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Abstract
Background Diabetic retinopathy (DR) is a major cause of
blindness in the working-age populations of developed coun-
tries, and effective treatments and prevention measures have
long been the foci of study. Patients with DR invariably dem-
onstrate impairments of the retinal microvascular endotheli-
um. Many observational and preclinical studies have shown
that angiogenesis and apoptosis play crucial roles in the path-
ogenesis of DR. Increasing evidence suggests that in DR, the
small guanosine-5′-triphosphate-binding protein RhoA acti-
vates its downstream targets mammalian Diaphanous homo-
log 1 (mDia-1) and profilin-1, thus affecting important cellular
functions, including cell morphology, motility, secretion, pro-
liferation, and gene expression. However, the specific under-
lying mechanism of disease remains unclear.
Conclusion This review focuses on the RhoA/mDia-1/
profilin-1 signaling pathway that specifically triggers endothe-
lial dysfunction in diabetic patients. Recently, RhoA and
profilin-1 signaling has attracted a great deal of attention in
the context of diabetes-related research. However, the precise
molecular mechanism by which the RhoA/mDia-1/profilin-1
pathway is involved in progression of microvascular endothe-
lial dysfunction (MVED) during DR has not been determined.

This review briefly describes each feature of the cascade be-
fore exploring the most recent findings on how the pathway
may trigger endothelial dysfunction in DR. When the under-
lying mechanisms are understood, novel therapies seeking to
restore the endothelial homeostasis comprised in DR will be-
come possible.
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Introduction

Diabetic retinopathy (DR), a common complication of diabe-
tes, is a leading cause of vision loss [1, 2]. The early non-
proliferative stages of DR are characterized by retinal micro-
vascular damage triggering vascular hyperpermeability [2].
The retinal endothelium, which is the intimal lining of blood
vessels, forms a barrier between the blood and the interstitium,
regulating extravasation of plasma proteins, fluid, and leuko-
cytes [3, 4]. Advances made in recent decades have revealed
the complex nature of this semi-permeable membrane, and the
key role played by the membrane in the maintenance of vas-
cular homeostasis [5–7]. Appropriate retinal microvascular
endothelial function is important in terms of eye homeostasis,
and its dysfunction is associated with several pathophysiolog-
ical conditions, including DR [8–10].

The end-stage of microvascular endothelial dysfunction
(MVED) caused by hyperglycemia involves angiogenesis
and apoptosis of endothelial cells [11–13]. Angiogenesis,
which is the formation of new blood vessels from preexisting
vessels, is important in terms of wound healing and in the
pathology of many diseases, including tumor development
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and DR [14]. Angiogenesis is regulated by vascular-specific
growth factors that trigger complex intracellular signaling cas-
cades culminating in activation of endothelial cells. The rele-
vant growth factors include vascular endothelial growth factor
(VEGF), pigment epithelium-derived factor (PEDF), and
RhoA/mammalian Diaphanous homolog 1 (mDia-1)/
profilin-1 [15–19].

Recently, an important role of profilin-1 in wound-induced
endothelial cell motility has been discovered [20–22]. In
mammals, four profilin genes (profilin 1 – 4) have been de-
scribed to date [23]. Profilin-1 was the first-known family
member and is ubiquitously expressed by fungi, plants, certain
viruses, and most animal cells except those of skeletal muscle
[24, 25]. The roles played by Rho guanosine triphosphatases
(GTPases) have been extensively studied in various types of
mammalian cells, with the aid of (principally) dominant-
negative and constitutively active mutants. The RhoA protein
is conserved in evolutionary terms in everything from plants
and yeasts to mammals; it acts by binding to and stimulating
various downstream targets, including actin nucleators, pro-
tein kinases, and phospholipases, (especially mDia-1 and
profilin-1) [26]. Although profilin-1 plays important roles in
actin polymerization, and RhoA/mDia-1 signaling is involved
in endothelial protection, profilin-1 has not yet been clearly
shown to engage in angiogenic regulation.

In this review, we summarize the details of the
RhoA/mDia-1/profilin-1 signaling involved in MVED caused
by hyperglycemia. Our aim is to explore the relationship be-
tween DR microvascular endothelial function/dysfunction
and the actions of the RhoA/mDia-1/profilin-1 cascade, with
a principal focus on cellular and molecular mechanisms as
opposed to clinical manifestations.

