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Abstract
Purpose To investigate the relationship between optic nerve
sheath diameter (ONSD) and retrobulbar blood flow veloci-
ties, as measured by color Doppler imaging (CDI) in glauco-
ma patients.
Methods We performed a prospective, randomized, observer-
masked study involving a total of 197 subjects. Once enrolled,
they were divided by three groups: healthy controls (n=51),
normal-tension glaucoma patients (NTG, n=58), and primary,
open-angle glaucoma patients (POAG, n=88). All subjects
underwent a general ophthalmological examination, an
ultrasound-based assessment of the ONSD, and a hemody-
namic study of the retrobulbar vascularization using CDI.
Non-parametric tests, chi-square contingency tables, and the

Deming correlations were used to explore differences and
correlations between variables in the diagnostic groups.
Results ONSD was not different between experimental
groups (p=0.28). ONSD correlated positively with the
pulsatility index of the ophthalmic artery in healthy individ-
uals (p=0.007), but not in glaucoma patients (NTG: p=0.41;
POAG: p=0.22). In NTG patients, higher ONSD values were
associated with lower end-diastolic and mean flow velocities
in the short ciliary arteries (p=0.005 in both correlations). No
such correlation was found in healthy nor POAG groups (p
range between 0.15 to 0.96). ONSD was not associated with
any CDI-related variable of the central retinal artery in any
cohort. Venous outflow velocities were not associated with
ONSD in any of the three groups.
Conclusions ONSD is negatively correlated with retrobulbar
blood flow velocities in glaucoma patients, but not in healthy
controls.
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Introduction

Globally, glaucoma is one of the leading causes of blindness
[1]. A significant number of patients develop glaucoma or show
signs of disease progression despite good intraocular pressure
(IOP) control, thus raising the question that other mechanisms
may contribute to the pathogenesis of this disease.

One of the possible mechanisms involved is an abnormal
translaminar pressure gradient [2]. Recent studies have sug-
gested that glaucoma patients may have an imbalance between
the pressures on both sides of the lamina cribrosa [3, 4].
However, for both technical and ethical reasons, research on
the forces acting behind the human globe has been limited to
imaging the orbit, namely through MRI and ultrasound [5–7].
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Neurologic and trauma-related research has suggested that
optic nerve sheath diameter (ONSD) is strongly correlated
with intracranial pressure (ICP). As the cerebrospinal fluid
(CSF) around the optic nerve is in continuity with the rest of
the central nervous system, a higher ICP could lead to an
expansion and overall diameter increase of the meningeal
sheath around the optic nerve. Accordingly, measuring ONSD
has been broadly used as a surrogate for ICP [8]. Although not
extensively studied in ophthalmology, ONSD has been linked
to visual field damage and IOP levels [5, 9].

ICP is one of the major variables involved in the overall
autoregulation process of the cerebral arteries [10]. Should the
retrobulbar arteries share the same autoregulatorymechanisms
as the intracranial vessels, then both regions would show the
same behavior to changes in CSF pressure. As glaucoma
patients appear to have an impaired autoregulation [11, 12],
it is thus possible that fluctuations in ICP could affect ocular
blood flow. Accordingly, the search for a possible correlation
between ocular blood flow and ICP may provide further
insight into the disease pathogenesis.

Therefore, our aim was to study the relationship between
ONSD measurements as a proxy for ICP and the retrobulbar
hemodynamics in glaucoma patients assessed by color Dopp-
ler Imaging (CDI).

Methods

Subject groups

Three groups were recruited for the study: healthy controls
(n=51), normal-tension glaucoma (NTG, n=58) and primary
open-angle glaucoma (POAG, n=88) patients. Healthy con-
trols were recruited from non-blood related individuals who
accompanied glaucoma patients to their consults. Glaucoma
was defined as having characteristic glaucomatous visual field
and optic disc changes: thinning of the inferior and/or superior
rim, cup-to-disc ratio asymmetry of > 0.2 not due to optic disc
size asymmetry), and based on matching glaucomatous visual
field defects (specifically, a cluster of three or more test points
with > 5 dB, or two points with > 10 dB sensitivity reduction
compared to age-eccentricity corrected normal value) [13].
POAG and NTG were grouped considering a maximal, un-
treated IOP > or ≤ 21 mmHg, respectively. An ophthalmolog-
ical examination (including Goldmann applanation tonome-
try, GAT) and visual field testing were performed on the same
day of the study visit.

