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Abstract
Purpose Prior research in animal models has shown that macrophages and microglia play an important role in pathogenesis of
glaucoma, but the phenotype and distribution of macrophages in human glaucomatous tissue have not been sufficiently
characterized.
Methods We analyzed H&E, CD68-, and CD163-immunostained slides from 25 formaldehyde-fixed, paraffin-embedded au-
topsy eyes: 12 control eyes and 13 eyes with glaucoma. The diagnosis of glaucoma was made based on a history of glaucoma as
reported in the medical record and histological changes characteristic of glaucoma. Glaucoma cases and controls were matched in
terms of age, sex, and race.
Results Qualitative analysis of the conventional outflow pathway and the optic nerve revealed that all eyes contained CD163+
cells but a negligible number of CD68+ cells. CD163+ macrophages infiltrated the trabecular meshwork and surrounded
Schlemm’s canal of normal eyes and eyes with glaucoma, but the pattern was variable and qualitatively similar between groups.
In optic nerves of control eyes, CD163+ macrophages were present at low levels and restricted to septa between axon bundles. In
glaucomatous optic nerves, the number of CD163+ cells was increased both qualitatively and quantitatively (glaucoma 5.1 ±
0.6 CD163+ cells/mm2, control 2.5 ± 0.3 CD163+ cells/mm2, p < 0.001), with CD163+ cells infiltrating axon bundles in cases of
both mild and severe diseases.
Conclusions The increase in CD163+ cell number in eyes with mild and severe glaucoma is the first demonstration of macro-
phage infiltration in glaucomatous human optic nerves. This finding supports a role for macrophages in glaucoma pathogenesis
and progression.
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Introduction

Glaucoma is a chronic blinding disease characterized by
progressive loss of retinal ganglion cells (RGCs) and cup-
ping of the optic nerve (ON). Elevated intraocular pressure
remains the only modifiable risk factor for glaucoma; cur-
rently, there are no clinically used treatments conferring
RGC neuroprotection or reversing existing RGC/visual field
loss. The immune system was initially proposed to play a
role in the pathogenesis of normal-tension glaucoma [1].
More recently, neuroinflammation has been proposed to be
critically involved in pathogenesis of all types of glaucoma
[2–4], with cells of the innate immune system—recruited
monocytes/macrophages and microglia, resident myeloid
cells in neural tissue—playing an important role in disease
development and progression [5].

Presented at The Association for Research in Vision and Ophthalmology
(ARVO) meeting in Seattle, WA, May 2016.

Electronic supplementary material The online version of this article
(https://doi.org/10.1007/s00417-018-4081-y) contains supplementary
material, which is available to authorized users.

* Milica A. Margeta
milica_margeta@meei.harvard.edu

1 Department of Ophthalmology, Massachusetts Eye and Ear
Infirmary, Harvard Medical School, 243 Charles Street,
Boston, MA 02114, USA

2 Department of Ophthalmology, Duke University Medical Center,
Durham, NC, USA

3 Department of Pathology, Duke University Medical Center,
Durham, NC, USA

Graefe's Archive for Clinical and Experimental Ophthalmology (2018) 256:2449–2456
https://doi.org/10.1007/s00417-018-4081-y

http://crossmark.crossref.org/dialog/?doi=10.1007/s00417-018-4081-y&domain=pdf
http://orcid.org/0000-0002-5902-4168
https://doi.org/10.1007/s00417-018-4081-y
mailto:milica_margeta@meei.harvard.edu


Previous studies have shown that macrophages are recruit-
ed to the trabecular meshwork of human eyes after selective
laser trabeculoplasty and that intracameral infusion of macro-
phages increases aqueous outflow in a rabbit model [6]. In the
ONs of human glaucomatous eyes, microglia become activat-
ed and redistributed to the parapapillary chorioretinal region
[7] and colocalize with a variety of cytokines, including
TGF-β2 and TNF-α [8]. In the DBA/2J mouse model of
glaucoma, ON accumulation of Iba1+ [9, 10] and
CX3CR1+/GFP [11] myeloid cells was present at an early dis-
ease stage, prior to detectable ON damage. Animals with re-
duced levels of microglial activation, either genetically
through loss of MHCII RT1B protein [12] or pharmacologi-
cally (via administration of anti-inflammatory antibiotic
minocycline [13, 14], TNF-α inhibitor etanercept [15, 16],
cAMP phosphodiesterase type E4 inhibitor ibudilast [17],
and adenosine receptor A2AR antagonist ZM241385 [18]),
were protected from glaucomatous RGC neurodegeneration.
Neuroprotection was also observed in DBA/2J animals in
which monocyte/macrophage entry into the ON head was
blocked with radiation treatment [10, 19]. Interestingly, serum
level of MCP-1/CCL-2, a potent monocyte/macrophage
chemoattractant, has been found to be elevated in otherwise
healthy normal-tension glaucoma patients [20] and is associ-
ated with visual field progression [21], suggesting that periph-
eral macrophage recruitment may also be important in the
pathogenesis of human glaucoma.