RhoA

RhoA is the prototypical member of the mammalian Rho sub-
family, which has 20 members. The Rho GTPases are 20 to
24 kDa proteins that are essential for appropriate regulation of
many cellular functions. The Rho GTPases have been exten-
sively researched, as have Cdc42, Rac1 and other isoforms of
G proteins [27–29]. RhoA is a molecular switch that responds
tomessages fromG-protein-coupled receptors and cell surface
receptors that bind cytokines, growth factors, and adhesion
molecules. The Rho GTPases cycle between inactive guano-
sine diphosphate (GDP)-bound forms and active guanosine
triphosphate (GTP)-bound forms, and their intrinsic hydrolyt-
ic activities are affected by various regulators (Fig. 1) [30–33].
Cycling of Rho GTPases between the two states is regulated
by three sets of proteins; these are the guanine nucleotide-

Fig. 1 Focus on the cascade of RhoA/mDia-1/profilin-1 pathway. (1) An
inactive RhoA-GDP form switching to an active RhoA-GTP form is
regulated by GEF, GAP and GDI, etc. (2) RhoA-GTP binds to the DID
part and sequence N-terminal to DID of mDia-1, while profilin-1 binds to
the FH1 part of mDia-1. After forming a 1:1 complex with G-actin,
profilin-1 modulates actin stress fibers via promoting or preventing actin
polymerization. (3) RhoA/ROCK I/II could mediate actin polymerization

by regulating profilin-1. Abbreviations: GDP guanosine diphosphate,
GTP guanosine triphosphate, GEF guanine nucleotide-exchange factor,
GAPGTPase-activating protein,GDI guanine nucleotide-dissociation in-
hibitor, mDia-1 mammalian Diaphanous homolog 1, DAD diaphanous
auto-regulatory domain, FH1/2 formin homology 1/2, CC coil-coiled
region, DID Dia-inhibitory domain, ROCK I/II Rho-associated coiled-
coil containing protein kinase I/II
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exchange factors (GEFs), the GTPase-activating proteins
(GAPs), and the guanine nucleotide-dissociation inhibitors
(GDIs) (Fig. 1) [26].

Much work performed over the past few decades has sug-
gested that five classical pathways may be closely associated
with DR; these are the advanced glycation end products
(AGEs), oxidative stress, protein kinase C (PKC),
hexosamine, and polyol pathways. In diabetes, RhoA and
the receptor for AGEs (RAGE) can form a complex termed
RhoA/RAGE, which has been suggested to activate Rho-
associated coiled-coil-containing protein kinase (ROCK),
resulting in reorganization of the actin cytoskeleton, in turn
triggering endothelial cell hyperpermeability [34–36]. A re-
cent study showed that RhoA activity was markedly in-
creased, and endothelial nitric oxide synthase (eNOS) phos-
phorylation was downregulated by 57 % in retinas of diabetic
rats 2 weeks after the onset of diabetes [2, 37]. Interestingly, in
other studies, diabetes caused a ROCK-mediated increase in
endothelial arginase activity, contributing in part to the im-
paired nitric oxide (NO) bioavailability characteristic of the
disease (Fig. 2) [38, 39].

RhoA is involved in other cellular signaling pathways and
in a variety of physiological and pathological processes,

because it regulates many such processes, including cytoskel-
etal dynamics, cell polarity, membrane transport, and gene
expression [40]. Glucosamine, a product of glucose influx
via the hexosamine biosynthesis pathway (HBP) in diabetes,
has recently been shown to increase vascular contraction, at
least in part via activation of the RhoA/ROCK pathway [41].
Hyperglycemia increases endothelial cell RhoA/ROCK activ-
ity in a PKC and reactive oxygen species (ROS)-dependent
manner, and activated ROCK mediates glucose-induced ex-
pression of the plasminogen activator inhibitor-1 (PAI-1) [37,
42–44]. Furthermore, the polyol pathway is also activated
when microvascular permeability increases under hyperglyce-
mic conditions, and the immediate cellular changes observed
can be abrogated by inhibiting ROCK [45]. These studies
have revealed the critical role played by the RhoA pathway
in retinal MVED associated with diabetes (Fig. 2).