Patients with ocular pathologies other than glaucoma (in-
cluding vascular-related diseases such as central retinal artery
(CRA) or central retinal vein (CRV) occlusion) were exclud-
ed. Exclusion criteria included known neurological or orbital
diseases (such as Graves’ ophthalmopathy) and vascular-
related, systemic conditions other than arterial hypertension

(such as diabetes and heart failure). For ethical reasons, pa-
tients were not discontinued from their regular medical ther-
apies (IOP-related or not), but individuals under direct vaso-
dilator drugs (for instance, nitric oxide donors or peripheral-
acting calcium channel blockers) or patients under systemic
carbonic anhydrase inhibitors were not included.

All healthy controls were screened by a senior staff mem-
ber (IS) and excluded from the study if: (1) there was a family
history of glaucoma, (2) an increased or asymmetrical cup/
disc ratio, or other optic disc structural abnormalities
(notching, disc hemorrhage) were present, or (3) if an IOP
higher than 21 mmHg was measured.

Measuring devices

Visual acuity was assessed by using the ETDRS chart, placed
in the same room under the same lighting conditions at the
same distance for all of the study subjects. IOP was measured
using GAT and blood pressure by applying an automatic
electronic sphygmomanometer (Omron, Schaumburg, IL,
USA) to the right upper arm in sitting position. CDI measure-
ment was performed using an ultrasound device with a B-

Germany) by the same researcher (LAP), who was masked to
the patient’s diagnosis, and included the following variables:
peak systolic velocity (PSV), end-diastolic velocity (EDV),
mean flow velocity (MFV), maximum venous velocity
(Vmax), minimum venous velocity (Vmin), resistivity index
[RI=(PSV-EDV)/PSV] and pulsatility index [PI=(PSV-EDV)/
MFV] of the CRA, CRV, the short nasal and temporal, poste-
rior ciliary arteries (NPCA and TPCA), and the ophthalmic
artery (OA), according to the published methodology of CDI
image capture [14]. The ONSD was measured using the
following technique [5]: in brief, the patient is in the supine
position, with the head in a neutral position and both eyes
closed and in primary gaze position. After coupling gel is
applied and the insonation depth is set to 5–8 cm, the trans-
ducer is softly placed over the upper eyelid in an axial plane.
The ONSD is calculated perpendicular to the vertical axis of
the scanning plane, 3 mm behind the globe.

Experimental design

The study was approved by the ethical committee (institution-
al review board) at the University Hospitals Leuven, and was
conducted in accordance with Good Clinical Practice within
the tenets of the Helsinki agreement. An informed consent
statement was signed by every subject prior to any investiga-
tion. During the study visit, the following examinations were
performed sequentially: visual acuity, IOP measurement,
blood pressure and heart rate measurement, and ultrasound
measurement of the ONSD and CDI for retrobulbar flow
velocity assessment. Only one eye per patient was included
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in the study; the one with greater glaucomatous damage or a
random eye for the healthy subjects.

This study was registered on clinicaltrial.gov with the
following number: NCT01802463.

Statistical analysis

The Kruskal-Wallis test with Dunn’s correction was used to
compare continuous variables between the three diagnostic
groups, while the Mann–Whitney test was used for pairwise
comparisons. The Deming correlation was used to test for a
relationship between continuous variables. Pearson's chi-
squared tests (for 3×2 contingency tables) were used for
categorical items. Statistical significance was considered
when p<0.05. Values are depicted as mean ± standard devia-
tion unless otherwise indicated. Analyses were performed
using Graphpad Prism_ver. 5.0 (Graphpad Software Inc, La
Jolla, CA, USA).

Results

Patients characteristics

Table 1 summarizes the patients' characteristics and their
comparative p values. Age, gender, visual acuity, and mean
ocular perfusion pressures [MOPP – calculated as: (2/3 dia-
stolic + 1/3 systolic blood pressures)*2/3-Goldmann tonome-
try] were not statistically different between the three groups (p
ranged from 0.18 to 0.67). IOP was statistically different
between the groups (p<0.01), with Dunn’s correction
confirming a significantly lower IOP in the NTG group than
in the POAG group (p<0.05). Both glaucoma groups present-
ed with similar visual field mean defect (p=0.11).

