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Abstract Retinopathy of prematurity (ROP) is a leading
cause of childhood blindness where vascular abnormality
and retinal dysfunction are reported. We showed earlier that
genetic deletion of aldose reductase (AR), the rate-limiting
enzyme in the polyol pathway, reduced the neovascularization
through attenuating oxidative stress induction in the mouse
oxygen-induced retinopathy (OIR) modeling ROP. In this
study, we further investigated the effects of AR deficiency
on retinal neurons in the mouse OIR. Seven-day-old wild-
type and AR-deficient mice were exposed to 75 % oxygen
for 5 days and then returned to room air. Electroretinography
was used to assess the neuronal function at postnatal day (P)
30. On P17 and P30, retinal cytoarchitecture was examined by
morphometric analysis and immunohistochemistry for
calbindin, protein kinase C alpha, calretinin, Tuj1, and glial
fibrillary acidic protein. In OIR, attenuated amplitudes and
delayed implicit time of a-wave, b-wave, and oscillatory

potentials were observed in wild-type mice, but they were
not significantly changed in AR-deficient mice. The morpho-
logical changes of horizontal, rod bipolar, and amacrine cells
were shown in wild-type mice and these changes were partly
preserved with AR deficiency. AR deficiency attenuated the
Müller cell gliosis induced in OIR. Our observations demon-
strated AR deficiency preserved retinal functions in OIR and
AR deficiency could partly reduce the extent of retinal neuro-
nal histopathology. These findings suggested a therapeutic
potential of AR inhibition in ROP treatment with beneficial
effects on the retinal neurons.

Keywords Aldose reductase . Retinal neurons . Retinopathy
of prematurity . Oxygen-induced retinopathy

Introduction

Retinopathy of Prematurity (ROP), which was first described
in the 1940s, is a common blinding disease in premature
babies with long term disability and diminished quality of life,
creating a big burden to the aging society when they get old
[1]. It is regarded as a vascular disease characterized first by
vaso-obliteration and then pathological angiogenesis, exces-
sive growth of blood vessels on the surface of the retina in
response to the combined effects of immature retinal vascula-
ture, and high levels of supplemental oxygen for neonatal
clinical care [2–4]. In addition to the most well-known path-
ological retinal angiogenesis of this disease [2], reduced visual
acuity, and neuronal dysfunction have also been observed in
infants and children with a history of ROP [5, 6]. Alterations
of electroretinographic (ERG) responses, including lower sat-
urated amplitude, decreased sensitivity, and prolonged deacti-
vation of rod photoreceptors have been observed, and these
deficits appear to persist long even after ROP has been
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resolved [7–9]. Moreover, attenuated post-receptor responses
are also present, although these deficits can be improved in
children with a history of mild ROP, they stay in severe ROP
[7, 9–11]. In rat or mouse models of oxygen-induced retinop-
athy (OIR) to mimic human ROP, altered ERG responses for
rods and post-receptors, disrupted rod outer segment, morpho-
logical or neurochemical changes in horizontal, bipolar, or
amacrine cells have been reported [3–5, 7, 12–14]. However,
current treatments for ROP such as laser therapy, vitrectomy
or VEGF inhibitor Bevacizumab, mainly focus on the patho-
logical retinal angiogenesis [15–17]. Therefore, there is a great
need to also investigate the long-term impact on retinal neu-
rons of the potential therapeutic targets, which may demon-
strate beneficial effects on attenuating the pathological retinal
angiogenesis.

Oxidative stress has been highly implicated to con-
tribute to the pathogenesis of ROP. Previous clinical
studies have demonstrated increased oxidative stress in
preterm infants [18]. Antioxidant supplement vitamin E
has been shown to reduce the development and progres-
sion of ROP [19]. These observations suggest that
targeting oxidative stress would be an efficient therapeu-
tic approach in ROP treatment. Aldose reductase (AR)
is the first enzyme in the polyol pathway for reducing
glucose to sorbitol, using NAD(P)H as a cofactor [20].
Increased AR activity contributes to oxidative stress
[21–26]. In the mouse retina, AR deficiency or inhibi-
tion of AR activity has been shown to reduce ischemia-
induced oxidative stress [20, 27]. In our previous stud-
ies, genetic deletion or pharmacological inhibition of
AR reduced the retinal vascular changes including cen-
tral vaso-obliteration and neovascularization with re-
duced induction of oxidative stress in the mouse model
of OIR [27]. In the current studies, we aimed to further
evaluate the effects of genetic deletion of AR on retinal
neuronal changes at both functional and cellular levels.
We hypothesize that AR deficiency helps protect the
retinal neurons in OIR.