Macrophages and microglia are thought to exist in a variety
of activation states, both pro-inflammatory and anti-inflam-
matory, that are characterized by different surface markers,
cytokine profiles, and biologic functions [22, 23]. Two
macrophage-specific markers frequently used in paraffin-
embedded human tissue samples are CD68 (a lysosomal
marker) and CD163 (a scavenger receptor that binds
hemoglobin-haptoglobin complexes) [24–26]. CD163 is com-
monly used as a marker for alternatively activated, anti-
inflammatory macrophages that are involved in tissue repair
and remodeling, cytoprotection, resolution of inflammation,
and fibrosis [22, 24]. We have previously shown an abun-
dance of infiltrating CD163+ cells in the retina of postmortem
eyes with advanced dry and neovascular age-related macular
degeneration [27]. Herein, we characterize the numbers and
distribution of CD163+ and CD68+ cells in human postmor-
tem eyes with and without glaucoma and demonstrate that
CD163+ macrophages infiltrate structures critical for patho-
genesis of glaucoma.

Materials and methods

Autopsy eyes from 25 patients (12 controls and 13 glaucoma
patients) were analyzed (Supplementary Table 1). The use of
autopsy eyes for research was approved by the Institutional

ReviewBoard of DukeUniversity (Pro00083250) and follow-
ed the tenets of the Declaration of Helsinki. To be classified as
having glaucoma, patients had to have the diagnosis of glau-
coma (as listed in the autopsy report and abstracted from their
medical record) and presence of histological changes charac-
teristic of glaucoma. For 5 out of 13 glaucoma cases, we were
able to obtain additional details about their glaucoma diagno-
sis from the ophthalmology clinic notes at our institution.
Glaucoma cases and controls were matched in terms of age,
sex, and race (as defined in the autopsy report). Eyes with
evidence of secondary glaucoma, prior glaucoma surgery, or
other significant ocular comorbidities (e.g., moderate or se-
vere diabetic retinopathy, uveitis, advanced age-related mac-
ular degeneration) were excluded from the study. In addition,
eyes with postmortem intervals to tissue fixation greater than
72 h were excluded.

Autopsy eyes were enucleated and fixed in 3.7% neutral-
buffered formaldehyde. Eyes were sectioned in the horizontal
(axial) plane, and following removal of the superior calotte,
postmortem fundus examination and color photography were
performed. Cross sections of the optic nerve were prepared
leaving a 4–5-mm stump of nerve attached to the globe. The
eyes were then embedded in paraffin and sectioned at 5 μm
intervals to the center of the optic nerve. Five micrometers of
cross sections of the optic nerve was stained with hematoxylin
and eosin (H&E), Luxol fast blue (LFB), and Masson
trichrome stains. H&E and periodic acid-Schiff reagent
(PAS) stains were done on the pupil-optic nerve sections of
the globes and slides evaluated for presence of glaucomatous
changes and other ocular conditions. The histological diagno-
sis of glaucoma was made based on presence of optic nerve
atrophy and retinal ganglion cell loss; the degree of
glaucomatous damage was graded qualitatively as mild, mod-
erate, or severe (Supplementary Fig. 1; all retinal images
shown were taken through the macula, and optic nerve sec-
tions in the proximal optic nerve posterior to the lamina
cribrosa). Mild glaucomatous damage was characterized by
a normal number of retinal ganglion cells and mildly thick-
ened fibrous trabeculae in the optic nerve. Moderate damage
was manifested a decreased number of retinal ganglion cells,
increased fibrotic thickening of the optic nerve trabeculae, and
a diminished size and often paler staining of the optic nerve
axon bundles. Eyes with severe glaucomatous damage had an
even further reduction or a paucity of retinal ganglion cells
and more advanced fibrosis and axon loss than the eyes with
moderate damage.