Topical IOP-lowering medication in the glaucoma group is
summarized in Table 2.

Optic nerve sheath diameter

No differences were found between the ONSD of the three
groups (Healthy: 6.14±0.77 mm; NTG: 6.00±0.78 mm;
POAG: 5.89±0.78 mm; p=0.28). A test for correlation be-
tween ONSD and IOP revealed a positive correlation in
POAG patients (slope 23.5±10.9, CI 1.78 to 45.2,
p=0.03), but only a borderline association in the NTG
group (slope 10.5±5.25, CI −0.006 to 21.1 p=0.05). In
healthy subjects, no correlation was detected (p=0.45).
There was no correlation between ONSD and the sever-
ity of visual field deficits in the glaucoma groups
(NTG: p=0.27; POAG: p=0.47).

Color Doppler imaging

Table 3 depicts the hemodynamic variables obtained by CDI
for every experimental group. Individuals from the control
group presented with higher PSV values in the OA, and higher
Vmax and RI in the CRV, when compared to the other two
groups (p=0.04, p<0.01 and p=0.02, respectively). In
pairwise comparison between glaucoma groups and healthy
individuals, the CRV Vmax was found to be significantly
higher in healthy individuals when compared to both groups
(NTG: p=0.02; POAG: p=0.004). Furthermore, POAG pa-
tients had both lower CRV RI and PI values (vs . healthy, p=
0.02 in both comparisons), whereas no significant differences
were found in these two variables between NTG and healthy
individuals (p=0.23 and p=0.27, respectively). The OA PSV
values in the healthy group were significantly higher than
those in NTG patients (p=0.02), but similar to the POAG
group (p=0.10). No other flow velocity differences were
found between the three groups or in the glaucoma groups’
pairwise comparison (p ranging from 0.10 to 0.87).

Correlation of ONSD and CDI measures

Healthy individuals presented with a positive association be-
tween ONSD and the OA’s PI (p=0.007; Fig. 1.a), which was
not detected in the two glaucoma groups (NTG: p=0.41;
POAG: 0.22). In NTG patients, however, we found that higher
ONSD values were associated with a decrease in blood flow
velocities in the short ciliary arteries (TPCA EDV: p=0.005;
TPCA MFV: p=0.005; Fig. 1b and c, respectively). These
correlations between ONSD and CDI-related variables in the
short ciliary arteries were not seen in the POAG nor in the
healthy cohorts (p range 0.15-0.96). No other correlation
between ONSD and retrobulbar hemodynamic parameters
reached statistical significance (p range 0.06-0.096). Table 4

Table 1 Patients characteristics by experimental group

Healthy NTG POAG p-value

N 51 58 88

Age (years) 73.8±13.3 70.9±11.3 70.4±11.8 0.18

Gender (female)a 24 32 49 0.58

IOP (mmHg) 13.6±2.6 11.9±3.0 14.5±4.3 0.001

Visual acuity (logMar) 0.18±0.3 0.20±0.3 0.16±0.2 0.67

MD (dB) - −5.71±6.8 −8.7±8.7 0.11

MOPP (mmHg) 56.3±7.7 59.4±8.5 57.9±9.2 0.43

Mean values (and SD) are depicted. Comparison between continuous
variables was made through Kruskal-Wallis and Mann–Whitney tests. a

denotes the use of a χ2 test. IOP = intraocular pressure; MD = mean
defect (visual field); MOPP = median ocular perfusion pressure [(2/3
diastolic+1/3 systolic blood pressures]*2/3-Goldmann tonometry]
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details the correlations between ONSD and the retrobulbar
hemodynamic CDI variables in the three groups.