Methods

Animals

All experimental and animal handling procedures were in ac-
cordance with the ARVO Statement for the Use of Animals in
Ophthalmic and Vision Research. The use of animals was
conducted according to the requirements of the Cap. 340 An-
imals (Control of Experiments) Ordinance and Regulations,
and all relevant legislation and Codes of Practice in Hong
Kong, and was approved by the Faulty Committee on the
Use of Live Animals in Teaching and Research in The Uni-
versity of Hong Kong (CULATR 1691–08 and 2423–11).

Animal model of OIR

OIRwas induced in wild-type (WT) andAR-deficient (AR−/−)
mice [28]. Neonatal mice and their nursing dams were ex-
posed to a 75 % oxygen (PRO-OX110 chamber controller;
Biospherix Ltd, NY, USA) at postnatal day seven (P7),
returned to room air on P12, and kept until P17 [29]. The
hyperoxia from P7 to P12 induces retinal blood vessel regres-
sion, and the relative hypoxia-induced neovascularization
reaches maximum on P17 [30]. During the exposure to high
oxygen, soda lime was placed inside the chamber to serve as
CO2 quencher. To reduce the runty phenotype, the litter size
was limited to seven or eight pups for eachmother [30]. AR−/−

mice were observed to breed well, and the weight of pups on
P7 (~4 g) and P17 (~6 g) was identical to that of WT mouse
pups with limited litter size in OIR.

Samples were collected on P17 and P30. Both eyes were
enucleated and fixed in 4 % paraformaldehyde (PFA) in phos-
phate buffered saline (PBS; 0.01 M; pH 7.4) overnight at 4 °C
and then dehydrated in a graded series of ethanol and chloro-
form. Subsequently, eyeballs were infiltrated with paraffin for
3 hours (new paraffin changed every hour) and embedded.
Sagittal sections (6 μm) were cut through the cornea parallel
to the optic nerve using a microtome (Microm HM 315R,
Heidelberg, Germany).

Assessment of retinal function by electroretinogram

Scotopic flash electroretinogram (ERG) was recorded from
mice on P30 to assess retinal function. Before ERG measure-
ment, mice were dark-adapted overnight and anesthetized
with a mixture of Ketamine (50 mg/kg; Alfasan International,
Woerden, The Netherlands) and Xylazine (0.5 mg/kg; Alfasan
International, Woerden, The Netherlands). The eyes were fur-
ther treated with 0.5 % proparacaine hydrochloride (Alcon,
Alcon-Couvreur, Belgium) for topical analgesia and pupils
were dilated with 1%Mydricyl (Alcon, Alcon-Couvreur, Bel-
gium). The ERG signals were recorded by placing a gold
active electrode on the cornea as well as a reference and a
ground electrode in the forehead and tail region, respectively.
All operations were performed under dim red light, and mice
were kept warm on a heating pad during the ERG recording.
Rod and cone responses were elicited by the single white
flashes of intensity at 3 cd·s/m2 generated from the Color
Dome Ganzfeld System (Diagnosys, Lowell, MA). Each flash
lasted for 4 ms and the flash interval was 10 s. All ERG signals
were amplified automatically by the system. For a-wave and
b-wave, responses were recorded with a band-pass filtered
from 0.3 to 300 Hz; for oscillatory potentials (OPs), responses
were recorded with a band-pass filtered from 100 to 300 Hz.
The sum of only OP2 to OP4 amplitudes was analyzed due to
the potential of OP1 contaminated by the a-wave [31]. Fifteen
readings from two eyes for each mouse were averaged and
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analyzed using the Epsion V5 software incorporated with the
system.

