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Abstract
Purpose To investigate the expression profiles of Toll-like receptor

4 (TLR4), the effect of TLR4 on inflammation, and apoptosis of

retinal ganglion cells (RGCs) cultured in high glucose and the under-

lying mechanism.
Methods A high-glucose model was established in RGCs isolated

from Sprague-Dawley (SD) rats (2–3 days old) and identified with

Brn3a. Primary cultured RGCs were divided into control (0 mM),

HG1 (10 mM glucose), HG2 (20 mM glucose), HG3 (30 mM glu-

cose), HG (20 mM glucose) + TAK-242 (1.0 μM), and HG (20 mM

glucose) + vehicle (1% DMSO) groups. The expression levels of

TLR4, its downstream signalling molecules, and pro-inflammatory

cytokines were measured by real-time PCR, Western blot or ELISA

at 24 h and 48 h. The apoptosis rate of RGCs was measured by flow

cytometry.
Results The mRNA and protein expression levels of TLR4 were

increased in high-glucose groups (10 mM, 20 mM, 30 mM).

Consistent with these findings, four TLR4 downstream signalling

molecules (MyD88, NF-κB, TRAF6, NLRP3) and pro-

inflammatory cytokines (IL-1β, IL-18) were upregulated in the three
high-glucose groups. Apoptosis of RGCs was clearly increased in the

high-glucose group. The administration of TAK-242, an antagonist of

TLR4, inhibited inflammation and apoptosis of RGCs in the high-

glucose group.
Conclusion Our results demonstrated that TLR4 plays a critical role

in the inflammation and apoptosis of RGCs induced by high glucose.

TLR4 might become a novel potential pharmacological target for

preventing the progression of DR.
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Introduction

Diabetic retinopathy (DR) is one of the most common complications

of diabetic mellitus (DM) [1–3]. DR is a major worldwide cause of

sight-threatening disease among the working-age population [1, 4–6].

The mechanism of DR is complicated, and microvascular and neuron

lesions are considered the most important factors [1, 7, 8]. It has been

reported that retinal neuropathy is likely to occur in the early stages of

DR; the damage of RGCs has been clinically demonstrable in DM

without retinal microvascular abnormalities detectable on image anal-

ysis fluorescein angiography. This finding was further confirmed in

human donor eyes and experimental animal models of diabetes

[8–12]. Although the microvascular complications have been well

documented, not much is known about the retinal neuropathies, in

particular, the exact mechanism of RGC damage in DR [1, 12, 13].

Most recently, the role of inflammation and the immune system

have become of greater interest in the understanding of DR [1,

14–16]. A number of metabolic and physiologic abnormalities char-

acteristic of inflammation have been detected in the retinas of diabetic

animals or patients [17, 18]. Toll-like receptors (TLRs) are essential

components of innate immune responses; TLRs are a family of pro-

teins primarily involved in recognizing pathogens and internal li-

gands [14, 19–21]. Among TLRs, TLR4 significantly participates

in the induction of several immune-related diseases. The signalling

transduction pathways activated by TLR4 are broadly divided into

MyD88-dependent andMyD88-independent pathways.MyD88 is an

immediate and common downstream adaptor molecule recruited by

activated TLR4 [20]. It has been shown that the TLR4 signalling

pathway affects the process of autoimmune myositis inflammation

in mouse models with experimental autoimmune myositis [22, 23].

Previous studies have suggested that the TLR4 signalling pathway

* Ming Ai
lilyhbwh@163.com

1 Eye Center, Renmin Hospital ofWuhanUniversity, 238 Jiefang road,
Wuchang district, Wuhan, Hubei 430060, China

Graefes Arch Clin Exp Ophthalmol (2017) 255:2199–2210
DOI 10.1007/s00417-017-3772-0

http://orcid.org/0000-0002-1871-6029
mailto:lilyhbwh@163.com
http://crossmark.crossref.org/dialog/?doi=10.1007/s00417-017-3772-0&domain=pdf


contributes to the development and progression of rheumatoid arthri-

tis [24, 25]. Animals with TLR4 deficiency have been shown to

higher protection against brain injuries, and the absence of TLR4

reduces neuroinflammation in brain trauma [26, 27]. Furthermore,

studies in STZ (streptozotocin)-induced diabetic mouse models and

in clinical patients have suggested that TLR4 signalling was activated

and the inflammation in the retina was exaggerated [28, 29].