For immunohistochemical studies of CD68 and CD163,
horizontal sections through anterior chamber structures, reti-
na, and proximal optic nerve were obtained. In addition, cross
sections of the optic nerve (obtained 4–5 mm posteriorly from
the outer edge of the scleral wall) were also stained for
CD163. The IHC detection of CD68 and CD163 was per-
formed using Leica Bond-MAX or Leica Bond-III automated
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stainers (LeicaMicrosystems Inc., Buffalo Grove, IL, USA), a
20-min antigen retrieval with Novocastra Bond Epitope
Retrieval 2 solution (Leica Microsystems) at 100 °C and
pH 6.0, ready-to-use CD68 (clone 514H12) antibodies or
1:200 dilution CD163 (clone 10D6) antibodies (Leica
Microsystems), and the Novocastra Bond Polymer Refine
Red Detection system (Leica Microsystems). Negative con-
trols employed a commercially available cocktail of mouse
IgG1, IgG2b, IgG3, and IgM (Leica Microsystems). Human
tonsil sections were used as positive external controls.

Photomicrographs were acquired using a Vanox AHSB3
microscope (Olympus America, Center Valley, PA) and a
D800 Nikon camera connected by a 2.5× MM-SLR adapter
(Martin Microscope Co., Easley, SC). DigiCamControl soft-
ware (www.digicamcontrol.com) was used to acquire images.
Quantification was performed by manually counting CD163+
cells using ImageJ software (NIH, Bethesda, MD) in images
of horizontal sections of the proximal optic nerve immediately
posterior to the lamina cribrosa (× 20 objective). The
quantification was performed in a masked fashion; one
section was analyzed per eye, and one eye from each subject
was included. We counted CD163+ enti t ies that
morphologically resembled a cell, regardless of whether the
cell nucleus was included in the section. If overlapping cells
could easily be distinguished as two separate cells based on
size and morphology, then they were counted as two;
otherwise, they were counted as one. Small isolated cell
processes were not counted. All data analyses were
performed using Microsoft Excel (Microsoft Corp.,
Redmond, WA) and GraphPad Prism 7 software (GraphPad
Software, La Jolla, CA). Results are presented as mean ± one
standard error of the mean (SEM). Statistical significance was
determined using Mann-Whitney U test and Fisher’s exact
test. P < 0.05 was deemed to be statistically significant.

Results

Autopsy eyes of 25 patients (13 glaucoma cases and 12 con-
trols) were analyzed in this study (demographic, ocular, and
pathological data are presented in Supplementary Table 1).
Glaucoma patients were 62% female, 54% white, and 46%
black, with an average age of 79.4 years (range 50–92).
Controls were 75% female, 58% white, and 42% black, with
an average age of 83.7 years (range 70–97). There were no
statistically significant differences between the two groups in
terms of age, sex, or race. Furthermore, there was no statisti-
cally significant difference between glaucoma cases and con-
trols in terms of average postmortem time (glaucoma 25 ±
4.2 h, control 22.6 ± 4.1 h).

Qualitative analysis of horizontal sections encompassing
the anterior segment, retina, and the optic nerve revealed
CD163+ cells infiltrating the trabecular meshwork and

surrounding Schlemm’s canal of control eyes (Fig. 1a), as well
as infiltrating the optic nerve (Fig. 1c). CD163+ cells could
also be seen in the iris, ciliary body, and choroid. The number
of CD68+ cells was negligible in the conventional outflow
pathway and the optic nerve of control eyes (Fig. 1b, d), as
well as in glaucoma eyes (data not shown).

Comparison of CD163+ cell numbers in the convention-
al outflow pathway of control eyes and glaucoma eyes
revealed marked variability. We identified control cases
and glaucoma cases with scarce CD163+ staining in the
trabecular meshwork and around Schlemm’s canal
(Fig. 2a, c), as well as glaucoma cases and controls with
abundant CD163+ cell numbers in the same structures (Fig.
2b, d). The overall CD163+ staining pattern in the conven-
tional outflow pathway was variable and qualitatively sim-
ilar between groups. In the optic nerves of control eyes,
CD163+ cells appeared enriched in the area of lamina
cribrosa and in septa around axon bundles (Fig. 3a, b). In
glaucomatous eyes, the number of CD163+ cells was sig-
nificantly increased both qualitatively (Fig. 3c, d) and quan-
titatively (Fig. 3e; glaucoma 5.1 ± 0.6 CD163+ cells per
mm2, control 2.5 ± 0.3 CD163+ cells per mm2, p < 0.001
using Mann-Whitney U test). There was no statistically
significant relationship between the number of CD163+
cells and histological severity of glaucoma, as we could
identify mild glaucoma cases with an abundance of
CD163+ cells and severe glaucoma cases with lower num-
bers of CD163+ cells (Supplementary Table 1).