Measurement of retinal layer thickness

Three sagittal sections with an optic nerve head for each eye
were selected and stained with hemotoxylin and eosin (H&E).
Two images from the same section were captured for central
and mid-peripheral retinal areas with one from each side of the
optic nerve, using an upright microscope with 400X magnifi-
cation (Eclipse 80i, Nikon, Japan). The central retinal area was
defined as ~100 μm away from the optic nerve; the mid-
peripheral retinal area was defined as the middle area between
optic nerve and the end of the retina on each side. Outer
nuclear layer (ONL), inner nuclear layer (INL) and inner plex-
iform layer (IPL) thicknesses were then measured using Spot
Advanced software (SPOTTM Imaging Solutions, Sterling
Heights, USA).

Immunohistochemistry (IHC) for various retinal neurons
and glial cells

Deparaffinized retinal sagittal sections were subjected to
antigen retrieval by incubation with proteinase K
(20 μg/ml in PBS) for 4 min at room temperature. Sec-
tions were blocked with goat or donkey serum (Vector
Laboratories Inc.) and incubated with primary antibodies
rabbit anti-PKCα (rod bipolar cell marker, 1:500; sc-
208, Santa Cruz Biotechnology), goat anti-calretinin
(amacrine cell marker, 1:1000; sc-11644, Santa Cruz
Biotechnology), mouse anti-Tuj1 (retinal ganglion cell
marker, 1:1000; MRB-435P, Convance), and rabbit
anti-glial fibrillary acidic protein (GFAP 1:500, Dako,
Denmark), respectively, overnight at 4 °C. For rabbit
anti-calbindin (horizontal cell marker, 1:500; AB1778,
Chemicon) staining, sections were incubated for 72 h
at 4 °C. Signals were visualized by reacting with corre-
sponding secondary antibodies Alexa Fluor® 488 don-
key anti-goat IgG (1:500, A-11055, Molecular Probes,
Invitrogen), or Alexa Fluor® 568 goat anti-rabbit IgG
(1:500; A-11011, Molecular Probes, Invitrogen), or
Alexa Fluor® 568 goat anti-mouse IgG (1:500,
A-21134, Molecular Probes, Invitrogen), respectively,
for 60 min at room temperature. The sections were
washed with PBS and counterstained with DAPI
(0.1 μg/ml in PBS, D9564, Sigma). The immunoreac-
tivity was examined using an upright microscope with
400X magnification (Eclipse 80i, Nikon, Japan). For
horizontal and rod bipolar cells, a scoring system was
used according to previous studies [27, 32, 33]. Briefly,
the slides for the same immunostaining at each time
point were examined at the same time under the micro-
scope with the same light exposure intensity. The

scoring was done within 2 h. To minimize the potential
bias, all the slides were re-coded and the examiners
were blinded while performing the scoring. Based on
the intensity and location of the staining, score one
was assigned for the weakest immunoreactivity and dis-
crete alignment of cell bodies, and score five represent-
ed the strongest immunoreactivity and evidently located
cell bodies. For calretinin-positive amacrine cells in INL
and Tuj1-positive RGCs in a ganglion cell layer (GCL),
the number of cell bodies was counted and compared
between the two genotypes. Representative images were
taken from the central retinal areas of retinal sections
with 400X magnification (Eclipse 80i, Nikon, Japan)
using the same exposure of light intensity and time.

Statistical analysis

All experiments and analyses were performed in a double-
blinded manner. The immunohistochemical investigations
for all retinal sections using the same antibody were per-
formed in one single experiment to eliminate inter-
experiment errors and variation. One-way ANOVA and
Bonferroni’s multiple comparisons test, Kruskal-Wallis test,
and Dunn’s multiple comparison test were used for compari-
son of results as specified in the figure legends (Prism v5.0,
GraphPad Software Inc., San Diego, CA). Statistically signif-
icant difference was set at p<0.05. Data was presented as
mean±SEM.

Results

Preservation of retinal neuronal function in AR−/− mice

Scotopic ERG was performed to investigate the effect of OIR
on neuroretinal function in WT and AR−/− mice on P30. Rep-
resentative ERG waveforms recorded from room air and OIR
retinae in both genotypes were demonstrated in Fig. 1b. Under
room air, the ERG waveforms were very similar between the
WT and AR−/− mice, and no significant difference was ob-
served in the a-wave, b-wave amplitudes, and the sum of
OPs (from OP2 to OP4) amplitudes between WT and AR−/−

mice (Fig. 1c). In OIR, a-wave, b-wave, and Ops amplitudes
were decreased significantly in WT but not AR−/− mice
(Fig. 1c). AR−/− mice appeared to display better preserved
ERG waveform than that in WT OIR mice (Fig. 1c). Delayed
implicit time (time-to-peak) for a-wave was observed in both
genotypes (Fig. 1d). These observations suggested that inner
retinal functions were disturbed in OIR and partially preserved
with AR deficiency.