RhoA and the endothelium

The endothelium forms the inner lining of blood vessels and is
metabolically active [46]. Apart from functioning as a barrier,
it senses and responds to environmental factors and has im-
portant autocrine and paracrine functions that regulate the

Fig. 2 The crosstalk between RhoA/mDia-1/profilin-1 cascade and five
classic pathways that might be closely associated with DR. (1) In diabetic
condition, hyperglycemia activates RhoA signaling to interact with a
multitude of pathways, e.g., AGEs, PKC, ROS, hexosamine and polyol
pathways. (2) RhoA could lead toMVEDvia junction complexes, such as
ZO-1, occludin and claudins, etc. (3) ROCK acts downstream of RhoA to
regulate MVED. (4) Some indispensable molecules also participate in the
crosstalk, including NF-κB, RAGE, MAPKs, NO, BSA and NADPH,

etc. Abbreviations: mDia-1 mammalian Diaphanous homolog 1, ROS
reactive oxygen species, AGEs advanced glycation end products, RAGE
receptor for AGEs, PKC protein kinase C, ROCK Rho-associated coiled-
coil containing protein kinase, NO nitric oxide, phos- phosphorylation,
GEF guanine nucleotide-exchange factor, BSA bovine serum albumin,
NADPH nicotinamide adenine dinucleotide phosphate, NF-κB nuclear
factor-kappa B,MAPKsmitogen-activated protein kinases,MVEDmicro-
vascular endothelial dysfunction
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contractile state of blood vessels, the hemostatic balance, and
other cellular functions [46, 47]. Recently, RhoA has received
much attention as a key regulator of cell shape, movement,
and proliferation [48].

RhoA and its downstream effector ROCK I/II modulate
cell adhesion, migration, proliferation and apoptosis by con-
trolling arrangement of the actin skeleton as well as cell
shrinkage [33, 49, 50]. It has been shown both in vivo and
in vitro that the Rho pathway plays a critical role in diabetic
retinal microvascular pathology, and that hyperglycemia trig-
gers retinal hypertonicity by activating Rho signaling and sub-
sequently increasing RhoA/ROCK activity [2, 37, 51]. The
calcium channel blocker fasudil and the lipid-lowering agents
ezetimibe and simvastatin protect the retinal microvascular
endothelium by inhibiting RhoA/ROCK activity, thus amelio-
rating endothelial proliferation and hypertonicity in diabetic
patients [2, 46, 52, 53].

The evidence that RhoA is ubiquitously expressed in var-
ious types of endothelial cells is overwhelming, and it is clear
that RhoA activation induces the breakdown of the endothelial
barriers of microvascular mesenteric endothelial cells, human
dermal microvascular endothelial cells, and macrovascular
pulmonary artery endothelial cells, but not microvascular
myocardial endothelial cells [54]. The primary negative regu-
lator of Rho, RhoGDI-1, represses RhoA activity in the lung
microvessel endothelium, and thus preserves endothelial bar-
rier function in vivo. Inhibition of the RhoA pathway by GDIs
can reverse the increase in microvascular permeability in-
duced by acute stimulation with the PAR1 peptide or
prolonged stimulation of RhoGDI-1-/- mice [55].

RhoA is also involved in the induction of endothelial
hyperpermeability by certain agents, including thrombin,
VEGF, angiopoietin-2 (Ang-2), and lysophosphatidic acid
(LPA) [56–58]. RhoA and PI3 kinase mediate certain process-
es, and specific inhibitors prevent ROS-induced monocyte
migration across an in vitro model of the blood brain barrier
(BBB). Interestingly, such processes are also mediated by
protein kinase B (PKB/Akt), previously unrecognized as a
player in cytoskeleton and tight junction (TJ) dynamics;
PKB acts downstream of both RhoA and PI3 kinase [59].