Discussion

ONSD appears to have a different association with retrobulbar
hemodynamics in healthy individuals than in glaucoma pa-
tients. In healthy individuals, higher ONSD values were as-
sociated with a higher PI level in the OA, which was not
observed in the glaucoma groups. Assuming that ONSD
accurately reflects ICP in healthy individuals, these results
would suggest that the ophthalmic artery would show a sim-
ilar behavior as the cerebral arteries to fluctuations in ICP.
Indeed, large intracranial arteries (such as the middle cerebral
artery) show a remarkable correlation between PI and ICP

[15]. Accordingly, this Doppler variable has been extensively
used as a noninvasive surrogate for pathological increases in
ICP [16]. The rationale behind this increase has been sug-
gested to be an ICP-induced compression of the smaller
arterioles downstream of the measurement, which would lead
to an increase in downstream resistance and a significant
decrease in mean flow. As the latter is the denominator for
PI calculations, PI rises significantly [15]. In contrast, no
correlations were seen between ONSD and OA-related hemo-
dynamic variables in glaucoma patients. Of note, there have
been reports that the cerebral vasoreactivity is also impaired in
glaucoma patients [17]. While the nature of these findings is
not completely understood and a variety of mechanisms could
be involved (ranging from autonomic dysfunction to an
endothelial-related vascular relaxation impairment [18]), it is
possible that this abnormal behavior by the cerebral arteries

Table 2 Topical medications in
the glaucoma groups

Number of patients and percent-
ages (between brackets) are
depicted. P values from pairwise
comparison ranged between 0.18
and 0.73

Healthy NTG (n=58) POAG (n=88)

Topical Beta blockers - 26(44) 42(48)

Prostaglandin analogs - 23(40) 45(51)

Carbonic anhydrase inhibitors - 19(33) 23(26)

α-adrenergic agents - 8(14) 9(10)

Table 3 Comparison of flow ve-
locities and resistance indexes
between diagnostic groups

Data are shown as mean ±SD.
Velocities depicted as cm/s.
Overall comparison between the
subgroups was made using the
Kruskal-Wallis test. Mann–Whit-
ney tests were used in pairwise
comparison. NTG indicates nor-
mal tension glaucoma; POAG,
primary, open-angle glaucoma;
CRA, central retinal artery; CRV,
central retinal vein; NPCA and
TPCA, short posterior ciliary ar-
teries (nasal and temporal, re-
spectively); OA, ophthalmic ar-
tery; PSV, peak systolic velocity;
EDV, end-diastolic velocity; RI,
resistive index; MFV, mean flow
velocity; PI, pulsatility index;
Vmax, maximum velocity; Vmin,
minimum velocity

Healthy NTG POAG Overall NTG vs. POAG

CRA PSV 11.16±4.6 10.31±3.1 9.94±2.9 0.52 0.61

EDV 3.00±1.3 2.92±1.0 2.72±0.8 0.66 0.37

MFV 5.47±1.8 5.58±1.8 5.37±1.5 0.95 0.75

RI 0.73±0.1 0.71±0.1 0.72±0.1 0.58 0.63

PI 1.36±0.3 1.33±0.3 1.33±0.3 0.78 0.87

CRV Vmax 5.89±1.6 5.16±1.6 5.05±1.3 <0.01 0.84

Vmin 3.33±0.8 3.04±0.7 3.10±0.6 0.12 0.45

MFV 3.93±1.4 3.43±1.3 3.45±1.3 0.07 0.77

RI 0.42±0.1 0.37±0.1 0.35±0.1 0.02 0.48

PI 0.66±0.2 0.62±0.2 0.59±0.2 0.04 0.15

NPCA PSV 10.29±3.3 9.22±2.7 9.68±2.9 0.25 0.40

EDV 3.28±1.3 3.16±1.0 3.25±1.1 0.84 0.57

MFV 5.91±1.7 5.35±1.6 5.87±1.8 0.27 0.17

RI 0.67±0.1 0.65±0.1 0.66±0.1 0.33 0.69

PI 1.18±0.3 1.10±0.2 1.12±0.3 0.41 0.87

TPCA PSV 10.1±3.5 9.07±2.3 9.75±2.7 0.44 0.23

EDV 3.31±1.4 3.00±0.8 3.30±1.0 0.29 0.11

MFV 5.74±2.1 5.50±1.3 5.95±1.8 0.49 0.38

RI 0.66±0.1 0.66±0.1 0.66±0.1 0.83 0.51

PI 1.14±0.3 1.14±0.3 1.11±0.2 0.68 0.33

OA PSV 36.63±14.5 30.25±10.5 32.42±12.7 0.04 0.35

EDV 6.55±4.1 5.24±2.3 6.34±3.3 0.27 0.10

MFV 15.8±8.8 13.2±5.0 15.3±7.4 0.49 0.23

RI 0.82±0.1 0.82±0.1 0.80±0.1 0.19 0.10

PI 2.01±0.6 1.95±0.5 1.88±0.6 0.25 0.23
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reflects a wider vascular dysfunction and an inability to adapt
to external, non-vascular factors such as ICP.