We also examined cross sections of the optic nerve stained
with CD163 antibody. In normal controls, CD163+ cells were
scarce and restricted to septa around axon bundles (Fig. 4a, b),
except rarely in the far periphery of the optic nerve, where
mild, age-related nerve fiber degeneration was accompanied
by CD163+ cell presence within axon bundles (data not
shown). Next, we examined a case of mild glaucoma in a
patient who had optic nerve thinning on optical coherence
tomography (Fig. 4f) and a nearly intact visual field (Fig.
4e). We could detect an overall increase in CD163+ cell num-
bers (Fig. 4c), with CD163+ cells infiltrating axon bundles
(Fig. 4d, arrows). This localization pattern, with CD163+ cells
infiltrating axon bundles, was characteristic of glaucoma cases
and was not seen in control cases except rarely in the far
periphery of the optic nerve as described above. We also ex-
amined a case of moderate glaucoma with an inferior nasal
step on Humphrey visual field testing (Fig. 4i) and a corre-
sponding area of superotemporal optic nerve atrophy (Fig.
4g). CD163+ cells were abundant throughout the nerve but
were especially enriched in the area of superotemporal atro-
phy (Fig. 4h). Finally, in a case of severe glaucoma (Fig. 4j, k),
there was a marked increase in the number of CD163+ cells
throughout the disorganized axon bundles. Thus, CD163+
cells were seen infiltrating axon bundles of eyes with all his-
tological stages of glaucoma.
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Discussion

In this study, we characterized the numbers and distribution of
CD163+ and CD68+ macrophages in human postmortem
eyes with and without glaucoma. We found that cells positive
for CD163, a marker typically associated with anti-inflamma-
tory, alternatively activated macrophages [22, 28], are abun-
dantly present in structures critical for pathogenesis of glau-
coma, while we detected only a negligible amount of staining
with the lysosomal macrophage marker CD68. This is in
agreement with prior publications that have found more lim-
ited CD68 staining compared to CD163 staining in aged hu-
man eyes, eyes with age-related macular degeneration, and in

uveal melanoma [27, 29]. Since CD68 is a robust macrophage
marker in other human tissues [26], this difference suggests
different macrophage subpopulations in the human eye, with a
CD163+ population predominating.

In the conventional outflow pathway, CD163 staining was
prominent in the trabecular meshwork and around Schlemm’s
canal, but the number of cells was highly variable with no
significant differences in localization patterns between control
and glaucoma eyes. This is in agreement with a prior study by
Coupland et al. that also found variability between
glaucomatous and control trabecular meshwork in terms of
staining for HLA-DR, CD45, and CD68 [30]. Of note, in
our study, we examined single horizontal sections through

Fig. 2 The number of CD163+
cells in the conventional outflow
pathway is highly variable in
control eyes and eyes with
glaucoma. CD163+ cells can be
scarce (a) or abundant (b) in the
trabecular meshwork (TM) or
around Schlemm’s canal (SC) in
control eyes. Similarly, CD163+
cells can be rare (c) or abundantly
present (d) in the conventional
outflow pathway of glaucoma
eyes. Scale bar = 100 μm

Fig. 1 Immunohistochemical
localization of CD163+ and
CD68+ cells in the conventional
outflow pathway and the optic
nerve of normal control eyes. a
CD163+ cells infiltrate trabecular
meshwork (TM) and surround
Schlemm’s canal (SC) in control
eyes. b There is a negligible
amount of staining with CD68 in
the same eye as in a. c CD163+
cells are present at low levels in
the optic nerves of control eyes
and appear enriched in the area of
the lamina cribrosa (LC). V
vitreous cavity. d There is a
negligible amount of staining
with CD68 in the optic nerve of
the same eye as in c. Scale bar for
a and b, 100 μm; c and d, 500 μm
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the anterior segment and were therefore sampling only a small
region of the conventional outflow pathway in any given eye.
It is possible that a comprehensive analysis of CD163+ stain-
ing in the entire trabecular meshwork may yield differences
between control and glaucoma eyes, especially in the light of
past work showing that macrophages can regulate aqueous
outflow and are recruited to the trabecular meshwork after
selective laser trabeculoplasty [6, 31].

The major finding of our study is a significant increase in
CD163+ macrophages in optic nerves of eyes with both early
and advanced glaucoma. In the optic nerves of control eyes,
CD163+ cells were present at low levels and largely restricted
to septa between axon bundles, while in glaucomatous eyes,
the number of CD163+ cells was significantly increased, with
cells infiltrating axon bundles. Optic nerve macrophage and
microglia accumulation/activation has previously been dem-
onstrated in animal models of glaucoma and suggested to be
an important early step in glaucoma pathogenesis [9–11] that
can be targeted therapeutically to prevent RGC degeneration
[13, 14, 16–18]. To the best of our knowledge, ours is the first
study to demonstrate macrophage infiltration in human
glaucomatous optic nerves.

