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Abstract
Background Clinical trials have demonstrated that acute
intensive insulin therapy may cause transient worsening
of retinopathy in type 1 and type 2 diabetes patients.
However, the related mechanism still remains contro-
versial. The purpose of the present study was to
investigate the effect of insulin on the mitochondrial
membrane potential (△=m), reactive oxygen species
(ROS) production, UCP-2 and VEGF expression in
bovine retinal microvascular endothelial cells (BRECs)
in the presence of normal or high glucose and the related
mechanisms.

Methods BRECs were isolated as primary cultures and
identified by immunostaining. Passage BRECs were ini-
tially exposed to normal (5 mM) or high glucose (30 mM)
for 3 days, with equimolar L-glucose supplemented for
osmotic equation. Then the cells were treated with 1 nM,
10 nM, or 100 nM insulin for 24 h: △=m and ROS
production were determined by JC-1 and CM-H2DCFDA,
respectively. Expression of UCP-2 and VEGF mRNA was
determined by real-time RT-PCR; expression UCP-2 and
VEGF protein was determined by Western-blotting analysis.
A general ROS scavenger N-acetylcysteine (NAC, 10 mM)
and an NADPH oxidase inhibitor apocynin (1 mmol/l) were
added 1 h before treatment with 100 nM insulin.
Results Insulin increased △=m, ROS production, and
expression of UCP-2 and VEGF in BRECs at normal
glucose (5 mM) in a dose-dependent manner. Low-dose
insulin (1 nM) decreased △=m, ROS production, and UCP-
2, VEGF expression in BRECs at high glucose (30 mM);
and high-dose insulin (10 nM, 100nM) recovered △=m,
ROS production, and UCP-2, VEGF expression. Pretreat-
ment of cells with NADPH oxidase inhibitor apocynin
significantly suppressed 100 nM insulin-induced ROS
production (p<0.01, one-way ANOVA). Pretreatment of
cells with ROS scavenger N-acetylcysteine completely
blocked insulin-induced UCP-2 expression (p<0.01, one-
way ANOVA) and significantly suppressed VEGF expres-
sion (p<0.01, one-way ANOVA).
Conclusions High-dose insulin-induced ROS production
and VEGF expression in BRECs in the presence of high
glucose might be one of the reasons for the transient
worsening of diabetic retinopathy during intensive insulin
treatment.
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Introduction

Clinical trials have demonstrated that acute intensive
insulin therapy may cause transient worsening of retinop-
athy in type 1 and type 2 diabetes patients [1–4]. The
worsening result is in part due to hard exudates and macular
edema pathologies of blood–retinal barrier breakdown.
Several possible mechanisms have been reported for the
phenomenon: first, diabetes was severe at the early stage;
however, randomized clinical trails have ruled out this
possibility [4]; second, insulin reduced retinal blood flow
and subsequently led to retinal hypoxia, increased vascular
permeability, and edema; third, insulin could cause arthro-
sclerosis and promote mitosis, thrombosis formation;
finally, vascular endothelial growth factor was also thought
to be involved in insulin-induced deterioration of retinop-
athy. Recently, insulin has been reported to increase
intracellular reactive oxygen species (ROS) production in
HepG2 cells [5], 3T3L1 adipocytes [6], thyroid cells [7],
and human fibroblasts [8, 9].

ROS have been well documented as a signaling molecule
stimulating cytokine secretion and cell proliferation, but at
higher concentrations, ROS can induce cell injury/death by
oxidant modification of proteins and carbohydrates, lipid
peroxidation, and DNA strand nicks. Furthermore, ROS, like
other edemagenic mediators (e.g., thrombin, histamine, and
TNF-α), can cause intercellular gap formation, cell-shape
change, and actin filament reorganization [10]; these mor-
phological features implicate impaired cell–cell adhesion,
which eventually results in impaired endothelial barrier
function and increased leukocyte adhesion and extravasation
[11]. Acute and chronic oxidant stress is a major cause of
vascular endothelial dysfunction and plays an important role
in the pathophysiology of several vascular diseases,
including diabetes [11]. There is substantial evidence that
oxidant stress increases vascular endothelial permeability
[12–16] and leukocyte extravasation [17–19]; besides,
oxidative stress has been shown to play a key regulatory
role in the development of diabetic complications [20–23].
Recently, a unifying hypothesis has been proposed that
uncoupling protein (UCP-2)-mediated mitochondrial ROS
production in a chronic hyperglycemia setting may be a key
initiator in increased polyol pathway flux, increased produc-
tion of advanced glycation end-products, activation of
protein kinase C, and increased hexosamine pathway flux
[24, 25]. To the best of our knowledge, there have been no
previous reports on the role of insulin in ROS production,
UCP-2, and VEGF expression in endothelial cells at normal
and high glucose. Moreover, hyperglycemia-induced ROS

appears to be producedmainly frommitochondrial sources and
through the enzyme NADPH oxidase [26]. However, the
mechanisms by which insulin stimulates ROS production and
their pathophysiological implications remain to be elucidated.