RhoA also regulates the activities of inter-endothelial junc-
tions, affecting cell motility, proliferation, survival, and per-
meability [60–63]. In both DR and macular edema (ME), the
TJ proteins occludin and zonula occluden-1 (ZO-1), and the
adherens junction protein cadherin-5, are critical for mainte-
nance of the endothelial barrier and for modulating the
paracellular transport of large vessel endothelia [64–67]. Re-
cently, many in vivo and in vitro studies have shown that
RhoA/ROCK signaling affects the activities of junction com-
plexes [51, 68–70]. Rho inhibition reduces localization of ZO-
1 and occludin to cell junctions. Notably, constitutive Rho
signaling conversely causes ZO-1 and occludin to accumulate
at cell junctions [71].

The observed improvement in endothelial function upon
inhibition of Rho-kinase activity by ezetimibe, an inhibitor
of intestinal cholesterol absorption, suggests that the agent
might have novel anti-atherogenic effects in humans [53]. In
addition, inhibitors of 3-hydroxy-3-methylglutaryl coenzyme
A (HMG-CoA) reductase, such as statins, may improve endo-
thelial function and decrease vascular inflammation and ath-
erosclerosis by inhibiting the Rho/ROCK pathway [46].

RhoA and angiogenesis

RhoA coupled to Gα13modulates cell migration [72, 73]; this
is accomplished by the direct interaction of activated Gα13
with a family of GEFs binding to RhoA. This family is termed
the Bregulator of G-protein signaling (RGS)-homology do-
main (RH)-containing GEFs^ (RH-RhoGEFs) [73–75]. Dis-
ruption of the Gα13 gene in mice impaires the ability of en-
dothelial cells to develop into an organized vascular system,
resulting in intrauterine death [76–78]. The biological func-
tions of RhoA depend principally on the associated RhoGEFs,
which both control the RhoA GDP/GTP binding state and
directly influence the development of angiogenesis [79, 80].

Rho signaling is also involved in sphingosine-1-phosphate
(SPP)-induced angiogenesis, which is greatly inhibited by C3
transferase, a type of RhoA inhibitor [81]. A great deal of
in vivo and in vitro work has shown that RhoA is required
for angiogenesis [82–85]. Conversely, angiogenesis progres-
sion is restrained by blocking Rho or RhoA/ROCK signaling
[86–88].

In terms of pharmacology, cerivastatin, a cholesterol-
lowering agent, has been shown to inhibit in vitro microvas-
cular endothelial cell proliferation induced by growth factors;
this is reversed by treatment with geranylgeranyl pyrophos-
phate (GGPP). This mechanism is associated with the transi-
tion of RhoA from the cell membrane to the cytoplasm and
depolymerization of actin fibers (which is also prevented by
GGPP treatment). RhoA-dependent inhibition of cell prolifer-
ation is mediated by inhibition of focal adhesion kinase and
Akt activation [89]. In addition, it has been proposed that the
HMG-CoA reductase inhibitor simvastatin may interfere with
angiogenesis by inhibiting the geranylgeranylation and mem-
brane localization of RhoA. Furthermore, tube formation is
inhibi ted by GGTI (a speci f ic inhibi tor of Rho
geranylgeranylation), C3 exotoxin (which inactivates Rho),
and adenovirus-mediated expression of a dominant-negative
form of RhoA (which reverses the effect of simvastatin on
tube formation). Finally, inhibitors of HMG-CoA reductase
also inhibit signaling by VEGF, Akt, and focal adhesion ki-
nase (three RhoA-dependent pathways involved in angiogen-
esis) [90].

To the best of our knowledge, vascular angiogenesis is
regulated by several cytokines, of which VEGF-A and its
receptor, VEGF receptor 2 (VEGFR-2), play indisputably
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important roles [91–94]. VEGF induces RhoA activation and
its recruitment to the membrane of human endothelial cells.
ROCK inhibition prevents VEGF-enhanced endothelial cell
migration that followsmechanical wounding, but has no effect
on basal endothelial cell migration. These findings indicate
that the VEGF-induced cytoskeletal changes in endothelial
cells require both RhoA and Rho kinase, and activation of
signaling by these materials is involved in the VEGF-
induced in vitro migration and angiogenesis of endothelial
cells [95]. Furthermore, transient overexpression of the
dominant-active RhoA mutant also increases tyrosine phos-
phorylation of VEGFR-2, whereas overexpression of a
dominant-inactive form of the protein has no such effect. To-
gether, these results indicate that the Rho proteins play impor-
tant roles in angiogenesis by modulating the tyrosine phos-
phorylation status of VEGFR-2 [96].

