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Non-invasive electrical brain stimulation induces vision
restoration in patients with visual pathway damage
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Dear Editor,
Non-invasive electrical stimulation may diminish functional
deficits of visual perception. This concerns not only the appli-
cation of transcorneal electrical stimulation (TES) in patients
with retinal and optic nerve disease as reported by Gekeler and
Bartz-Schmidt [1] but also non-invasive transorbital alternat-
ing current stimulation (ACS). Basic stimulation parameters of
TES and transorbital ACS are similar since in both approaches
current intensity is individually adjusted according to how
well patients perceived phosphenes. TES evidence was
obtained in a recent randomized study with patients suffering
from retinitis pigmentosa [2].

Here, we wish to add further aspects that were not consid-
ered by Gekeler and Bartz-Schmidt. Firstly, non-invasive
electrical stimulation has shown therapeutic efficacy in dimin-
ishing functional deficits of visual perception in patients with
optic nerve disease when non-invasive transorbital ACS is
applied [3–6]. Second, visual cortex excitability and related
performance changes induced by transcranial direct current

stimulation (tDCS) indicate that visual system functions can
be altered by non-invasive currents [7].

Clinical findings of non-invasive transorbital alternating
current stimulation In transorbital ACS weak current pulses
well below 1.000 μA that elicit phosphene perception are
delivered through electrodes that are placed at or near the
right and left eye with eyes closed. In single case and
clinical observations it was shown that transorbital ACS
may reduce the defect depth and/or enlarge visual fields in
patients with optic nerve damage well after the period of
spontaneous recovery has been completed [3, 5]. We
then carried out a prospective, double-blind, randomized,
placebo-controlled clinical trial to assess the efficacy of
transorbital ACS to improve visual functioning in patients
with optic nerve damage [6]. In this trial, 22 patients with
optic neuropathies were treated for 40 min daily (approx.
20 min per eye) for 10 days either with transorbital ACS or
placebo-stimulation. In patients treated with transorbital
ACS, the visual field detection deficit as well as visual
processing speed significantly improved after the stimula-
tion period and improvements in some perimetry parameters
were maintained at a 2-month follow-up [6]. Patient-
reported outcomes revealed that increases of detection ability
in the scotoma were associated with improvement in the
patients’ vision-related quality of life as assessed by standard
questionnaires (National Eye Institute – Visual Functioning
Questionnaire) [4].

EEG-power-spectra analysis showed significantly in-
creased alpha-activity, especially in occipital sites following
ACS [6, 8]. It is assumed that electrical current stimulation
at predetermined frequencies forces neuronal networks to
propagate synchronous firing, which may induce a learned
synchronization response in the brain, probably including
residual areas surviving the injury. This idea of a “re-learned
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synchronization response” is compatible with the observa-
tion that synchronization can be entrained by external,
transcranial-pulsed stimulations and such alpha entrainment
has already been observed in normal subjects [9]. As a
consequence of increased synchronization the injured
visual system may react more sensitively to the reduced
input and phosphene thresholds are lowered. A similar
situation is probably present when spontaneous visual
phosphenes occur during natural or training-induced re-
covery phases [10, 11].

Transcranial direct current stimulation in healthy subjects
modulates visual cortex excitability tDCS is another stimu-
lation technique that can alter cortical functions by modula-
tion of spontaneous activity and excitability [12] leading to
alterations in intracellular cAMP levels and calcium influxes
[13, 14]. Generally, given a sufficiently long stimulation
duration and adequate stimulation intensity, anodal stimula-
tion increases neuronal excitability, while cathodal tDCS
reduces it [15]. In healthy subjects, tDCS applied over
visual areas induces changes in phosphene, contrast and
motion perception thresholds and modifies the amplitude
of visual evoked potentials. This suggests that anodal and
cathodal stimulation can change the excitability of the visual
cortex [16–19, for a recent review see 7]. tDCS-induced
neuroplastic visual cortex changes in healthy subjects
are in line with the observation of improved visual
functions in patients after application of phosphene-
generating current impulses. Recently, Olma et al. [20]
provided additional evidence demonstrating the ability of
anodal tDCS over the visual cortex in normal subjects to
improve detection sensitivity for visual targets in a dis-
crimination task. Whether tDCS has a positive impact on
vision restoration in patients with damaged visual path-
ways is still an open question. Recent studies have
shown that the combination of occipital anodal tDCS
with visual field rehabilitation appears to enhance visual
functional outcomes compared with visual rehabilitation
alone [21, 22].

Finally, the more fundamental lesson to learn from these
observations is that the damaged visual pathway has more
potential for recovery and restoration then recently thought,
even long after injury to the visual pathway has occurred.
However, the extent of intra-individual change in vision
parameters varies, which is common in neurorehabilitation.
Thus, outcome may depend on the functional level that is
available post lesion. The probability to achieve vision
restoration seems to be a function of the residual visual
capacities of the damaged system, which may predict func-
tional outcome [23]. Future studies are required to optimize
the stimulation parameters and explore the mechanisms of
vision restoration as induced with methods such as TES and
transorbital ACS to enhance recovery.
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