To further understand if AR deficiency protects the retinal
functions in mouse OIR through preserving retinal neuronal
structures, investigation on cellular levels of retinal neurons
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was conducted. Retinal thickness was measured and immuno-
histochemistry for the inner retinal cells was analyzed and
compared.

Retinal layer thickness on P17 and P30

Hyperoxia exposure from P7 to P12 induces retinal blood
vessel regression and the relative hypoxia-induced neovascu-
larization reaches the maximum on P17 [30]. Therefore, be-
sides P30, the relative hypoxia-induced retinal neuronal
changes were also investigated on P17 corresponding to the
retinal vascular changes in OIR.

The ONL, INL, and IPL thicknesses in central (~100 μm
away from the optic nerve) and the mid-peripheral retinal
areas (the middle area between the optic nerve and the end
of the retina on either side of the optic nerve) were measured
on H&E-stained retinal sections on P17 and P30 (Fig. 2a–b).
The central retinal areas are vaso-obliterated while the mid-
peripheral areas are the boundary between vaso-obliterated
and peripheral areas where neovascularization occurred in
the mouse OIR retina. The results were analyzed and com-
pared between WT and AR−/− retinae. Generally, comparable
retinal thicknesses at different layers were observed in both
WT and AR−/− retinae at room air conditions (Fig. 2c). After
OIR, there was no significant change in ONL thickness, but
markedly reduced INL and IPL thickness in the central retinal
areas were observed versus room-air groups on P17, 30 in
both WT and AR−/− retinae (Fig. 2c). More importantly, the
reductions in INL and IPL thickness in the mid-peripheral
areas observed in WT mice on P17 after OIR were not

observed with AR deficiency. In addition, thicker INL and
IPL with AR deficiency were also detected on P30 (Fig. 2c).

Inner retinal neurons on P17 and P30

Horizontal cells Calbindin has been used as a marker for
horizontal cells [34, 35]. The immunoreactivity of calbindin
is present in cell bodies, dendrites, and axons of horizontal
cells along the outer margin of INL [34]. In addition, amacrine
cells and RGCs also appeared to be positive for calbindin
staining [34]. Here, we focused on the calbindin-positive hor-
izontal cells only.

On P17, evidently located calbindin-positive cell bodies along
the outer margin of INL and faintly stained processes between
horizontal cells were observed in both genotypes under room
air, no significant difference was shown between the two ge-
notypes based on the IHC scoring system (Fig. 3a–b). In OIR,
the intensity of calbindin immunoreactivity along outer INL
was decreased especially in the processes between horizontal
cells in WT but not AR−/− OIR retinae (Fig. 3c–d), although
IHC scoring system did not show a significant difference
(Fig. 3i). On P30, strong staining of calbindin was exhibited
in horizontal cell bodies along the outer margin of INL and
processes between the cell bodies in both genotypes under
room air (Fig. 3e–f), indicating matured horizontal cell inter-
actions. In OIR, the intensity of calbindin immunoreactivity
was decreased in WT retinae but not in AR−/− retinae, and the
calbindin staining intensity was significantly stronger in AR−/

− retinae than that in WT retinae (Fig. 3g–i). In addition, in
AR−/− OIR retinae, cell processes appeared to be more

Fig. 1 ERG responses of WTand AR−/− mice on P30. The normal ERG
responses with parameters that are usually measured for electrodiagnosis
(a). Representative ERG waveforms were exhibited at low light intensity
(3 cd·s/m2, dotted line) for both genotypes (b). No significant difference
was observed in a-wave amplitudes between WT OIR and AR−/− OIR

mice. Significantly reduced amplitudes of a-wave, b-wave, and the sum
of OPs were found in WT OIR mice but not is AR−/− OIR mice (c). The
delayed implicit time of a-wave was observed in both genotypes (D).
***p<0.001, **p<0.01, *p<0.05, One-way ANOVA and Bonferroni’s
multiple comparisons test. n=5–9 for each group
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strongly calbindin-stained between horizontal cells when
compared with WT OIR retinae (Fig. 3h).

