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Abstract
Purpose To automatically detect and classify geographic atrophy (GA) in fundus autofluorescence (FAF) images using a deep
learning algorithm.
Methods In this study, FAF images of patients with GA, a healthy comparable group and a comparable group with other retinal
diseases (ORDs) were used to train a multi-layer deep convolutional neural network (DCNN) (1) to detect GA and (2) to
differentiate in GA between a diffuse-trickling pattern (dt-GA) and other GA FAF patterns (ndt-GA) in FAF images.

1. For the automated detection of GA in FAF images, two
classifiers were built (GAvs. healthy/GAvs. ORD). The DCNNwas trained and validated with 400 FAF images in each case
(GA 200, healthy 200, or ORD 200). For the subsequent testing, the built classifiers were then tested with 60 untrained FAF
images in each case (AMD 30, healthy 30, or ORD 30). Hereby, both classifiers automatically determined a GA probability
score and a normal FAF probability score or an ORD probability score.

2. To automatically differentiate between dt-GA and ndt-
GA, the DCNN was trained and validated with 200 FAF images (dt-GA 72; ndt-GA 138). Afterwards, the built classifier
was tested with 20 untrained FAF images (dt-GA 10; ndt-GA 10) and a dt-GA probability score and an ndt-GA probability
score was calculated.

For both classifiers, the performance of the training and validation procedure after 500 training steps was measured by
determining training accuracy, validation accuracy, and cross entropy.
Results For the GA classifiers (GAvs. healthy/GAvs. ORD), the achieved training accuracywas 99/98%, the validation accuracy
96/91%, and the cross entropy 0.062/0.100. For the dt-GA classifier, the training accuracy was 99%, the validation accuracy
77%, and the cross entropy 0.166.

The mean GA probability score was 0.981 ± 0.048 (GAvs. healthy)/0.972 ± 0.439 (GAvs. ORD) in the GA image group and
0.01 ± 0.016 (healthy)/0.061 ± 0.072 (ORD) in the comparison groups (p < 0.001). The mean dt-GA probability score was 0.807
± 0.116 in the dt-GA image group and 0.180 ± 0.100 in the ndt-GA image group (p < 0.001).
Conclusion For the first time, this study describes the use of a deep learning-based algorithm to automatically detect and classify
GA in FAF. Hereby, the created classifiers showed excellent results. With further developments, this model may be a tool to
predict the individual progression risk of GA and give relevant information for future therapeutic approaches.
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autofluorescence

Introduction

In Western countries, age-related macular degeneration
(AMD) is the leading cause of visual impairment and blind-
ness in elderly patients [1–3]. Its prevalence increases with
age and affects more than 10% of the > 65-year-old people [1].
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In accordance with the fundoscopic findings, the classifi-
cation of the Beckman Initiative for Macular Research
Classification Committee distinguishes between early AMD,
intermediate AMD, and late AMD. Late AMD is defined with
the appearance of any geographic atrophy (GA) or choroidal
neovascularizations (CNV) [4].

Nowadays, many different imaging modalities are used in
the diagnosis of AMD. Most of these imaging techniques,
e.g., optical coherence tomography (OCT), OCTangiography,
and fluorescein angiography preferably, have their advantage
in detecting exudative AMD [5–7]. By contrast, fundus auto-
fluorescence (FAF) imaging is particularly useful in the diag-
nosis of GA [8–10]. It provides useful information about the
function of the retinal pigment epithelium (RPE) by
displaying ocular fluorophores, mainly lipofuscin [3, 9, 10].
In areas affected by GA, there is a progressive loss of the
retinal pigment epithelium (RPE), the corresponding
choriocapillary layer, and the photoreceptor layer [2, 10].
Due to the absence of the RPE cells and its fluorophores,
GA areas appear hypoautofluorescent in the FAF [8–10].
However, the junction area of the GA can also show different
hyperautofluorescent patterns [3, 9, 10]. In accordance with
these different fundus autofluorescence patterns, GA can be
subdivided in different phenotypes with differing characteris-
tics [3]. Within these classes, the diffuse-trickling pattern (dt-
GA) is shown to have an extremely rapid progression [10, 11].