However, the effect of TLR4 on the inflammation and apoptosis of

primary cultured RGCs induced by high glucose is unknown.

Therefore, we hypothesised that TLR4 signalling would regulate

the inflammation and apoptosis of RGCs induced by high glucose.

Materials and methods

Ethics statement

This study was carried out according to the Association for Research

in Vision and Ophthalmology (ARVO) Statement for the Use of

Animals in Ophthalmic and Vision Research. The protocol was ap-

proved by the ethics committee of Renmin Hospital of Wuhan

University. Every effort was made to minimize animal discomfort

and stress.

Animals and reagents

SPF SD rats (2–3 days old, either gender) were obtained from the

Laboratory Animal Center ofWuhan University, quality certification:

SCXK (Hubei Provence) 2014–0004.

DMDM/F12 culture medium and foetal bovine serum was pur-

chased from Gibco (Gibco, Grand Island, NY, USA). 5-fluorouracil

(5-Fu), uridine, and D-Glucose were obtained from Sigma-Aldrich

(St. Louis, MO, USA). Papain was purchased from Worthington

(Worthington Biochemical Corp, NJ, USA). Bovine, HEPES, left-

handed L-glutamate (Lys), Penicillin (100 ku/L), streptomycin

(100 mg/L), and dimethylsulphoxide (DMSO) were obtained from

Sigma-Aldrich Chemical Co. (St. Louis, MO, USA). DAPI was pur-

chased from Beyotime (Shanghai, China). Primary antibody against

Brn3a was purchased from Santa Cruz Biotechnology (Santa Cruz

Biotechnology, Inc., USA). Cy3-IgG donkey anti goat was purchased

from Aspen Biotechnology (Aspen Biotechnology, Inc., USA).

TKA-242 (MCE, USA) was prepared as a 10 mM stock solution in

sterile 100% DMSO following the manufacturer’s recommended

procedure, maintained at −4 °C, and diluted with 1% DMSO before

use. A final concentration of 1% DMSO was used as vehicle for the

treatment of the control cultures.

Cell culture

The primary cultures of rat RGCs were prepared according to the

procedure as previously described with minor modifications [30].

Briefly, the six-well plates were coated with poly-L-lysine (100 μg/
mL) and dried before use. Retinal nerve tissue was isolated from SD

rats (2–3 days old) and neuronal cells isolated by incubation in papain

(10.0 mg/mL) in sterile glass tubes at 37 °C for 20 min. The 10.0 mg/

mL papain was deal with 0.22 μm pin type filter to keep it sterile and

supplemented with bovine serum protein 0.5 mg/mL, left-handed

cysteine (L-cys) 0.5 mg/mL, and HEPES 6.0 mg/mL in the solvent

DMEM/F12. To yield a suspension of single cells, the tissues were

titrated through a narrow-bore glass pipette in a DMEM/F12 solution

containing 10% BSA. After centrifugation at 1000 rpm for 5 min, the

cells were resuspended in another DMEM/F12 solution, and the cell

density was adjusted to 15 × 106/mL. The cells were then seeded on

poly-L-lysine-coated six-well plates incubated in DMEM/F12 con-

taining 10% foetal bovine serum, penicillin G (100 U/mL), strepto-

mycin sulphate (100 mg/mL), and KCl (final concentration are

15 mM). The viability of cells was assessed using a trypan blue

exclusion assay before seeding in six-well plates. All procedures

are performed under sterile conditions. Cells then were maintained

at 37 °C in a humidified atmosphere containing 5% CO2 for 24 h

before 5-fluorouracil (5-Fu) and uridine (final concentrations of

20 μg/mL and 50 μg/mL, respectively) to inhibit the growth of

non-neural cells. The culture medium was changed after 24 h,

resulting in the establishment of a high-glucose model at that time.

RGCs in these cultures were identified based on the cell morphology

and the expression of cell markers.