Rod bipolar cells PKCα was used for the rod bipolar cells
examination. PKCα immunoreactivity was present not only in

Fig. 3 Evaluation of retinal horizontal cells in the OIR model and WT
mice. Immunohistochemical staining of horizontal cells with an antibody
against calbindin on P17 and P30 (red, a–h). Calbindin-positive
horizontal cell bodies were present along the outer margin of INL in
WT and AR−/− RA retinae (a–b, e–f). After OIR, reduced calbindin
immunoreactivity was observed in WT but not AR−/− OIR retinae (c–d,
g–h). A trend of calbindin immunoreactivity reduction was also exhibited

in WT OIR retinae on P30 (i). Significantly more intense calbindin
immunoreactivity was observed in AR−/− OIR retinae versus WT OIR
retinae on P30 (i). The sections were counterstained with DAPI for nuclei
identification (blue). Arrows, calbindin-positive horizontal cell processes.
*p<0.05, Kruskal-Wallis test, and Dunn’s multiple comparison test. n=
5–9 for each group. Scale bar, 25 μm

Fig. 2 Retinal thickness in the OIR model and WT mice. Measurement
of ONL, INL, and IPL thicknesses in the central and mid-peripheral areas
on H&E-stained retinal sections (a–b). In the central and mid-peripheral
retinal area, comparable ONL, INL, and IPL thickness was found in both
genotypes on P17 and P30 under room-air and OIR conditions (c).
Significantly reduced INL and IPL thickness was observed in WT OIR
mice (c). Significantly thicker IPL in mid-peripheral areas on P30 were

observed in AR−/−OIR retinae (c). No significant change was observed in
ONL thickness (c). ***p<0.001, **p<0.01, *p<0.05, One-wayANOVA
and Bonferroni's multiple comparisons test. n=6–13 for each group. C
central,MPmid-peripheral,GCL ganglion cell layer, IPL inner plexiform
layer, INL inner nuclear layer, OPL outer plexiform layer, ONL outer
nuclear layer. Scale bar: 100 μm (a); 25 μm (b)
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the rod bipolar cell bodies along the outer margin of INL but
also in their processes extended into IPL. In addition, a few
amacrine cells along the inner margin of INLwere also stained
with PKCα [34–36]. Here, we focused on PKCα-positive rod
bipolar cells.

On P17, normally, PKCα immunoreactivity was pres-
ent in rod bipolar cell bodies in the outer margin of
INL and processes close to GCL (Fig. 4a–d). Strong
PKCα immunoreactivity was observed in rod bipolar
cells for WT and AR−/− room-air retinae (Fig. 4a and
b). However, in OIR, a sharp decrease in PKCα immu-
noreactivity especially in the processes was observed in
both genotypes (Fig. 4c and d). The IHC scoring system
demonstrated significantly decreased PKCα immunore-
activity in both genotypes in OIR versus room-air con-
trols (Fig. 4i). On P30, PKCα immunoreactivity was
apparently exhibited in rod bipolar cell bodies along
the outer margin of INL and processes close to GCL
in both genotypes under room air (Fig. 4e and f). In
OIR, PKCα immunoreactivity, particularly in the pro-
cesses, was much reduced in WT retinae but not in
AR−/− retinae (Fig. 4g and h). The IHC scoring system
also showed a significant decrease in WT OIR retinae
(Fig. 4i).

Amacrine cells Calretinin was used as a marker for amacrine
cells. Calretinin immunoreactivity was observed in the

amacrine cell bodies along the inner margin of INL and the
three strata of the axon terminals in IPL, as well as some
displaced amacrine cells in GCL [34, 35]. In addition, some
RGCs were also stained with calretinin [34]. Here, we focused
on calretinin-positive amacrine cells in INL as well as three
strata in IPL.