Deep learning is an interesting research field that gains
importance in many different medical areas, especially those
dealing with imaging issues. Among others, it enables the
automated detection of different structures by self-learning
algorithms working with a deep convolutional neural network
(DCNN) [12]. Ophthalmology with a lot of different imaging
modalities is a potential field of application. Recently, there
have been some publications dealing with the use of machine
learning in AMD [13–23]. In these studies, machine learning
was only used to interpret fundus photography or OCT im-
ages. To the best of our knowledge, there exists no study that

uses a DCNN in the automated evaluation of fundus autoflu-
orescence images.

Therefore, the aim of our study was to create a deep
learning-based classifier for the evaluation of fundus autoflu-
orescence to (1) automatically detect GA and (2) identify eyes
exhibiting rapidly progressing dt-GA.

Methods

Deep learning process

For this study, 30° FAF images of GA patients, healthy pa-
tients, and patients with other retinal diseases (ORDs), all
obtained by the same FAF device (Spectralis, Heidelberg
Engineering, Heidelberg, Germany), were used to train and
test a DCNN classifier (Fig. 1). Only images with an image
quality that was adequate for manual diagnosis were used. The
selection of the images as well as the following assignment
towards the training and testing set was performed randomly.
There was a strict separation of the training data from the test
data to prevent inter-eye and intra-eye correlations. Images of
patients that were used for training the DCNN classifier were
not used to test it. Furthermore, only one image of a single
patient was used for testing. A DCNN is a self-learning algo-
rithm that can perform deep learning by processing input data
(e.g., images) within many different hierarchal layers from
simple (e.g., lines) and to more complex forms [14, 24].

For this study, the fast working deep learning framework
TensorFlow™ (Google Inc., Mountain view, USA) was used
to provide deep learning with a multi-layer DCNN. The first
layers of this DCNN had been pretrained with millions of
already classified everyday life images (e.g., dog, cat, house
and car) from the image database ImageNet [25]. In order to
obtain a classifier being able to detect GA and GA patterns in
FAF images, the last layer of the used DCNNwas subsequent-
ly trained with above-mentioned FAF images [12, 14, 25–28].
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Fig. 1 Fundus autofluorescence (FAF) images of a healthy retina (a), a retina with diffuse-trickling pattern (dt-GA) in a patient with geographic atrophy
(GA) (b), and a retina with drusen and reticular pseudodrusen in a patient with other retinal diseases (ORD) (c)



Detection of GA

In order to differentiate not just between healthy and patho-
logical FAF images, but also to detect GA in FAF images, two
classifiers were built with the DCNN: one to differentiate be-
tween GA FAF images and healthy FAF images and another
to differentiate between GA and ORD (e.g., AMD without
GA, adult-onset foveamacular vitelliform dystrophy, central
serous chorioretinopathy, and epiretinal membranes).
Therefore, the DCNN was trained with 400 FAF images in
500 training steps in both cases (GA: n = 200; healthy or
ORD: n = 200).

For both classifiers, the quality of the training process was
assessed by determining the training accuracy (performance to
correctly classify already trained images), the validation accu-
racy (performance to correctly classify not so far trained im-
ages), and the cross entropy (a function that gives information
about the training progress and decreases in a successful train-
ing process) [12, 14].

Finally, the two DCNN classifiers were tested with 60 un-
trained FAF images in each case (GA: n = 30; healthy or
ORD: n = 30). For every image probability scores both for
GA FAF (GA probability score) and healthy FAF (normal
FAF probability score) or ORD FAF (ORD probability score)
were automatically calculated by the DCNN.

Detection of diffuse-trickling pattern

In a second step, the DCNN was trained to discriminate GA
with dt-GA in FAF from other GA FAF patterns (ndt-GA). For
this training process, 72 FAF images with dt-GA and 138 FAF
images with ndt-GAwere used. As described above, training
accuracy, validation accuracy, and cross entropy were
determined.

Finally, this classifier was tested with 10 FAF images with
dt-GA and 10 images with ndt-GA. By analogy with the GA
probability score and the normal FAF probability score de-
scribed for the GA classifier above, a dt-GA probability score
and an ndt-GA probability score were automatically
calculated.