Cell identification

For immunofluorescence staining, cells grown in six-well plates for

72 h were washed three times with PBS for 5 min each time and fixed

with 4% buffered paraformaldehyde at 4 °C for 30 min. Then, the

cells were washed again three times with PBS for 5min each time and

with the addition of permeabilization buffer at room temperature for

10 min. The cells were washed again with PBS 3 times (5 min each

time) and incubated with a primary antibody against brain-specific

homeobox/POU domain protein 3 A (Brn3a) [31] (1:50 dilution, anti-

Goat, santa sc-31,984) overnight at 4 °C. After the incubation, the

cells were washed with PBS three times (5 min each time) and incu-

bated at room temperature for 1 h with secondary antibodies (Cy3-

labelled donkey anti-goat IgG Aspen 1:50 dilution). The cells were

again washed with PBS (5 min each time), fixed with DAPI dye

1 mL/well, incubation at room temperature for 5 min. Then, the cells

were washed with PBS (5 min each time) and observed under a

fluorescence microscope, and photographs of general and fluorescent

images were taken of the same field. The double positive cells were

considered as RGCs of SD rats.

Groups and treatment

After 24 h of purification with 5-Fu and uridine, the culture medium

was changed, and the in vitro cultured RGCs were randomly divided

into six groups as follows: control (0 mM), HG1 (10 mM), HG2

(20 mM), HG3 (30 mM), HG (20 mM) + TAK-242 (1.0 μM), and

HG (20 mM) + vehicle (1% DMSO). Then, RGCs were cultivated in
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a 5% CO2 chamber at 37 °C for detection after 24 h and 48 h. RGCs

with each treatment were cultured in triplicate.

Apoptosis analysis

The apoptosis of primary cultured RGCs induced by high glucose

was measured by flow cytometry in a double labelling system. In

short, cells grown on six-well plates for 48 h were washed two times

with PBS for 30 s each time and digested with 0.25% trypsin 1 mL/

well at room temperature for 5 min and blocked by culture medium.

The cell suspension was collected and centrifuged twice at 300 g for

5 min, and finally re-suspended in 300 μL binding buffer with

precooling at 4 °C. Then, the cell suspension was gently mixed with

10 μL of Annexin V-FITC solution and incubated for 10 min; then,

5 μL propidium iodide (1 μg/mL) (PI; Sigma, St. Louis, MO, USA)

was added and incubated 5min. Both incubations were at 37 °C in the

dark. Then, the cells were analysed by fluorescence-activated cell

sort ing (FACS) within 1 h using flow cytometry (BD

LSRFortessa™ Cell Analyser, USA).

Western blotting analysis

Western blotting was performed as described previously [32]. Total

proteins were extracted from in vitro cultured RGCs using radio im-

munoprecipitation assay (RIPA) lysis buffer (Beyotime, Shanghai,

China) including 1% protease inhibitor (Beyotime, Shanghai, China).

The mixture was centrifuged at 12000 rpm at 4 °C for 10 min, and the

supernatant was retained. The protein concentrations were determined

with a BCA protein assay kit (Pierce). Each protein preparation (equal

amounts 15–20 μg) in the supernatant were separated by sodium do-

decyl sulphate polyacrylamide gel (SDS-PAGE) electrophoresis

(10%). The proteins separated on the gel were then transferred to a

polyvinylidene difluoride (PVDF) membrane (activated with metha-

nol) using a semi-drying method. The membranes were washed with

TBST before blocking with 5% non-fat milk in TBST (20 mM Tris,

150 mM NaCl, pH 7.5, and 0.1% Tween 20) for 1.5 h, non-specific

binding sites were blocked by 5% non-fat milk powder. Then, the

membranes were incubated with primary antibodies for TLR4

(1:500), nuclear factor-κB (NF-κB, 1:1000), myeloid differentiation

factor 88 (MyD88, 1:1000), TNF receptor-associated factor 6

(TRAF6, 1:1500), nucleotide-binding oligomerization domain-like re-

ceptor with pyrin domain protein 3 (NLRP3, 1:500) and GAPDH

(1:10,000) overnight at 4 °C. The membranes were then washed and

incubated with secondary antibodies (HRP-goat anti-rabbit IgG,

KPL074–1506 1:10,000) for 1 h at 37 °C. Excess antibody was

washed off with TBST.