In the present study, we aim to verify whether insulin can
increase the ROS production and UCP-2 expression in BRECs
at normal or high glucose and to discuss the related
mechanisms, so as to pave the way for investigating the
damages caused by acute intensive insulin therapy. We
examined the mitochondrial membrane potential (△=m) and
ROS production in BRECs exposed to 5 or 30 mmol/l glucose
after they were pretreated with different concentrations of
insulin; intracellular ROS was examined by fluorescent
inverted microscope and flow cytometry. Flow cytometry
was also used to measure △Ψm in BRECs. Real-time PCR
was used to examine mRNA expression of UCP-2 and
VEGF, and Western blotting was used to examine the UCP-2
protein expression.

Materials and methods

Cell culture

BRECs were isolated by homogenization and by a series of
filtration steps as described previously [27], and were
subsequently cultured in Dulbecco’s modified Eagle’s
medium (DMEM, GIBCO) supplemented with 10% FBS
(GIBCO), 100 mg/l heparin (Sigma), 10 mmol/l HEPES
(GIBCO), and 15 mg/LECGS (Sigma). The culture plate was
coated with Gelatin (Sigma) beforehand. Cells were cultured
in 5% CO2 at 37°C and media were changed every 3 days.
Thereafter, the cells were characterized for their homogeneity
using an immunoreactivity test with anti-factor VIII antibody
for BRECs. Only cells of passages 2–5 were used for the
following experiments. BRECs were cultured for 3 days in
DMEM containing either 5 or 30 mmol/l glucose. L-glucose
(25 mmol/l) was supplemented in the 5 mmol/l group as
osmotic agent. Cells were serum-deprived overnight in
Dulbecco’s modified Eagle’s medium containing 0.2% w/v
bovine serum albumin and then incubated in the absence or
presence of different concentrations of insulin for 24 h. A
general ROS scavenger N-acetylcysteine (NAC, 10 mM) or
an NADPH oxidase inhibitor apocynin were added 1 h
before treatment with 100nM insulin.

Measurement of mitochondrial membrane potential and ROS
production

Mitochondrial membrane potential (△=m) in BRECs was
measured by flow cytometry (Coulter Epics XL; Beckman-
Coulter, Fullerton, CA) as described in a previous study
[28]. ROS production in the cells was determined using
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fluorescent probe 5-(and-6)-chloromethyl-2′, 7′-dihydrodi-
chlorofluorescein diacetate acetyl ester (CMH2DCFDA;
Molecular Probes, Eugene, OR). After being incubated
with 2 μmol/l CMH2DCFDA at 37°C for 30 min, the cells
were washed twice with fresh pre-warmed medium and
imaged using a Zeiss inverted fluorescence microscope.
Cells were collected from growth media via centrifugation
or pipetting for flow cytometry (Coulter Epics XL;
Beckman-Coulter, Fullerton, CA). Cells were resuspended
in pre-warmed PBS containing the probe to provide a final
working concentration of 2 μM dye. After incubation in 5%
CO2 at 37°C for 30 min, the loading buffer was removed
and the cells were given prewarmed growth medium for
incubation at 37°C for 10 min. Cells in 5 mM glucose
group were used for determination of the baseline fluores-
cence intensity. After flow cytometry, the cells were
counted and fluorescence was expressed as per 105 cells.
All the results were tested in triplicate.