Interestingly, no correlations were observed between
ONSD and the CRA or CRV hemodynamic variables in any
of the three groups. It would have been intuitive that, as these
vessels pass directly through the CSF fluid, they would be
more directly affected by ICP than other vessels. However,
CSF-related pressures are not the only forces at play in the

blood flow of these central retinal vessels. The CRA seems to
be strongly autoregulated, with local factors involved in the
regulation of blood flow (from O2 and CO2 levels to neuro-
transmitters involved in neurovascular coupling [19–21]). In
addition, the rigidity of the retinal arteries themselves may be
of particular importance in influencing blood flow, as demon-
strated in untreated NTG patients [22]. This increase in regu-
lation downstream to the site of CDI measurement could

Fig. 1 Statistically significant associations between color Doppler imag-
ing variables of the retrobulbar vessels and the optic nerve sheath diam-
eter (ONSD). A positive correlation was detected between ONSD and the

ophthalmic artery pulsatility index (1.a), while in NTG, a higher ONSD
was associated with lower blood velocities in the short ciliary arteries
(TPCA end-diastolic velocity – 1.b ; TPCA mean flow velocity – 1.c)

Table 4 Correlation between
ONSD and hemodynamic
variables

Data shown as p-values using the
Deming regression (best-fit slope
depicted if p value <0.05). NTG
indicates normal tension glauco-
ma; POAG, primary, open-angle
glaucoma; CRA, central retinal
artery; CRV, central retinal vein;
NPCA and TPCA, short posterior
ciliary arteries (nasal and tempo-
ral, respectively); OA, ophthalmic
artery; PSV, peak systolic veloci-
ty; EDV, end-diastolic velocity;
RI, resistive index; MFV, mean
flow velocity; PI, pulsatility in-
dex; Vmax, maximum velocity;
Vmin, minimum velocity

Optic nerve sheath diameter

Healthy NTG POAG

Color Doppler imaging CRA PSV 0.66 0.32 0.19

EDV 0.71 0.85 0.06

MFV 0.74 0.46 0.11

RI 0.93 0.18 0.26

PI 0.79 0.14 0.31

CRV Vmax 0.56 0.55 0.21

Vmin 0.18 0.41 0.13

MFV 0.87 0.88 0.11

RI 0.55 0.95 0.25

PI 0.75 0.31 0.50

NPCA PSV 0.25 0.16 0.41

EDV 0.28 0.14 0.22

MFV 0.13 0.11 0.30

RI 0.96 0.96 0.73

PI 0.46 0.93 0.54

TPCA PSV 0.22 0.09 0.20

EDV 0.18 0.005 (−1.35±0.45) 0.81

MFV 0.23 0.005 (−3.25±1.09) 0.41

RI 0.90 0.84 0.15

PI 0.96 1.00 0.25

OA PSV 0.69 0.83 0.49

EDV 0.18 0.24 0.33

MFV 0.48 0.52 0.23

RI 0.06 0.52 0.29

PI 0.007 (0.61±0.22) 0.41 0.22
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potentially render some factors, such as CSF-compression
around the retrobulbar portion of the CRA, less important in
the overall flow regulation. On the other hand, the CRV is a
very fragile vessel and could potentially be subject to outside
compression. However, even in healthy individuals, the pores
of the lamina cribrosa have been suggested to act as a “throt-
tle” around the CRV as it leaves the globe [23]. This physio-
logical obstruction around the lamina cribrosa has been sug-
gested to be hemodynamically significant. Indeed, the high
shear-stress over the CRV wall in the region immediately
downstream to the lamina cribrosa has been reported to induce
an arterial-like morphology of its endothelial cells [24]. As
with the CRA, the location of the measurement may explain
our findings. By measuring the vessels downstream from the
first significant hemodynamic obstruction (the lamina
cribrosa), the relevance of further obstacles to flow is reduced
(similar to the concept that a first dyke supersedes the impor-
tance of a second dyke). This could potentially explain our
findings, where no association was detected between CRV
Doppler-related variables and the ONSD.