Controversially, loss-of-function experiments with endothe-
lial cells have revealed that inhibition of ROCK I/II by the
pharmacological inhibitor H-1152 and ROCK I/II-specific
small-interfering RNAs (siRNAs) increases VEGF-driven reti-
nal neovascularization and sprouting angiogenesis [97].

Recently, a regulatory role for VEGF-C in initiation and
potentiation of angiogenesis has been described [98–100].
VEGF-C knockdown decreases RhoA expression. Further-
more, RhoA knockdown, even upon supplementation with
VEGF-C or VEGF-A, decreases endothelial cell proliferation
and stress fiber formation, indicating that VEGF-C promotes
angiogenesis via a RhoA-mediated pathway [101].

RhoA and apoptosis

RhoA was first described as an inhibitor of endothelial cell
death [102]. An earlier study suggested that inhibition of the
RhoA/ROCK pathway by a ROCK inhibitor, Y27632, atten-
uates glucose-induced apoptosis to an extreme degree [103].
More recently, RhoA signaling has been shown to trigger
mitochondrial proximal tubule cell apoptosis in response to
mechanical stretching, which is inhibited by phosphorylation
of Erk1/2 and p38 MAPK [104].

On the other hand, inhibition of RhoA/ROCK1 signaling
promotes apoptosis of leukemia cells by enhancing phosphor-
ylation of Erk1/2 in an Mek1/2-independent manner [105].
Intriguingly, it had recently been shown that inhibition of
RhoA and ROCK I activation by the C3 exoenzyme and
Y27632, respectively, attenuates apoptosis of human leuke-
mia cells [106].

RhoA involvement in cancer cell apoptosis is a major field
of research. RhoA activation, induced by CNFy, triggers in-
trinsic apoptosis of the prostate cancer cell line LNCaP [107],
and inhibition of RhoA/ROCK signaling promotes apoptosis
of gastric cancer cells [108]. These data reveal a novel RhoA
activity, which may aid in a comprehensive understanding of
DR, but which currently remains enigmatic.

mDia-1

mDia-1 is an isoform of the formin family, which contains
potent dynamic regulators. The formin family is defined by
the presence of the formin homology 2 (FH2) domain [109],
and is further classified in terms of the presence and arrange-
ment of additional domains [110, 111]. Most eukaryocytic
cells contain proteins with a great diversity of FH2 domains.
Each such domain consists of approximately 400 amino acids
that directly control how actin is modified by the formin; the
FH1 domain affects the function of the FH2 domain by bind-
ing to profilin [109, 112, 113]. Thus, the FH1 domain binds
profilin, which is required for actin chain elongation by diaph-
anous (Dia) (Fig. 1) [114–116].

Phylogenetic analyses of the FH2 domain have shown that
mouse formins can be divided into seven subfamilies, as fol-
lows [109]: Dia, dishevelled-associated activator of morpho-
genesis (DAAM), formin-related gene in leukocytes (FRL),
formin homology domain-containing protein (FHOD),
inverted formin (INF), formin (FMN), and delphilin.

The mDia subfamily contains three isoforms termed mDia-
1 (also known as Diap-1), mDia-2 and mDia-3 (also known as
Diap-2) [111, 117]. mDia proteins contain an RBD/FH3 se-
quence in their N-terminal regions, which in turn contain a
Rho-binding domain (RBD), four Arm repeats (also termed
the Dia-inhibitory domain, DID), a dimerization domain
(DD), and a putative coil-coiled region (CC) [117, 118].
mDia-1 can be activated only by Rho (RhoA-C), whereas
mDia-2 and mDia-3 can be also activated by Rac and Cdc42
[119, 120]. Members of the Dia protein family are key regu-
lators of fundamental actin-driven cellular processes, which
are conserved from yeast to humans [111]. Cellular studies
have suggested that RhoA competes with the diaphanous
auto-regulatory domain (DAD) to bind to the mDia-1 N-ter-
minus, relieving the auto-inhibitory interaction, and thus en-
abling mDia-1 to influence actin dynamics [121–123].