Analysis of UCP-2 and VEGF mRNA expression
by real-time RT-PCR

Total RNAwas extracted from BRECs with reagent (Trizol;
Invitrogen Life Technologies, Gaithersburg, MD) and was
stored at −80°C until use. A quantitative polymerase chain
reaction (qPCR) kit (DyNAmo Flash SYBR Green;
Finnzymes Oy, Espoo, Finland) was used according to the
manufacturer’s instructions. The primer sequences
(sense/antisense) were used as follows: UCP-2, 5′-
A C G GGA CAC C T T TA GAGAAGC T T- 3 ′ / 5 ′ -
ACTTTCTCCTTGGATCTGTAACCG-3′; VEGF, 5′-
G C A G A A T C A T C A C G A A G T G G - 3 ′ / 5 ′ -
GCATGGTGATGTTGGACTCC-3 ′ ; β -ac t in , 5 ′ -
AAAGACCTGTACGCCAACAC-3 ′ / 5 ′ -GTCA
TACTCCTGCTTGCTGAT-3 ′. The specificity of the ampli-
fication product was determined by a melting curve analysis.
Standard curves were generated for each gene by preparing
serial dilutions of the respective cDNA gene template of
known quantities. Relative quantities of each gene were
obtained by normalizing their signals to that of β-actin.

Analysis of UCP-2 and VEGF protein expression
by Western-blotting assay

BRECs (4×106 ) were collected and lysed in lysis buffer
(NP40 1%, Tris 10 mM, NaCl 200 mM, EDTA 5 mM,
glycerol 10%, and protease inhibitors; pH 7). Cell samples
were centrifuged at 12,000 rpm for 20 min at 4°C, and clear
supernatants were collected. Fifty micrograms of protein
from each sample was subjected to SDS-PAGE using a Bio-
Rad miniature slab gel apparatus and was electrophoretically
transferred onto a nitrocellulose sheet. The sheet was blocked
with 5% nonfat dried milk solution and incubated overnight

with partially purified mouse anti-UCP-2 polyclonal antibody
(Sigma Chemical Co; 1:500), mouse monoclonal anti-
vascular endothelial growth factor antibody (Sigma V4758;
1:200), β-Actin (monoclonal anti-β-actin; Sigma; 1:1000)
expression was used as an internal control to confirm
equivalent total protein loading. After blotting for UCP-2,
the membrane was stripped and was blotted for VEGF.

Statistical analysis

The results were expressed as mean±SD from three
separate experiments and the data were subjected to one-
way ANOVA analysis. A p value less than 0.05 was
considered statistically significant. All analyses were done
with a software system (Prism 4.0; GraphPad, San Diego,
CA) and a statistical software program (SPSS13.0 for
Windows; SPSS, Chicago, IL).

Results

Insulin increased △=m and ROS in BRECs at normal
glucose in a dose-dependent manner

Flow cytometry showed that insulin increased △=m in
BRECs at normal glucose in a dose-dependent manner
(Fig. 1a). Compared to the NG group (11.17±1.72), insulin
at 1 nM, 10 nM, and 100 nM induced a 1.18-fold (13.23±
0.91), 1.33-fold (14.90±0.92), and 1.49-fold (17.40±1.31)
△=m in BRECs at normal glucose, respectively, with △=m
in group NG significantly lower than those in groups NG+
10nM insulin (p<0.05, one-way ANOVA) and NG+100nM
insulin (p<0.01, one-way ANOVA). Consistent with the
increase of △=m, insulin also dose-dependently increased
ROS production in BRECS (Fig. 1-b); insulin at 1 nM,
10 nM, and 100 nM induced a 1.51-fold (126.2±14.4),
1.98-fold (165.6±9.1), and 2.31-fold (193.2±21.1) ROS
production in BRECS at normal glucose, respectively, with
the ROS abundance in group NG (83.6±12.8) significantly
lower than those in groups NG+1 nM insulin (p<0.05, one-
way ANOVA), NG+10nM insulin (p<0.01, one-way
ANOVA), NG+10 0nM insulin (p<0.01, one-way
ANOVA). Moreover, Pearson correlation analysis indicated
that ROS production was positively correlated with the
△=m (r=0.97, p=0.0136) (Fig. 1c).

Low-dose insulin decreased and high-dose insulin recovered
△Ψm and ROS production in BRECs