Enhanced chemiluminescence (ECL) chromogenic reagents were

used to develop the membrane, which was then exposed to an X-ray.

The bands were scanned to measure the densities using an automatic

image analysis system (AlphaEaseFC software). The analysis was nor-

malized against a housekeeping protein GAPDH. The measurements

were repeated three times in each experiment. All studies were repeated

three times (n = 3).

Real-time PCR analysis

Total RNAwas extracted from RGCs with Trizol reagent (Invitrogen)

according to the manufacturer protocols. Then, the total RNA was

purified using gDNA Eraser (#RR047ATakara Japan). The RNA pu-

rity was verified by confirming that the OD260/OD280 ratio range

from 1.8 to 2.0 with a nucleic acid protein analyser (Beckman

BECHMANDU730). The total RNA (0.9μg) was reverse transcribed
using the Prime Script™ RT reagent Kit (#RR047ATakara Japan) to

synthesize complementary DNA (cDNA). The target gene expression

was quantified by real-time quantitative PCR using primers (summa-

rized in Table 1) specific for SD rats. Rat TLR4, primer ID (NM

019178); rat MyD88, primer ID (NM 198130.1); rat p65, primer ID

(NM 199267.2); rat NLRP3, primer ID (NM 001191642.1); rat

TRAF6, primer ID (NM 001107754.2); rat IL-1β, primer ID (NM

031512.2); rat IL-18, primer ID (NM 019165) and GAPDH control

primer (NM 017008.4) were used. Real-time PCRwas performed with

the following cycling parameters: 1 cycle of pre-denaturation at 95 °C

for 30 s, 40 cycles of denaturation at 95 °C for 5 s, annealing at 60 °C

for 40 s. The SYBR® Premix Ex Taq™ II (Tli RNaseH Plus)

(#RR820A Takara, Japan) was used in all samples, and the reactions

were carried out in a 20 μL final reaction volume using a 7500 Real-

Time PCR System (Applied Biosystems, 7500 Fast). Fluorescence

data were acquired at stage two in step two (60 °C for 40 s) to decrease

the nonspecific signals, and the amplification of specific transcripts

was confirmed by melting curve profiles at the end of each PCR.

Measurements were masked to group assignment.

The relative amount of target mRNA was calculated from the

obtained ΔCt values for the target and endogenous reference gene

GAPDH, a housekeeping gene used as an endogenous control, using

the 2-ΔΔCt cycle threshold method. The reactions were performed in

triplicate in three separate experiments. The melting curve was also

analysed after PCR amplification.

ELISA analysis

The levels of IL-1β and IL-18 in the cell culture supernatant were

assessed using a standard mouse enzyme-linked immunosorbent as-

say (ELISA) kit (RLB00 RnD and KA0439 Novus, respectively)

according to the manufacturer’s instructions. Briefly, after high glu-

cose treatment, the serial diluted test samples (1:50–1:400) 100 μL/
well were added to a 96-well plate in triplicate, along with equal

volumes of working dilution standard samples. The samples were

incubated with pre-coated capture antibody in the 96-well microplate

at 37 °C. After the washing step, 100 μL of enzyme-linked reagents

was added and incubated for 30 min at 37 °C. The colour of the

samples was developed by incubatingwith the chromogenic substrate

TMB 100 μL/well for 30 min under protecting from light. The reac-

tion was stopped by the addition of the quenching buffer 50 μL/well.
The optical density values of each well at 450 nm were obtained

using a Microplate Reader (Winpact Scientific, Inc. USA). A stan-

dard curve was plotted to deduce the sample concentrations. All

assays were performed in triplicate.
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Statistical analysis

The quantitative data were expressed as the mean ± standard error of

the mean (SEM) of at least three independent experiments. Statistical

analysis was performed with GraphPad Prism software 6 (GraphPad

Software, Inc. San Diego, CA, USA). Continuous variables of band

intensity, optical density values and relative mRNA expression ex-

periments between two groups were analysed with the unpaired

Student’s t-test. One-way ANOVA followed by a Bonferroni correc-

tion were applied for multiple comparisons. A value of P < 0.05 was

considered to indicate statistically significant differences.