Statistics

Statistical analysis was performed with the software SPSS
(IBM SPSS Statistics 23.0; IBM, Armonk, NY, USA). The
nonparametricMann-Whitney-U test for independent samples
was used to compare the automatically calculated probability
scores of the two classifiers. The level of significance was
defined p < 0.05. Descriptive statistics were performed with
Excel® (Microsoft® Excel® for Mac 2011, 14.6.2;
Microsoft®, Redmond, USA).

In order to get information about the precision and repeat-
ability of the two created classifiers, the whole deep learning

procedure including the final testing was repeated for a second
time. Therefore, the mean absolute probability score differ-
ence and the coefficient of variation were calculated. In addi-
tion, a Bland-Altman plot was constructed to visualize infor-
mation about the repeatability of the testing results.

Results

GA classifiers (GA vs. healthy/GA vs. ORD)

Performance of the training process

During the 500 performed training steps, the training accuracy
and the validation accuracy of the GA classifiers showed a fast
increase to 99%/98 and 96%/91%. The cross entropy showed
a rapid decrease to a final value of 0.062/0.100 (Fig. 2a–d;
Table 1(a, b)).

Performance of the classifier in the final testing

The mean GA probability score of the final testing was 0.981
± 0.048/ 0.972 ± 0.043 for the GA FAF images and 0.012 ±
0.016/ 0.061 ± 0.072 for the healthy or ORD FAF images
(Figs. 3 and 4a, b). According to this, the mean normal FAF
probability score/ORD probability score was 0.012 ± 0.017/
0.062 ± 0.072 for the GA FAF images and 0.981 ± 0.047/
0.972 ± 0.044 for the healthy/ORD FAF images. The GA
probability scores were highly significantly different between
the two image groups (p < 0.001).

In the two cases, all of the 60 tested FAF images were
correctly diagnosed by the GA classifier (Table 2(a, b)). The
sensitivity, the specificity, and the accuracy of the GA classi-
fier were 100%.

Repeatability and precision

Themean absolute GA probability score difference of the final
testing between the two independently performed deep learn-
ing procedures was 0.0004 ± 0.0005/0.001 ± 0.009%, the
mean coefficient of variation 0.17 ± 1.44%/0.44 ± 0.69%.
The Bland-Altman scattering profiles confirmed this good re-
peatability by showing a distribution of the values next to the
mean of the difference with only a few outliers (Fig. 5a, b).

Diffuse-trickling pattern classifier

Performance of the training process

The increase of the training accuracy and the validation accu-
racy curves of the dt-GA classifier were lower compared to
those of the GA classifier. The training accuracy was 94% and
the validation accuracy 77% after the 500 training steps. The
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cross entropy curve also showed a flatter decrease with a value
of 0.16 after the completed training process (Fig. 2e, f; Table
1(c)).

Performance of the classifier in the final testing

The mean dt-GA probability score of the final testing was
0.834 ± 0.123 for the dt-GA FAF images and 0.132 ± 0.121
for the FAF images with ndt-GA (Fig. 4c). According to this,
the mean ndt-GA probability score was 0.166 ± 0.123 for dt-
GA FAF images and 0.868 ± 0.121 for the ndt-GA FAF im-
ages. Between the dt-GA probability scores of the two groups,
there was no significant difference (p = 0.353). Comparing the
dt-GA probability scores of the dt-GA group and the ndt-GA
probability scores of the ndt-GA group, the difference was
highly significant (p < 0.001). The dt-GA classifier performed
a correct diagnosis in all of the 20 tested FAF images (Table
2(c)). This results in a sensitivity, a specificity, and an accura-
cy of 100%.

Repeatability and precision

For the dt-GA classifier, the mean absolute difference of the
dt-GA probability scores between the two independently

performed deep learning procedures was 0.003 ± 0.033, the
mean coefficient of variation was 2.53 ± 2.23%. As with the
GA classifier, the Bland-Altman scattering profile with an
even distribution and only one outlier confirms the good
intra-classifier repeatability results (Fig. 5c).

Comparison of the GA classifier and the dt-GA classifier

A comparison of the absolute GA probability scores values of
the GA classifier and the dt-GA classifier revealed a highly
significant difference (p < 0.001).