As shown in Figs. 2a and b, compared with the HG group
(16.63±0.80), 1 nM, 10 nM, and 100 nM insulin induced a
0.74-fold (12.33±1.33), 1-fold (16.57±1.33), 1.33-fold
(22.10±2.36) of △=m at high glucose (30 mM), respec-
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Fig. 2 Mitochondrial mem-
brane potential (△Ψm) and
ROS production in BRECs
treated with insulin in presence
of high glucose (HG). a △Ψm in
BRECs treated with 0, 1, 10, or
100 nm insulin cultured in the
presence of high glucose
(30 mM glucose). b ROS pro-
duction in BRECs treated with
0, 1, 10, or 100 nm insulin in the
presence of high glucose
(30 mM glucose). c Correlation
analysis between △Ψm level and
intracellular ROS generation in
BRECs. Mean±SD for three
separate experiments (#p<0.05
vs. HG)
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Fig. 1 Mitochondrial mem-
brane potential (△Ψm) and
ROS production in BRECs
treated with insulin in presence
of normal glucose (NG). a △Ψm
in BRECs cultured in NG
(5 mM glucose) treated with 0,
1, 10, or 100 nm insulin. b ROS
production in BRECs treated
with 0, 1, 10, or 100 nm insulin
in presence of normal glucose. c
Correlation analysis between
△Ψm level and intracellular
ROS generation in BRECs.
Mean±SD for three separate
experiments (*p<0.05 vs. NG;
**p<0.01 vs. NG)
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tively. In parallel with increased △=m, 1nM, 10nM, and
100nM insulin also induced a 0.79-fold (135.2±6.8), 0.96-
fold (165.4±12.1), and 1.12-fold (191.5±9.9) ROS produc-
tion, respectively. Compared with the control group (171.7±
12.2), 1nM insulin significantly decreased △=m (p<0.05,
one-way ANOVA) and ROS (p<0.05, one-way ANOVA)
production. However, when the cells were treated with 10
nM and 100 nM insulin, there was a gradual recovery of
△=m and ROS production. Pearson correlation analysis also
indicated that ROS production was positively correlated with
the △=m (r=0.94, p=0.029) (Fig. 2c).

Insulin upregulated UCP-2, VEGF mRNA, and protein
expression in BRECs at normal glucose

To determine the effects of insulin on UCP-2, VEGF
expression at normal glucose, serum-starved endothelial cells
were treated with 0, 1 nM, 10 nM, or 100 nM insulin for 24 h,

and UCP-2, VEGF mRNA, and protein expression were
examined by real-time PCR and Western-blotting analysis.
Compared to the NG group, 1 nM, 10 nM, and 100 nM insulin
increased UCP-2, VEGF mRNA, and protein expression in a
dose-dependent manner (Fig. 3). NAC at 10 mM completely
blocked 100 nM insulin-induced UCP-2 mRNA (0.97±0.12
vs. 2.80±0.36; p<0.01, one-way ANOVA) and protein
(0.630±0.060 vs. 1.043±0.091; p<0.01, one-way ANOVA)
expression, and partially blocked 100 nM insulin-induced
VEGF mRNA (2.06±0.11 vs. 4.03±0.36; p<0.01, one-way
ANOVA) and protein (1.397±0.060 vs. 1.780±0.095; p<
0.01, one-way ANOVA) expression.

Low-dose insulin decreased and high-dose insulin recovered
UCP-2 and VEGF expression in BRECs at high glucose

To further determine the effects of insulin on UCP-2 and
VEGF at high glucose, serum-starved endothelial cells at
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B Fig. 3 UCP-2 and VEGF ex-
pression in BRECs treated with
insulin in the presence of normal
glucose (5 mM glucose). a
UCP-2 mRNA expression in
BRECs treated with 0, 1, 10, or
100 nM insulin, 10 mM NAC+
100 nM insulin. b VEGF
mRNA expression in BRECs
treated with 0, 1, 10, or 100 nM
insulin, 10 mM NAC+100 nM
insulin. c UCP-2 protein ex-
pression in BRECs treated with
0, 1, 10, or 100 nM insulin,
10 mM NAC+100 nM insulin.
d VEGF protein expression in
BRECs treated with 0, 1, 10, or
100 nM insulin, 10 mM NAC+
100 nM insulin. Mean±SD for
three separate experiments (*p<
0.05 vs. NG; **p<0.01 vs. NG)
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high glucose were treated with 0, 1 nM, 10 nM, and
100 nM insulin for 24 h, and UCP-2 mRNA and protein
expression was quantified by real-time PCR and Western
blotting. Compared to the HG group, insulin at 1 nM and
10 nM significantly decreased mRNA and protein expres-
sion of UCP-2 and VEGF (p<0.01, one-way ANOVA)
(Fig. 4). However, 100 nM insulin completely or partially
recovered UCP-2 and VEGF expression (p>0.05, one-way
ANOVA).