Many studies have shown that mDia-1 is an Rho-regulated
actin nucleator that acts downstream of RhoA [117, 118, 124].
It is a multimodular protein that interacts with numerous actin
regulators, adapters and signaling components such as
profilin-1 [111]. To date, at least 12 formins have been shown
to interact with Rho family GTPases, the best-studied interac-
tion is that between mDia-1 and RhoA [113, 125–127].

mDia-1 and angiogenesis

As emphasized above, VEGF and Ang-1 play essential
(complementary) roles in vascular development during em-
bryogenesis. VEGF is required for the formation of the initial
vascular plexus early in development, and Ang-1 is necessary
for subsequent vascular remodeling into mature blood vessels
[128–130].
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Gavard et al. [128] showed that Ang-1 counteracted
VEGF-induced endothelial permeability by triggering the
RhoA pathway and the consequent association of mDia with
Src, thereby preventing activation of Src by VEGFR-2.
Knockdown of endothelial RhoA by siRNA restored the
VEGF-induced S665 VE-cadherin phosphorylation blocked
by Ang-1, and knockdown of either mDia-1 or mDia-2 re-
moved that protein from the heterocomplex and eliminated
the ability of Ang-1 to counteract the VEGF-induced endothe-
lial permeability of mouse endothelial cells. This proved that
mDia was required downstream of Ang-1 to block VEGF-
dependent permeability. Once activated, mDia-1 played a
key role when Ang-1 controlled endothelial barrier function;
expression of active mutant mDia-1 blocked VEGF-induced
permeability. Thus, by limiting the access of Src to VEGFR-2,
mDia-1 may restrict activation of the SFK-initiated pathway;
ultimately controlling the interplay between Ang-1 and
VEGF, and the biological outcome of this interaction.

mDia-1 and apoptosis

Kamasani et al. [131] showed that the Rho effector mDia-1 is
a critical downstream player in farnesyl transferase inhibitor
(FTI)-induced apoptosis. Dominant inhibition of mDia-1 ac-
tion ablated FTI-induced apoptosis, but not actin reorganiza-
tion or growth inhibition, the latter of whichmay be associated
with a Rho effector kinase pathway interaction that
downregulates c-Myc. In nude mice, dominant inhibition of
mDia-1 promoted tumor formation and ablated the anti-tumor
action of FTI. These findings suggest that the Rho/mDia-1
pathway plays a critical role in the cell death mechanism en-
gaged by FTI, and that mDia-1 may be important in terms of
the Rho-dependent survival of oncogenically transformed
cells, perhaps influenced by oncogenic RhoGEF AKAP13/
Lbc.

Profilin-1

To the best of our knowledge, actin is a highly dynamic pro-
tein network containing many actin-associated proteins [132,
133]. Of these, one key regulatory protein, profilin-1, binds to
actin monomers in the skeletal body (at the barbed ends), and
contributes to many biological activities by assembling and
disassembling actin filaments [134–136]. Profilin-1 consists
of 140 amino acids, and has a molecular weight of
12 – 15 kDa. It is a ubiquitously expressed protein that binds
to G-actin [137–139] and is associated with many cellular
activities ranging from control of actin polymerization to gene
transcription [23].

Traditionally, profilin-1 has been considered an essential
control element for actin polymerization and cell migration.
Originally identified as an actin-sequestering protein that

formed a 1:1 complex with G-actin, it was thought to prevent
actin polymerization (Fig. 1) [140]. However, subsequent
studies showed that it promotes actin polymerization by cata-
lyzing the exchange of actin-bound ADP for ATP and
transporting ATP-G-actin to the barbed end of actin [141,
142]. In addition, it liberates actin monomers from the seques-
tering protein thymosin-β4 [24], thus contributing indispens-
ably to both physiological and pathological cell proliferation
and migration [143]. In summary, profilin-1 has a dual effect
on actin polymerization, depending on its concentration rela-
tive to those of G-actin and the free barbed ends of actin
filaments [23].