On P17, calretinin immunoreactivity was strong in cell
bodies in INL and three clear strata in IPL in both genotypes
under room air (Fig. 5a and b). In OIR, markedly reduced
intensity of calretinin immunoreactivity, seriously distorted
three strata in IPL, and decreased cell bodies in INL were
observed in WT retinae but not in AR−/− retinae (Fig. 5c and
d). The number of calretinin-positive cell bodies along the
inner margin of INLwas quantified and a significant reduction
was shown in WT OIR retinae but not AR−/− OIR retinae
(Fig. 5i). On P30, calretinin immunoreactivity was similar to
that on P17 in room air controls (Fig. 5e and f). In OIR, the
intensity of calretinin immunoreactivity was similar in both
genotypes (Fig. 5g and h). A significantly reduced number of
cell bodies was observed in WT not AR−/− OIR retinae
(Fig. 5i).

RGCs Tuj1 was highly reactive to neuron specific Class III
β-tubulin and was, therefore, used as a marker for RGCs [37,
38]. Yet, Tuj1 immunoreactivity was observed not only in cell
bodies along GCL but also those in INL (Fig. 6a). In addition,
Tuj1 immunoreactivity was also present in the nerve fiber

Fig. 4 Evaluation of retinal rod bipolar cells in the OIR model and WT
mice. Immunohistochemical staining of rod bipolar cells with an antibody
against PKCα on P17 and P30 (red, a–h). PKCα immunoreactivity was
present in rod bipolar cell bodies along the outer margin of INL and
processes close to GCL in both WT and AR−/− RA retinae (a–b, e–f).
After OIR, on P17, less PKCα immunoreactivity in rod bipolar cell
processes adjacent to GCL was found (c–d) and significantly reduced

PKCα immunoreactivity after OIR was observed in both genotypes (i).
On P30, significantly reduced PKCα immunoreactivity, particularly in
the processes, was observed in WT versus AR−/− OIR retinae (g–h).
The sections were counterstained with DAPI for nuclei identification
(blue). **p<0.01, *p<0.05, Kruskal-Wallis test, and Dunn’s multiple
comparison test. n=5–10 for each group. Scale bar, 25 μm
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layer (Fig. 6a). Therefore, Tuj1-positive cell bodies along
GCL were regarded as RGCs only when they were also
DAPI-positive in merged images (Fig. 6a–c). The num-
ber of the Tuj1- and DAPI- positive cells in GCL was
quantified and compared between the two genotypes

with or without oxygen exposure. Under room-air con-
ditions, a comparable number of RGCs was found in
WT and AR-deficient retinae on P17 and P30. No sig-
nificant difference was observed on P17 and P30 be-
tween the two genotypes (Fig. 6d).

Fig. 5 Evaluation of retinal amacrine cells in the OIR model and WT
mice. Immunohistochemical staining of amacrine cells with an antibody
against calretinin on P17 and P30 (green, a–h). Calretinin was expressed
in amacrine cell bodies in the innermost layer of INL as well as in three
clear and straight strata inside IPL in bothWTand AR- /- RA retinae (a–b,
e–f). After OIR, on P17, three distorted strata in IPL were observed
especially in WT OIR retinae (c–d) and significantly reduced amacrine

cells were shown in WT but not AR−/− OIR retinae (i). On P30,
significantly reduced amacrine cells in INL were only observed in WT
OIR retinae (g–h, i). The sections were counterstained with DAPI for
nuclei identification (blue). *p<0.05, One-way ANOVA, and
Bonferroni’s multiple comparison test. n=5–12 for each group. Scale
bar, 25 μm

Fig. 6 Evaluation of retinal RGCs in the OIR model and WT mice.
Immunohistochemical staining of RGCs with Tuj1 (red) and DAPI
(blue, a–c). Only cells positive for both Tuj1 and DAPI were regarded
as RGCs (arrows, a–c). No significant changes in the number of RGCs

were observed between WT and AR−/− retinae under room air and after
oxygen exposure on P17 and P30 (D). *p<0.05, One-way ANOVA and
Bonferroni’s multiple comparisons test. n=5–9 for each group. Scale bar,
25 μm
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Müller cell gliosis on P17 and P30