Apocynin inhibited insulin-induced ROS production

To explore the mechanism by which insulin induces ROS
upregulation, we measured the ROS production in BRECs
pretreated with apocynin, an NADPH oxidase inhibitor. As
illustrated in Fig. 5a and b, insulin-induced ROS appears to
be produced mainly from mitochondrial sources and
through the enzyme NADPH oxidase. Since apocynin
significantly decreased 100 nM insulin-induced ROS

production (77.70±14.87 vs. 199.40±33.80; p<0.01, one-
way ANOVA).

Discussion

We found in the present study that insulin increased △Ψm,
ROS production, and UCP-2 expression in BRECs in a
dose-dependent manner in the presence of normal glucose.
Low-dose insulin (1 nM) decreased △Ψm, ROS production,
and UCP-2, VEGF expression in BRECs in presence of
high glucose, and high-dose insulin (10 nM, 100 nM)
recovered △Ψm, ROS production, and UCP-2, VEGF
expression. Pretreatment of cells with apocynin, an
NADPH oxidase inhibitor, significantly suppressed the
insulin-induced ROS production (p<0.01, one-way
ANOVA). Pretreatment of cells with ROS scavenger N-
acetylcysteine significantly suppressed the insulin-induced
UCP-2 and VEGF expression (p<0.01, one-way ANOVA).
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insulin in presence of high glu-
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In diabetes, the main sources of ROS generation in the
vasculature include glucose auto-oxidation, the polyol
pathway, AGE, mitochondrial electron transport chain
(ETC), uncoupled eNOS, and NAd (P)H oxidases, with
the latter enzymes arguably a major source of ROS
generation in hypertension, atherosclerosis, and diabetes
[26, 29]. Recently, insulin has been reported to increase
intracellular ROS production, possibly through phosphati-
dylinositol 3´- kinase-dependent mechanism and protein
kinase C-dependent mechanism [5–9]. Our study demon-
strated that insulin could increase intracellular ROS
production in BRECs also through mitochondria and
NADPH oxidase, as administration of NAd (P)H inhibitor
apocynin can counteract insulin-induced overproduction of
ROS. Consequently, insulin also upregulates UCP-2 ex-
pression, a sensor and a negative regulator of ROS
production, in BRECs. UCP-2 is a moiety known to
compensatively dissipate △=m and to uncouple oxidative
respiration. We found that insulin upregulated UCP-2
expression through modulating ROS production, since
ROS scavenger NAC could completely blocked the
insulin-induced UCP-2 expression. Moreover, insulin also
could also upregulate the expression of VEGF in BRECs,
which was the possible cause responsible for the transient
worsening of retinopathy in diabetes patients. Since the

ROS scavenger NAC could partially suppress the insulin-
induced VEGF expression, we believe insulin also can
upregulate VEGF expression through ROS production.

It is interesting to notice that different effects of low-
dose insulin and high-dose insulin on the △=m, ROS
production, and UCP-2 expression in BRECs at high
glucose (30 mM). On one hand, insulin can directly
increase intracellular ROS production through mitochondria
and NADPH oxidase; on the other hand, insulin-induced
decrease of glucose concentration could indirectly down-
regulate ROS production, and the final outcome is decided
by which effect is stronger. When low-dose insulin (1 nM)
was used, the upregulation ROS production is slight, and
there is a decrease of ROS production and UCP-2
expression in BRECs. However, when high-dose (10 nM,
100 nM) insulin was used, the upregulation ROS produc-
tion was strong, and there was a recovery of ROS
production and UCP-2 expression.

The mechanism by which acute intensive insulin therapy
cause a transient worsening of retinopathy in type 1 and
type 2 diabetes patients still remains controversial. Lately,
VEGF has been found to be involved in insulin-induced
deterioration of retinopathy [30]. The present study found
that when BRECs were treated with high-dose (100 nM)
insulin at high glucose, the ROS production and VEGF
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expression were re-increased. Therefore, clinical intensive
treatment with insulin may, while controlling the blood
glucose, induce more ROS production and VEGF expres-
sion, leading to the transient worsening of retinopathy in
diabetes patients.

In conclusion, insulin can increase △Ψm, ROS produc-
tion, and expression of UCP 2 and VEGF expression in
BRECs in presence of normal glucose in a dose-dependent
manner ex vivo. High-dose insulin-induced ROS produc-
tion and VEGF expression in BRECs in the presence of
high glucose might be one of the reasons for the transient
worsening of diabetic retinopathy during intensive insulin
treatment.
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