Unlike the CRA or the CRV, the short ciliary arteries are
not as capable of autoregulation, nor have they such physio-
logical obstructions to flow. Accordingly, flow in these much
smaller vessels could more accurately reflect changes in the
extravascular compartment. Indeed, our results showed a neg-
ative correlation between blood velocities in the short ciliary
arteries and the ONSD, albeit only in NTG patients. There
could be several, non-exclusive explanations for this: either
NTG patients have a different retrobulbar anatomy/
physiology that may particularly expose these ciliary arteries
to outside compression, or these vessels have a lower regula-
tion threshold. There have been reports from clinical and
animal-based models to support both theories, as these pa-
tients may have a less elastic optic nerve sheath, a different
CSF distribution, an abnormal response to external stimuli,
and/or even a different retrobulbar remodeling [3]. The com-
bination of these factors could make these dysregulation-
prone vessels more susceptible to ONSD changes.

In our study, we did not observe differences in ONSD
between both groups. This finding is in agreement with our
previously reported data [5], as well as with a recent meta-
analysis that reports a significant overlap between the CSF
pressure measured by lumbar puncture in healthy subjects and
in NTG patients [25]. However, there have been other ONSD-
related studies using other imaging methods that reported
different results (CT scan, by Jaggi GP et al. [6] and MRI
scan by Wang N et al. [9]). While the former publication
suggests that NTG patients have a higher ONSD than control
subjects, the latter study suggests that these patients have a
narrower ONSD. These discrepancies between reported re-
sults could reflect differences in patient selection criteria, age
distribution, head position, sample size and—importantly—
different imaging techniques. Consistent methodologies

between centers should be used if comparisons between
ONSD studies are to be made. Another aspect of the use of
ultrasound B-scan measurements is that it allows the measure-
ment to be coupled with a Doppler probe, thus allowing a
detailed, reproducible, validated, but operator-dependent
study of the retrobulbar blood flow [14, 26] that is not yet
possible with other imaging technologies.

One important limitation of our work is the working as-
sumption that ONSD may reflect orbital ICP. Despite the
numerous publications asserting the strong association be-
tween ICP fluctuations and ultrasound-based ONSDmeasure-
ments, including a recent meta-analysis showing high levels
of specificity and sensitivity with this technique to detect
raised ICP [8], these studies have been conducted in patients
where little is known about their ophthalmological conditions.
For instance, if the elasticity or compliance of the optic nerve
sheath is indeed altered in glaucoma patients [6], then the
same ONSD might represent a large range of pressures.
Nevertheless, more studies involving anatomical and histo-
logical assessment of the orbital tissues in glaucoma patients
are still needed to fully understand the nature of the mecha-
nisms involved in retrobulbar pressures. Furthermore, the
study protocol involved performing measurements in
two different body positions (IOP and blood pressure
recorded with patient sitting and ONSD/CDI measure-
ments done in the supine position). As IOP is suggested
to increase from sitting to supine [27], the precise IOP
value is unknown at the time of the ONSD/CDI mea-
surements, which is a common limitation to the majority
of the CDI-based ocular blood flow studies [14]. Ac-
cordingly, assumptions about the translaminar pressure
gradient in this setting should be made cautiously.
Moreover, another potential source of IOP fluctuation
is the transducer-induced ocular compression during the
ultrasound measurements. While the magnitude of this
IOP increase is uncertain, there have been suggestions
that IOP changes would have little effect on the CDI-
related measurements [28]. Nevertheless, and perhaps
more importantly, all measurements were done by the
same observer, which would have decreased the degree
of variability since the same technique, execution, and
pressure would have been similar in all patients, there-
fore minimizing this bias as much as possible. More
studies with larger sample sizes are still needed to
further characterize this intriguing correlation between
hemodynamic parameters and ONSD.

In conclusion, our results suggest that the pressures deter-
mining ONSD can have a significant impact on ocular blood
flow. This may be particularly important in NTG patients,
where it could affect the optic nerve head arterial supply.
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