Results

Retinal ganglion cell identification

RGCs were isolated from SD rat retinas according to

the protocol. The cells were cultured in six-well plates for

72 h and then double labelled with Brn3a and DAPI. The cells

were observed under an inverted fluorescence electron micro-

scope (10 × 20 × 0.55). The RGCs showed an uneven distribu-

tion and mutual confluence with obvious axons. Most stick wall

cells were blue using the nonspecific nucleus dye DAPI. Brn3a

Fig. 1 A-D Imaging of the double-labelled RGCs by phase contrast
microscopy at 200× magnification, (A) grey image, (B) blue image
representing DAPI labelling, filter wavelength is 330–385 nm, (C) red
fluorescence image representing Brn3a labelling, filter wavelength is

510–550 nm, (D) superimposed red and blue fluorescent images
(Colour figure online). E-F Imaging of RGCs by phase contrast
microscopy at 400 × magnification, (E) 20 mM for 24 h, (F) 20 mM for
48 h
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is typically used as a phenotypic marker of RGCs. The red stick

wall cells were specifically labelled with the immune fluorescent

tag Brn3a. The same field of vision at low magnification showed

most cells in red and blue double colour dye proving the cell

culture extraction and purification for RGCs (Fig. 1 A-D). We

also observed changes of morphology in RGCs under high glu-

cose (Fig. 1 E-F).

TLR4 expression levels were increased in retinal ganglion
cells under high glucose

The primary cultured RGCs were treated with three different

high concentrations (10 mM, 20 mM, 30 mM) of glucose for

24 h and 48 h, then TLR4 protein and mRNA were measured by

real-time PCR and Western blotting. Compared to the control

group (0 mM glucose), the mRNA levels of TLR4 in the prima-

ry cultured RGCs were significantly increased in the three high-

glucose groups for 24 h (all P < 0.05) and 48 h (all P < 0.05),

respectively (Fig. 2 A and B).

The results of Western blotting (Fig. 2 A and B) were consistent

with those of real-time PCR; the primary RGCs cultured in the three

high-glucose groups showed significantly elevated expression of

TLR4 protein for 24 h and 48 h, respectively (P < 0.05). The level of

TLR4 in 20 mM glucose was highest in the three high-glucose groups.

To investigate the effect of high-glucose incubation time on

the TLR4 expression, the primary cultured RGCs were treated

with 20 mM glucose at 0 h, 24 h and 48 h, then the expression

levels of TLR4 protein and mRNA were detected. We found the

levels of both TLR4 protein and mRNA were increased over

time (0 h, 24 h, and 48 h) at 20 mM glucose (all P < 0.05).

Fig. 2 Expression levels of TLR4 in RGCs under high glucose were
detected by Western blotting and real-time PCR. TLR4 expression
levels were increased in RGCs under high glucose (ranging from 0 mM
to 30 mM) for 24 h (A) or 48 h (B). (C) TLR4 expression levels were
increased in RGCs with the treatment of 20 mM glucose for 24 h and
48 h. The relative expression levels of mRNA and protein were

normalized to GAPDH. Glyceraldehyde-3-phosphate dehydrogenase
(GAPDH) is one of the most commonly used housekeeping genes and
serves as a common loading control for protein levels and a normalization
control for gene expression analysis. Data are the mean ± SEM and are
representative of three independent experiments. *P < 0.05, **P < 0.01,
***P < 0.001, #P < 0.05, # #P < 0.01
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Fig. 3 Expression levels of NF-κB, MyD88, TRAF6 and NLRP3 in
RGCs under high glucose were detected by Western blotting and real-
time PCR. NF-κB (A), MyD88(B), TRAF6(C), and NLRP3(D)
expression levels were upregulated in RGCs under high glucose. The

relative expression levels of mRNA and protein were normalized to
GAPDH, respectively. Data are the mean ± SEM and are representative
of three independent experiments. **P < 0.01, ***P < 0.001
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These results collectively suggested that TLR4 expression levels

were increased in RGCs under high glucose, which was connect-

ed with the concentration of high glucose and the time of stim-

ulation in some ranges.