GFAP is a known hallmark of reactive gliosis in astrocytes
and Müller cells [39]. Normally, GFAP staining was localized
in astrocytes around the blood vessels along the inner limiting
membrane (ILM) on P17and P30 (Fig. 7a and b, e and f). On
P17, more intense GFAP immunoreactivity in astrocytes was
observed in ILM in WT OIR retinae than that in AR−/− OIR
retinae (Fig. 7c and d). Strong GFAP immunoreactivity was
also observed in Müller cell processes across IPL (Fig. 7c). In
AR−/− OIR retinae, increased GFAP immunoreactivity was
also found in ILM (Fig. 7d). Furthermore, less GFAP immu-
noreactivity inMüller cell processes was observed when com-
pared with WT OIR retinae (Fig. 7d). IHC scoring demon-
strated significant GFAP induction in WT but not AR−/− OIR
retinae (Fig. 7i). On P30, after OIR,GFAP immunoreactivitywas
found to be increased in ILM in both genotypes (Fig. 7g and h).
In addition, strong GFAP staining was exhibited in some cell
processes across IPL in WT OIR retinae (Fig. 7g). However, in
AR−/− OIR retinae, only faint GFAP immunoreactivity was
shown inMüller cell processes across IPL (Fig. 7h). IHC scoring
also revealed a significant increase in GFAP immunoreactivity in
WT but not AR−/− OIR retinae (Fig. 7).

Discussion

ROP is well characterized by abnormal vasculature including
blood vessel regression and pathological angiogenesis [2]. In

addition, ROP also results in retinal neuronal dysfunction [5,
6]. Our results not only compensated current limited studies of
hypoxia-induced retinal neuronal changes at the cellular level
in the mouse model of OIR, but also demonstrated a potential
protective role of AR deficiency in hypoxic retinal neurons in
OIR.

Retinal dysfunction has been reported in infants and chil-
dren with a history of ROP as well as in animal models of OIR
[5–14]. ERG was performed to identify retinal function in
mice. In ERG recordings, an a-wave is directly produced by
photoreceptor cells and a b-wave mainly reflects bipolar and
Müller cell functions [40–42]. The OPs are regarded as pri-
marily amacrine cell responses to the light, although ganglion
cells are also involved in the generation of Ops [41–43]. It has
been demonstrated that a-wave, b-wave, and OPs were all
decreased in the animal model of OIR [41, 42, 44]. Our results
also exhibited decreased a-wave, b-wave, and OPs amplitudes
in WT OIR retinae versus WT room-air retinae. Interestingly,
AR deficiency attenuated the reduced ERG responses (b-wave
and OPs) observed in WT OIR retinae, suggesting that AR
deficiencymay help improve the inner retinal function in OIR.

Altered retinal neuronal function suggests related retinal
structural changes [5, 7–9, 13, 14, 45]. In the current study,
hypoxia-induced phenotypic changes in horizontal cells,
amacrine cells, and rod bipolar cells were observed on P17
and P30 in the mouse model of OIR. Previously, morpholog-
ical changes of horizontal cells, amacrine cells, and rod bipo-
lar cells on P17 have been shown in the mouse model of OIR
[3, 12]. Our observations demonstrated that the changes of

Fig. 7 Evaluation of glial response in the OIR model and WT mice.
Immunohistochemical staining of astrocytes and Müller cells with
GFAP antibody on P17 and P30 (red a–h). GFAP immunoreactivity
was present in astrocytes along ILM in RA controls for both genotypes
(a–b, e–f). Increased GFAP intensity along ILM was observed in OIR
groups versus RA controls for both genotypes (c–d, g–h). On P17 and
P30, intense GFAP immunoreactivity was present in the Müller cell

process (arrows) across IPL in WT but not AR−/− OIR retinae (c–d, g–
h). The IHC scoring system also demonstrated significantly increased
GFAP induction in WT but not AR−/− OIR retinae (I). The sections
were counterstained with DAPI for nuclei identification (blue).
***p<0.001, Kruskal-Wallis test, and Dunn’s multiple comparison test.
n=5–10 for each group. Scale bar, 25 μm
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retinal layer thickness and retinal neural cells observed on P17
persist until P30 when the retinal vasculature resolved, suggest-
ing that the protection of retinal neurons should also be consid-
ered while targeting the retinal neovascularization in OIR.