In general, profilin-1 binds strongly to three major classes
of ligands; in order of strength, these are: actin monomers
[144], phosphatidylinositol 4, 5-bisphosphate (PIP2) [145]
and proteins containing poly L-proline (PLP) (including
vasodilator-stimulated phosphoprotein, or VASP; Wiskott-
Aldrich Syndrome Protein, or WASP; and Dia) [116, 146,
147]. Notably, profilin-1 binds to (and regulates the action
of) retinal cadherin (R-cadherin), downstream of the Rho
GTPases [148].

Based on in vivo experiments with transgenic mice over-
expression of profilin-1 in smooth muscle cells increases actin
polymerization and subsequently activates the Rho/ROCK
pathway [149]. In another work, ROCK and Dia-1 together
mediated actin polymerization by regulating the activity of
profilin-1 [150]. RhoA controls the actions of R-cadherin, a
member of the classical cadherin family, through the Dia-1/
profilin-1 signaling pathway [148].

Profilin-1 and the endothelium

Romeo et al. [151] showed that profilin-1 acted down-
stream of low-density lipoprotein (LDL) to mediate di-
abetic MVED. Profilin-1 overexpressed in rat aortic en-
dothelial cells triggered three indicators of endothelial
dysfunction: an increase in apoptosis, elevated expres-
sion of intracellular adhesion molecule 1 (ICAM-1), and
decreased phosphorylation of VASP (a marker for NO
signaling). In addition, loss of profilin-1 was associated
with reduced cell-cell adhesion and inhibition of cell
migration. Furthermore, such loss inhibited cell growth
without compromising cell survival, at least in the short
term, thus suggesting that profilin-1 plays an important
role in endothelial proliferation. In another study, silenc-
ing of profilin-1 expression suppressed the matrigel-
induced early cord morphogenesis of endothelial cells
[20].

Profilin-1 and angiogenesis

Fan et al. [22] recently showed that VEGF-A-inducible phos-
phorylation of profilin-1 at Tyr 129 was critical in terms of
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endothelial cell migration and angiogenesis. Chemotactic ac-
tivation of VEGFR-2 and Src induced profilin-1 phosphory-
lation at the leading edge of the cell, promoting the binding of
profilin-1 to actin and actin polymerization. Subsequently, use
of a conditional endothelial knockin of phosphorylation-
deficient profilin-1Y129F in mice revealed that profilin-1 phos-
phorylation was critical to allow angiogenesis after wounding
and ischemic injury, but not developmental angiogenesis.
Thus, the VEGFR-2/Src-mediated phosphorylation of
profilin-1 bypasses canonical, multistep, intracellular signal-
ing events to initiate endothelial cell migration and angiogen-
esis in some other manner, and may serve as a highly selective
and nontoxic target of therapeutic interventions seeking to
minimize pathological angiogenesis.

Profilin-1 and apoptosis

Of all conditions in which profilin-1 affects apoptosis, breast
cancer has received the most attention. Yao et al. [152] found
that stable expression of ectopic profilin-1 sensitized the
breast cancer cell line MDA-MB-468 to apoptosis. Thus,
profilin-1, which functions primarily to promote the formation
of local superstructures from actin filaments and integrin, may
contribute to the promotion of apoptosis. A previously un-
known activity of profilin-1 was discovered; the protein me-
diates staurosporine (STS)-induced apoptosis in breast cancer
cells by upregulating integrin α5β1 synthesis, presenting a
new target for breast cancer therapy. A subsequent study
[153] showed that profilin-1 overexpression sensitized cancer
cells to apoptosis of the typical intrinsic mitochondrial path-
way triggered by STS. Again, this revealed a new function/
action of profilin-1: it combines synergistically with apoptotic
agents to increase apoptosis.

Conclusion

In summary, we have explored the roles played by the
RhoA/mDia-1/profilin-1 signaling pathway during MVED
progression in DR. Many studies have shown that endothelial
function is critical in terms of eye homeostasis, and its dys-
function is closely associated with DR. Angiogenesis and ap-
optosis are the most common end-stage symptoms of ad-
vanced retinal MVED caused by the hyperglycemia of DR.
However, DR is much more than simple chronic hyperglyce-
mia in one eye. The understanding and management of
MVED is a major focus of research seeking to prevent micro-
vascular complications associated with all stages of DR. Our
review of angiogenesis and apoptosis during DR, together
with previous studies, reinforces the concept that MVED pre-
disposes toward DR.
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