The TLR4/NF-κB signalling pathway was activated
in retinal ganglion cells under high glucose

Specific inflammatory cytokines are important biomarkers for

reflecting the immune and inflammatory responses. The

TLR4/NF-κB signalling pathway has been considered to be involved

in an experimental mouse model of DR [29]. We also examined the

expression of MyD88, NF-κB, TRAF6, and NLRP3 in RGCs under

high glucose.

Our results showed that the expression levels of MyD88, NF-κB,
TRAF6, and NLRP3 were significantly upregulated in RGCs under

high glucose (20 mM glucose group, P < 0.05), according to the real-

time PCR andWestern blotting data (Fig. 3). These results suggested

that the TLR4/NF-κB pathway-mediated immunomodulatory effect

and neuroinflammatory response was involved in the damage of

RGCs under high glucose.

Pro-inflammatory cytokine expression levels were
upregulated in retinal ganglion cells under high glucose

The expression levels of pro-inflammatory cytokines (IL-1β and IL-

18) in the supernatant of primary cultured RGCs were investigated by

ELISA and real-time PCR. The protein levels of IL-1β and IL-18 in

the high-glucose group (368.13 ± 15.85 pg/mL, 220.80 ± 10.49 pg/

mL, respectively) were significantly higher than those in the control

group (94.24 ± 12.58 pg/mL, 70.61 ± 8.96 pg/mL). The data showed

an obvious upregulation of IL-1β (P < 0.01) and IL-18 (P < 0.01) in

RGCs under high glucose. In line with the results of ELISA, the real-

time PCR results revealed that the mRNA levels of IL-1β and IL-18

increased in RGCs under high glucose (Fig. 4).

TAK-242 inhibited the inflammation of retinal ganglion
cells under high glucose

Our earlier findings suggest that the activation of TLR4 signalling is

involved in the inflammation of RGCs under high glucose.

Therefore, we included a series of experiments with the pharmaco-

logical inhibitor TAK-242.

Fig. 4 Expression levels of IL-
1β and IL-18 in primary cultured
RGCs were detected by ELISA
and real-time PCR. IL-1β and IL-
18 expression levels in primary
cultured RGCs with the treatment
of high glucose (20 mM) for 48 h.
Both protein and mRNA levels of
IL-1β (A) and IL-18 (B) were
increased in RGCs under high
glucose. *P < 0.05, **P < 0.01,
***P < 0.001

Graefes Arch Clin Exp Ophthalmol (2017) 255:2199–2210 2205



2206 Graefes Arch Clin Exp Ophthalmol (2017) 255:2199–2210



TAK-242, a selective inhibitor of TLR4, effectively decreased the

expression levels of TLR4 downstream signalling molecules

(MyD88, NF-κB, TRAF6, NLRP3) in primary cultured RGCs under
a high-glucose environment for 48 h (P < 0.05). No significant dif-

ference (P > 0.05) was found between the 20 mMhigh-glucose group

and the 20 mM glucose + vehicle (1% DMSO) group. These data

showed that TAK-242 inhibited the expression levels of TLR4

downstream signalling molecules in primary cultured RGCs

(P < 0.05) (Fig. 5).

In line with these findings, the administration of TAK-242 led to a

significant decrease in the mRNA levels of both IL-1β and IL-18. At

the protein level, TAK-242 greatly suppressed the levels of IL-1β and

IL-18 in the supernatant of primary cultured RGCs exposed to high

glucose (Fig. 5).