Discussion

FAF enables the visualization of the RPE and is an established
imaging modality in the diagnosis of GA [3, 8–10, 29, 30].
Using the GA classification system for FAF introduced by
Bindewald et al. in 2005, a prognosis of the progression rate
is possible [3, 10, 29]. Thereby, the dt-GA is known to have a
significantly higher progression rate than other patterns [10,
29].

In this context, we created two DCNN classifier ap-
proaches in our study, one to automatically detect GA in
FAF images and another to automatically detect dt-GA in
FAF images. The two classifier approaches showed an excel-
lent performance with a sensitivity, a specificity, and an accu-
racy of 100%. Focusing on the absolute probability scores of
the classifier’s decision process, the GA classifiers achieved
significantly better than the dt-GA classifier. Themain reasons
for this are probably the lower number of FAF images used for
the training procedure and the more subtle differences in FAF
pattern between dt-GA and ndt-GA compared to GA and

Table 1 Training accuracy, validation accuracy, and cross entropy after
500 training steps for (a) the GA classifier (GA vs. healthy), (b) the GA
classifier (GA vs. ORD) and (c) the dt-GA classifier

a b c

Training accuracy 99% 98% 94%

Validation accuracy 96% 91% 77%

Cross entropy 0.062 0.100 0.16

Fig. 2 The graphs show the trainings accuracy, the validation accuracy and the cross entropy for the GA classifier (GA vs. healthy) (a, b), the GA
classifier (GA vs. ORD) (c, d), and the dt-GA classifier (e, f) during 500 training steps
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healthy retina or GA andORD. This is also in accordance with
the different curves of the training accuracy, the validation
accuracy, and the cross entropy that show a more effective
training process for the GA classifiers.

With a continuous rising in the number of retinal imaging
modalities, both a sufficient expertise in the appraisal of these
images and time to include the image information in the diag-
nosis process become the limiting factors in the daily routine
[31]. Additionally, a variable interobserver agreement is a rel-
evant task within retinal imaging [30, 32, 33]. Biarnés et al.
(2012) described this problem for the classification of differ-
ent GA patterns in FAF imaging. In their study, a high
intraobserver agreement was reached, while interobserver
agreement was described as Bvariable^ [30]. A deep
learning-based tool to achieve an automated diagnosis and
classification might possibly be a future solution for these
problems. As an example, the classifiers in our study reached
an extremely good repeatability and precision.

Deep Learning algorithms can hierarchically process a
huge amount of image data in a way that is comparable to
the neuron microstructure of the brain. In analogy to this, the
performance of these algorithms increases during the
Blearning^ process [12, 24]. Therefore, a sufficient amount
of classified images is necessary. In case of a lack of training
images, overfitting is a phenomenon that can occur during the
deep learning process. Hereby, the ability of the classifier to

correctly classify unknown images is dramatically reduced
[12, 14, 34]. Therefore, it is desirable to expand the amount
of training images to further improve the performance of the
classifiers and to enable finer subdivisions. To reach this aim,
multicenter studies should be aspired.

To the best of our knowledge, our study is the first study
that uses a deep learning algorithm in the detection and clas-
sification of GA in FAF.

Holz et al. (2007) showed that FAF imaging is the only
imaging modality that enables a prognostic view in the pro-
gression of GA [29, 30]. In their study, they used the classifi-
cation system by Bindewald et al. (2005) and compared the
progression rates of the different patterns after a median
follow-up period of nearly 2 years. Thereby, the diffuse pat-
terns, especially dt-GA, was shown to have the highest spread
rate [3, 29]. In literature, this is explained with an increased
accumulation of lipofuscin in postmiotic RPE cells as an im-
portant factor for cell death in the pathogenesis of GA [35,
36]. An automated classification of different FAF patterns in
GA is therefore of tremendous interest in ophthalmology. On
the one hand, in the context of a more individualized medicine
and on the other hand, in the context of better understanding
the pathology of GA. For a GA classifier, the ultimate goal is
to implement an algorithm that correctly detects GA and clas-
sifies its phenotype in a first step, performs an accurate calcu-
lations of the lesion size in a second step, and provide

Fig. 3 Example of tested GA
FAF images with a high (0.999)
(a) and a low probability score
(0.769) (b)
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Fig. 4 Box plot showing the GA probability score for the GAgroup and the healthy comparable group (a), the GAgroup and the ORD group (b), and the
dt-GA probability score for the dt-GA group and the ndt-GA group (c). In all cases, the difference was highly significant (p < 0.001)



information on the disease progression. The first step in this
direction was taken with this work.