In our study, we could see an increase in CD163+ mac-
rophage numbers in optic nerves with both mild and ad-
vanced glaucoma, implicating CD163+ macrophages both
early and late in the glaucoma disease process. CD163+
macrophage number did not correlate with histologic sever-
ity of glaucoma (Supplementary Table 1 and data not
shown), although the number of cases in each severity sub-
group was small. It is possible that analysis of a larger
number of eyes may detect a significant difference in the
number of CD163+ cells in various stages of glaucoma.
While the presence of CD163+ macrophages in
glaucomatous optic nerves suggests they are active re-
sponders to various stages of RGC damage, whether they
play a beneficial or a harmful role in glaucoma remains
unknown. Examining colocalization of CD163 and a panel
of pro-inflammatory and anti-inflammatory cytokines/
chemokines [8] in glaucomatous human tissues may shed
light on this important issue. Given that CD163 has classi-
cally been used as a marker for alternatively activated, anti-
inflammatory macrophages [22, 28], our observations raise
the intriguing possibility that this macrophage subtype may
be playing a neuroprotective role in glaucoma.

Fig. 3 Glaucomatous optic
nerves contain more CD163+
cells compared to controls. a, b
CD163+ cells are present at low
levels in control optic nerves and
appear enriched in the area of the
lamina cribrosa and between optic
nerve bundles. c, d CD163+ cells
are increased in number in optic
nerves of eyes with glaucoma. e
There are significantly more
CD163+ cells in glaucomatous
optic nerves then in controls.
Error bars represent one standard
error of the mean; ***p < 0.001
on Mann-Whitney U test. LC
lamina cribrosa, V vitreous cavity.
Scale bar for a and c, 500 μm; b
and d, 100 μm
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Our study has several limitations. The postmortem eyes we
examined had incomplete clinical histories and largely un-
known timelines of glaucomatous damage. Given that these
are autopsy eyes and not donor eyes dedicated to research, we
could examine a relatively small number of eye sections as
dictated by standard-of-care autopsy protocols and therefore
could not completely characterize CD163+ cell numbers in
the conventional outflow pathway, inner retina, or the optic

nerve. However, it is notable that even with limited sampling,
we detected a difference in CD163+ cell numbers between
control and glaucomatous optic nerves, which speaks to the
strength of the association between CD163+ macrophages
and glaucoma.

Although CD163 has classically been described as a mac-
rophage marker [25, 26] that is not expressed by human CNS-
derived microglia in culture [32], we cannot rule out that it is

Fig. 4 CD163+ cells are restricted to septa between optic nerve axon
bundles in controls and infiltrate axon bundles in both mild and severe
glaucomas. a, b CD163+ cells are scarce and found between axon
bundles in control eyes. c–f A case of mild glaucoma. There is an
increased number of CD163+ cells (c, d) that infiltrate axon bundles
(marked with arrows in d). The patient’s glaucoma testing revealed
areas of optic nerve thinning on optical coherence tomography (f) with

a nearly intact visual field (e). g–i A case of moderate glaucoma. Please
note the area of superotemporal optic nerve degeneration (easily visible
on Luxol fast blue stain in g) and corresponding superotemporal
infiltration of CD163+ cells (h), which match the patient’s visual field
deficit (inferior nasal step; i). j, k A case of severe glaucoma. There is a
marked increase in the number of CD163+ cells throughout the
disorganized axon bundles. Scale bars a,c, g, h, j 500 μm; b, d, k 100 μm

2454 Graefes Arch Clin Exp Ophthalmol (2018) 256:2449–2456



not expressed by a subset of microglia in vivo. For example,
Satoh and colleagues found that a small proportion of cells
expressing Tmem119, a recently developed microglia-specific
marker [33], also expresses CD163 [34]. Further immunohis-
tochemical analysis utilizing microglia-specific antibodies
[33, 35] and additional macrophage markers [22, 24] may
yield insight into relative contributions of microglia and infil-
trating macrophages to the glaucomatous disease process and
allow us to subtype myeloid cells into pro-inflammatory and
anti-inflammatory classes based on cellular markers and cyto-
kine expression [22, 36].

Our observation that there is a quantitative increase in
CD163+ cells in optic nerves of human eyes with early and
advanced glaucoma supports a role for macrophages in glau-
coma pathogenesis. Understanding and validating the role of
neuroinflammation in glaucomatous human tissues may have
important diagnostic and prognostic implications and lead to
development of novel neuroprotective therapies for this
blinding disease.
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