TAK-242 inhibited the apoptosis of retinal ganglion cells
under high glucose

The results of the FCM analysis showed a significantly increased

apoptosis rate of RGCs under high glucose (P < 0.01). The adminis-

tration of TAK-242 showed a significant attenuation of apoptosis in

�Fig. 5 The effect of TAK-242 on the expression levels of NF-κB,
MyD88, TRAF6, NLRP3, IL-1β, IL-18 in RGCs under high glucose
were detected by Western blotting, real-time PCR, and ELISA. NF-
κB(A), MyD88(B), TRAF6(C), NLRP3(D), IL-1β (E), and IL-18 (F)
expression levels were decreased in RGCs under high glucose
(20 mM) + TAK-242(1.0 μM). *P < 0.05, **P < 0.01, ***P < 0.001

Fig. 6 The apoptosis of RGCs under high glucose was detected by flow
cytometry analysis. (A) The representative apoptosis rate of RGCs in
control group. (B) The representative apoptosis rate of RGCs under
high glucose (20 mM). (C) The representative apoptosis rate of RGCs

under high glucose (20 mM) + TAK-242(1.0 μM). (D) TAK-242
inhibited the apoptosis of RGCs under high glucose. **P < 0.01,
***P < 0.001
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RGCs (P < 0.05) (Fig. 6). These results further indicated that the

inhibition of TLR4 significantly alleviated the inflammation and ap-

optosis of RGCs induced by high glucose.

Discussion

In the current study, we demonstrated that the expression levels of

TLR4 and TLR4 downstream signalling molecules (MyD88, NF-κB,
TRAF6, and NLRP3) were increased in primary cultured RGCs un-

der high glucose. In addition, the levels of IL-1β and IL-18, two

downstream pro-inflammatory cytokines of the TLR4 signalling

pathway, were also significantly upregulated in primary cultured

RGCs under high glucose. The apoptosis of RGCs under high glu-

cose was clearly increased. Furthermore, the administration of TAK-

242 attenuated the expression levels of TLR4 downstream signalling

molecules and significantly reduced inflammatory cytokine levels in

primary cultured RGCs, accompanied by a lower apoptosis rate of

RGCs [33].

DR has long been defined as a sight-threatening retinal microvas-

cular complication of diabetes mellitus [1, 3, 34]. It is becoming

increasingly clear that diabetes induces a progressive dysfunction

and degeneration of some neuronal cells in the inner retina, which

contributes to vision deficits in the early stages of diabetic retinopathy

[1, 11, 12, 35]. Neural retina abnormalities include neural apoptosis,

reduction in the thickness of the inner retina, glial reactivity, slowing

of optic nerve retrograde transport, and dysfunction in electrophysi-

ological activity [11, 12, 36]. The available clinical evidence strongly

suggests that the irreversible visual impairment in early DR is mostly

a direct consequence of the dysfunction and/or loss of RGCs in the

retina [10, 12, 31]. The loss of RGCswas also reflected by a reduction

in the number of axons in the optic nerve [12]. These observations

were complemented by mammal diabetic model studies, as a distinct

reduction in the thickness of the retinal nerve fibre layer was revealed

in an STZ-induced diabetic mouse model, accompanied by notable

reduction in the number of RGCs [10, 11, 36]. Numerous reports

using electroretinography have demonstrated that retinal neurodegen-

eration is compromised at the onset of DR [35]. Collectively, these

data suggested that the neuroprotection, especially the protection of

RGCs, should be emphasized as an approach to the treatment of early

stage DR. However, few studies have reported the protective effect on

the immune and inflammatory impairment of RGCs induced by high

glucose in early stage DR. Therefore, we demonstrated that the ex-

pression levels of pro-inflammatory cytokines (IL-1β and IL-18)

were significantly upregulated in primary cultured RGCs under high

glucose. Furthermore, the apoptosis of RGCs under high glucose is

increased.

DM is characterized by the dysregulation of innate immunity and

is associated with an increased inflammatory response [28]. Recently,

studies have shown that DR is a result of systemic neuroinflammation

and is facilitated by innate immune responses [1, 14, 15, 17, 18, 35].

The immune system protects organisms against environmental and

endogenous pathogens and regulates the homeostasis of

inflammatory processes [14, 21]. The inflammation of the retina is

a contributing factor in ocular diseases such as retinal microvascular

abnormalities in DR, uveitis, glaucoma, and age-related macular de-

generation [19, 32, 37, 38]. The Toll-like receptors (TLRs) are a class

of highly preserved innate immunity receptors and function as

pattern-recognition receptors. TLRs play an essential role in the ini-

tiation of innate immunity against invading microbial pathogens.