With AR deficiency, attenuated changes in horizontal cells
and amacrine cells on P17 and P30 as well as rod bipolar cells
on P30 were observed when compared with WT OIR retinae.
However, no significant change was observed in RGCs on all
time points. In fact, previous reports have shown the majority
of cell apoptosis on P14 was in INL but not in GCL in the
mouse model of OIR [3]. It has been demonstrated that expo-
sure of neonatal rats during the period undergoing significant
maturation exhibited more severe damage in the model of OIR
[46]. In the neonatal mouse retina, retinal neuronal maturation
proceeded from the inner to outer retina with RGCs maturing
first [47]. Our observed minimal effects of hypoxia on RGCs,
significant effects on horizontal cells, amacrine cells, and rod
bipolar cells, agreed well with this maturation process.

Glial responses have been reported in the animal
models of OIR [29, 48]. Normally, retinal glia including
astrocytes and Müller cells provide the support and nutri-
ents for retinal neurons, maintain the blood retinal barrier
(BRB), and function as a template to guide the developing
retinal vasculature and neurons in normal conditions [4,
49]. In pathological circumstances, retinal glia became ac-
tivated and resulted in Breactive gliosis^ with GFAP up-
regulation [29, 39, 50]. According to previous findings,
Müller cell gliosis may contribute to neovascularization
and neuronal cell death [48, 51]. Our results showed per-
sistent GFAP induction on P17 and P30 in WT OIR ret-
inae. With AR deficiency, Müller cell gliosis was found to
be weaker on P17 and P30 when compared with WT OIR
retinae. Therefore, reduced Müller cell gliosis with AR
deficiency might contribute to the preserved inner retinal
neuronal protection on a respective time point in the
mouse model of OIR.

In addition, oxidative stress has also been highly implicated
in the pathogenesis of OIR [52, 53]. Animal studies for ROP
using antioxidants such as NADPH oxidase inhibitor [52],
vitamin E [54], inducible nitric oxide synthase, or
cyclooxygenase-2 inhibitors [55] have been found to reduce
the progression of OIR. Previously, we have found induced
oxidative stress in OIR and AR deficiency could reduce oxi-
dative stress induction in the OIR retinae, especially in the
inner nuclear layer and ganglion cell layer [27]. Reduced ox-
idative stress in the protected inner retinal neurons was ob-
served with AR deficiency, suggesting a direct effect of AR on
retinal inner neurons via oxidative stress modulation. Al-
though oxidative stress were shown in GCL, no significant
change in the number of RGCs was found, possibly due to
the early maturation of RGCs with clearly evident RGC clas-
ses observed around P12, and matured RGCs may have more
resistance to stressed environment [46, 56].

On P17 and P30, significant reductions in inner retinal
thickness were observed in WT OIR retinae in both central
and mid-peripheral areas, corresponding to vaso-obliteration
and neovascularization in mouse OIR retinae [27, 29, 30,
57–61], respectively. AR deficiency appears to attenuate these
reductions in INL and IPL thicknesses especially in the mid-
peripheral neovascular areas. Previously, we have shown that
genetic deletion of AR reduced neovascularization [27]. As
the retinal vasculature supports the retinal neurons with nutri-
ents and oxygen, there is, therefore, a possibility that the at-
tenuated pathological neovascularization with AR deficiency
may contribute to the functional and morphological preserva-
tion of inner retinal neurons. Further confirmation of the de-
finitive and sequential roles of protected retinal vasculature
and preserved retinal neurons with AR deficiency in OIR
can be achieved by neuron-specific adeno-associated viral
down-regulation of AR expression in retinal neurons.

On P17, our previous observations demonstrated reduced
vaso-obliterated areas and neovascular areas in AR−/− OIR
retinae [27], suggesting AR deficiency helps protect the nor-
mal vascular development as well as inhibit the pathological
vessel proliferation. With the known persistent retinal neuro-
nal dysfunction in ROP infants and animal models, further
investigation on retinal neuronal changes and stress-
responded gliosis were conducted in the current study. In-
duced gliosis as well as morphological and functional changes
of retinal neurons were observed in OIR. AR deficiency dem-
onstrated attenuated gliosis and neuronal abnormalities. Over-
all, these findings indicated that AR could be considered as a
potentially therapeutic target in ROP benefiting both retinal
vasculature and neurons, possibly through attenuating glial
activation.
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