There are some limitations of our study that have to be
considered. One is the relatively low number of included
FAF images, although it is in the range of other studies using
machine learning in ophthalmology [14, 16, 19, 22]. This may
influence the quality of the deep learning process.
Nevertheless, the continuous increase of the course of the
training and validation accuracy curves suggests a good work-
ing learning progress. As a confirmation of this, the classifiers
show no sign of overfitting. Overfitting would lead to an in-
creasing gap between the training and validation accuracy
curves [12, 14, 34]. Nevertheless, including more FAF images
would probably improve the training performance of the dt-
GA classifier.

Another limitation is that in order to receive a sufficient
number of images to build our DCNN classifier, in some
cases, follow-up images or images of the other patient’s eye
were used for training. Therefore, a possible effect on the
results cannot completely be excluded, as FAF follow-up im-
ages or FAF images of the partner eyes are less different with
respect to anatomical features compared to FAF images of
other patients. Nevertheless, due to the operating mode of
the DCNN, we believe that this effect can be ignored for our
study since the portion of images coming from one patient is

low. Our used DCNN classifier works by detecting patterns in
the images that can be recognized in the majority of these
images and that differ in the both classified groups.
Therefore, when just a few of the FAF images show the same
anatomic features, this is ignored by the DCNN. In this con-
text, we believe that the number of images that were obtained
from the same patient should be less than 5% of the training
dataset of each class dataset and consequently 2.5% of the
entire training dataset of a 2-class classifier. Additionally,
overfitting is a sensitive marker of the quality of the dataset.
If the classifier recognizes image features due to an insuffi-
cient training data set (e.g., due to inter-eye or intra-eye cor-
relation) overfitting will occur. As mentioned above,
overfitting did not occur in the classifiers used in this study,
so that the composition of the image groups can be considered
as sufficient.

In the context of its clinical relevance, a limitation is that
the differentiation was only performed between healthy FAF
images or ORD FAF images and FAF images with GA as well
as between dt-GA pattern and ndt-GA pattern. Therefore, in a
following study, it is necessary to extend the classifier in order
to recognize more different retinal diseases. In this context, a
multicenter design is recommended. The feasibility was al-
ready shown by Burlina et al. (2017) by extending a 2-class
classifier to a 3- and 4-class classifier with still valid results
[21].

Conclusions

In conclusion, we created for the first time a deep learning-
based classifier for the automated detection and classification
of GA in FAF images. Thereby, our approach showed excel-
lent performance results of the classifier and a very good
repeatability.

GA is a progressive, sight-threatening disease, with a di-
vergent progression rate depending on the pattern in FAF [10,
29, 30, 36]. Therefore, this approach may be helpful in the
prediction of the individual progression risk of the GA, the
identification of biomarkers, and the gain of further informa-
tion for possible future therapeutic approaches. To expand and

Fig. 5 Bland-Altman plot showing a good repeatability with an even distribution for the results of the GA classifier (GA vs. healthy) (a), the GA
classifier (GA vs. healthy) (b), and the dt-GA classifier (c)

Table 2 Two by two table showing the results of automated
discrimination of GA and healthy eyes (a), of GA and ORD (b), and of
diffuse-trickling pattern (dt-GA) and other GA FAF patterns of the GA
patients (ndt-GA) (c)

(a) GA Healthy

Positive n = 30 n = 0

Negative n = 0 n = 30

(b) GA: ORD:

Positive n = 30 n = 0

Negative n = 0 n = 30

(c) dt-GA: ndt-GA:

Positive n = 10 n = 0

Negative n = 0 n = 10
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improve the performance of the classifier multicenter studies
is desirable.
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