TLRs have been shown to induce the transcriptional activation of

genes encoding for pro-inflammatory cytokines, chemokines, and

co-stimulatory molecules, which finally lead to a secondary cascade

of inflammatory responses [14, 19–21].

TLR4, a cell surface TLR, is highly expressed on immune organs

with pathogen surveillance activity and on non-immune organs such

as the central nervous system, retina, or salivary glands [20, 21].

TLR4 has been considered a modulator of neuronal survival in many

neurodegenerative diseases and neuronal injuries [26, 37–40]. It is

responsible for sensing damage signals outside of the cell and intra-

cellular non-infectious signals, which then initiate the innate immune

response [20, 21]. The results of animal experiments showed that

TLR4 mRNA is increased in the retina of DR rats [29, 41].

Furthermore, many studies have shown an upregulation of TLR4

accompanied by an increased inflammatory response in DR [28,

29]. Chronic neuroinflammation activated by the TLR4/NF-κB sig-

nalling pathway has been determined to be involved in the death of

RGCs after optic nerve crush in an animal model of glaucoma [37].

Additionally, mice lacking TLR4 show reduced neuronal apoptosis

and decreased pathology in the retina and brain [29, 42]. To date, very

few studies have been performed to investigate the role of TLR4 in

the inflammation and apoptosis of RGCs induced by high glucose.

ZhaoM et al. using human RGC-5 cells as an in vitro model of retinal

ganglion cells, elucidated the expression profiles of TLR4 in RGC-5

in a high-glucose environment and its implications [43]. RGC-5 is a

transformed cell line of mouse origin [44]. Research shows that the

process of transformation invariably leads to dedifferentiation of the

cells. Accordingly, transformed cell lines would be missing charac-

teristic properties of their cells of origin, which is also true for RGC-5

[45, 46]. Primary RGCs cultured in vitro have been widely used in

studies regarding retinal neuropathy diseases [30, 47, 48]. In the

present study, we first isolated the RGCs from SD rats. Then, we

investigated the expression profiles of TLR4 in RGCs primary cul-

tured in high-glucose. Our data showed that the TLR4 expression

levels were increased in RGCs under high glucose. The results were

dependent on time and dose in a certain range. The level of TLR4 in

20 mM glucose was highest in the three high-glucose groups. This

finding might indicate that TLR4 was involved in the immune in-

flammation of RGCs under high glucose. One interesting phenome-

non is that the expression peak of TLR4 was in the 20 mM high-

glucose group and was reduced in the 30 mM high-glucose group

(Fig. 2). This finding might be related to the increasing damage of

primary RGCs under 30 mM high glucose. This dose-dependent

inconsistency displayed the complexity of activation and expression

of TLR4 in primary RGCs under high glucose. Further studies are

needed to explore the exact mechanisms.
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The MyD88-dependent pathway, one of the signalling transduc-

tion pathways activated by TLR4, has been considered to be involved

in the RGC damage in ischaemia reperfusion injury [49]. MyD88 is a

common signalling molecule for most TLRs, leading to the down-

stream activation of NF-κB, a transcription factor, which is often used
as a marker of TLR4 activity [21, 40]. TRAF6, a downstream adap-

tor, functions as a signal transducer in the NF-κB pathway that acti-

vates IkappaB kinase (IKK) in response to pro-inflammatory cyto-

kines [50]. NLRP3 is a component of the inflammasome. The

NLRP3 inflammasome is an upstream activator of NF-κB signalling

and plays a role in the regulation of inflammation, the immune re-

sponse, and apoptosis [51]. Our results demonstrated that the release

of MyD88, NF-κB, TRAF6, and NLRP3 was upregulated in the

inflammation of RGCs under high glucose. Meanwhile, the apoptosis

of RGCs under high glucose was increased. These observations sug-

gested that the TLR4 and TLR4/MyD88 signalling pathways played

an essential role in the inflammation and apoptosis of primary RGCs

under high glucose; we also revealed the potential therapeutic role of

TAK-242 for the treatment of primary RGCs degeneration in DR.

This is a meaningful supplement to the current body of knowledge

of DR. Therefore, innovative strategies that target TLR4 against

neuroinflammatory response cascades are regarded as promising

therapeutic approaches for DR.
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