judging OCTA image quality
have been questioned in the literature, particularly with regard
to image artifacts. It seems that a minimum amount of signal
strength is required as a prerequisite for high-quality imaging,
although signal strength alone does not guarantee an artifact-
free image [17, 20]. Also, the validity of the new IQS of the
Optovue device is not clear yet. Both SSI and IQS scores have
been analyzed in the present work, and the results show a
significant difference between the sufficient and insufficient
image quality groups for both scores. The recent introduction
of the IQS in the latest update of the Optovue software repre-
sents the consequential next step in refining their image qual-
ity score. Besides, it proves that manufacturers have recog-
nized the importance of OCTA image quality long ago.
However, a mean SSI of about 56/100 and a mean IQS of
nearly 5.6/10 in the insufficient image quality group can cer-
tainly be misleading as such mean values do not clearly indi-
cate poor quality. Additionally, in some cases, high SSI and/or
IQS values were observed along with insufficient image

Fig. 3 The curves display training accuracy (a), validation accuracy (a),
and the cross entropy (b) during the 500 training steps

Fig. 4 Boxplots display mean values of insufficient image quality
probability scores (IPS) (a) and sufficient image quality probability scores
(SPS) (b) for the sufficient and insufficient image quality groups (groups
1 and 2)
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quality, which is also expressed by the large range of values in
both groups. For the ordinary user, it remains unclear which
quality-defining measures are incorporated in such indices.
OCTA manufacturers will certainly further refine the current
image quality scores to improve their validity. At the moment,
however, an assessment of both segmentation accuracy and
presence of artifacts must be performed in other ways, partic-
ularly in the presence of retinal pathologies [17, 23].

In this scenario, DL seems predestined to play a supporting
role in image quality assessment. The automatic recognition
of retinal diseases and the assessment of disease stages or
disease progression are undoubtedly exciting. However, a re-
liable and consistent image quality is necessary in the first step
to compare retinal pathologies between patients [18, 44].

The use of deep learning in OCTA image quality assess-
ment aims not at replacing the medical assessment but rather
at warranting a minimum image quality standard to enable a
reliable medical image evaluation. Obviously, it is desirable to
present only images of consistently high quality to the image
grader. Currently, the user must rely on their acquired exper-
tise and experience in the evaluation of OCTA images.

In this study, the DLA was able to differentiate between
sufficient and insufficient image quality following given
criteria (Table 1) with high specificity, sensitivity, and accura-
cy. A wrong categorization during automated image quality
assessment was found in four cases (Fig. 5). Different reasons
for that can be discussed. The performance of the algorithm
depends on the images provided during training and valida-
tion. Errors in image selection and categorization by the hu-
man user can misdirect the DLA. Furthermore, criteria of the
image evaluation process of the algorithm do not necessarily
match those of a human reader. Thus, algorithms can be
misdirected by information that may not be noticed by the
user during manual image analysis, known as the black-box
phenomenon in deep learning [1, 8, 45].

It is possible that the results could be improved with a
further increase in the number of patients and images. This
would presumably allow even more precise distinctions be-
tween the quality categories. Furthermore, the use of DLA

seems to save a huge amount of resources, considering the
high expenditure of time when performing a manual analysis
of all relevant quality parameters. In addition to supporting
and accelerating the clinical evaluation of OCTA imaging,
there might also be perspectives in the field of training of
OCTA users, such as photographers. DLA as a training tool
could be useful for sensitizing users to sources of error during
the imaging process while learning how to use OCTA devices.

Several aspects limited our study. Our image quality as-
sessment is based on en-face images of the superficial vascular
plexus. Due to the well-recognizable vascular structures in the
area of the superficial plexus, a categorization of the images
with regard to the image quality is in many cases much easier
for humans than, for example, at the level of the
choriocapillaris. The distinction between artifacts and actual
anatomical structures is considerably more demanding here,
since the image consists only of a contrast pattern. The pre-
requisite for using an automated process is a high quality in
manual analysis. In this study, this was made possible using
established image quality scores like MAS, which is designed
for a quality assessment based on the superficial plexus [17].
Furthermore, the data was exclusively obtained with one
OCTA device and the results must not be transferred to other
devices or other software algorithms. Yet, the OCTA device
used in this study is FDA-approved and it has been in wide-
spread clinical use for years. The retrospective study design
represents another limitation. Certainly, this also made it pos-
sible to evaluate numerous images, and the collective size
increases the reliability of the DLA. Concurrently, the inclu-
sion of multiple images of a single subject potentially reduces
the diversity within the data set of this study. This would be
especially critical if an individual DL-based analysis of
disease-specific characteristics is performed. However, in the
present study, only the automatic detection of image artifacts
was tested. Image artifacts can also vary from one scan to
another when performing multiple imaging sessions of a sin-
gle individual. Furthermore, one must consider that mistakes
can be made by the human reader by categorizing the images
into sufficient and insufficient that in turn can disturb the

Fig. 5 Four different optical coherence tomography angiography en-face
images of four different subjects that were classified incorrectly by the
algorithm. The first two images were classified as sufficient image quality

but were assigned to insufficient quality by the algorithm (a + b). The last
two images were classified as insufficient image quality but were
assigned to sufficient quality by the algorithm (c + d)
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DLA. It is known that a DLA can be misdirected even by
characteristics that are barely recognizable for a human reader,
as discussed previously [1, 8, 45]. Consequently, it would be
desirable to test the DLAwith an even larger pool of images in
follow-up studies. A critical evaluation of the data remains
important even when using DL. Humans will continue to play
an important role here, both in the development and in the
control of the automatic analysis methods used.

OCTA imaging and DL represent two up-to-date and high-
ly dynamic innovations, one in the field of retinal imaging and
one in the field of image processing and analysis. The combi-
nation of both opens the door for countless new possibilities in
retinal imaging and image analysis. A DL algorithm with fo-
cus on image quality also paves the way for a reliable appli-
cation of other AI solutions with a more clinical focus. A
timely implementation of DL software solutions for optimized
automated quality assessment appears both sensible and real-
istic. In this study, we primarily aimed at presenting a proof-
of-concept for the beneficial use of DL in optimizing and
standardizing image quality in OCTA imaging. In any case,
the insights gained here encourage further studies focusing on
the use of DL in OCTA. In conclusion, DL appears as a suit-
able approach to improve OCTA image quality assessment as
well as to accelerate and facilitate OCTAwork flow. DL may
contribute to a reliable adherence to quality and analysis stan-
dards in this evolving and complex imaging modality.
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