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Abstract Vitreous surgery has various physiological and
clinical consequences, both beneficial and harmful. Vitrec-
tomy reduces the risk of retinal neovascularization, while
increasing the risk of iris neovascularization, reduces
macular edema and stimulates cataract formation. These
clinical consequences may be understood with the help of
classical laws of physics and physiology. The laws of Fick,
Stokes-Einstein and Hagen-Poiseuille state that molecular
transport by diffusion or convection is inversely related to
the viscosity of the medium. When the vitreous gel is
replaced with less viscous saline, the transport of all
molecules, including oxygen and cytokines, is facilitated.
Oxygen transport to ischemic retinal areas is improved, as
is clearance of VEGF and other cytokines from these areas,
thus reducing edema and neovascularization. At the same
time, oxygen is transported faster down a concentration
gradient from the anterior to the posterior segment, while
VEGF moves in the opposite direction, making the anterior
segment less oxygenated and with more VEGF, stimulating
iris neovascularization. Silicone oil is the exception that
proves the rule: it is more viscous than vitreous humour, re-
establishes the transport barrier to oxygen and VEGF, and
reduces the risk for iris neovascularization in the vitrec-
tomized-lentectomized eye. Modern vitreous surgery
involves a variety of treatment options in addition to
vitrectomy itself, such as photocoagulation, anti-VEGF
drugs, intravitreal steroids and release of vitreoretinal

traction. A full understanding of these treatment modalities
allows sensible combination of treatment options. Retinal
photocoagulation has repeatedly been shown to improve
retinal oxygenation, as does vitrectomy. Oxygen naturally
reduces VEGF production and improves retinal hemody-
namics. The VEGF-lowering effect of photocoagulation
and vitrectomy can be augmented with anti-VEGF drugs
and the permeability effect of VEGF reduced with cortico-
steroids. Starling’s law explains vasogenic edema, which is
controlled by osmotic and hydrostatic gradients between
vessel and tissue. It explains the effect of VEGF-induced
vascular permeability changes on plasma protein leakage
and the osmotic gradient between vessel and tissue. At the
same time, it takes into account hemodynamic changes that
affect the hydrostatic gradient. This includes the influence
of arterial blood pressure, and the effect oxygen (laser
treatment) has in constricting retinal arterioles, increasing
their resistance, and thus reducing the hydrostatic pressure
in the microcirculation. Reduced capillary hydrostatic
pressure and increased osmotic gradient reduce water fluxes
from vessel to tissue and reduce edema. Finally, Newton’s
third law explains that vitreoretinal traction decreases
hydrostatic tissue pressure in the retina, increases the
pressure gradient between vessel and tissue, and stimulates
water fluxes from vessel into tissue, leading to edema.
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Until about 50 years ago, the vitreous humour was considered
by most ophthalmologists as “untouchable” and it was felt
that any interference with the vitreous humour would have
dire consequences for the eye(1). Unconventional thinkers
(2–7) changed this axiom, and soon vitreoretinal surgeons
came to think of the vitreous gel almost as an inert
substance, which could be freely removed for optical and
structural reasons, with no consideration for any other
functions of this tissue. Naturally, neither extreme is true.

While the vitreous gel may be safely removed from the
eye, vitreous surgery has several long-term physiological
and clinical consequences for the eye, which may be either
beneficial or detrimental. While various clinical effects have
been recognized for decades, and some of the physiological
mechanisms were reported in the early 1980s, it is only
recently that the eyes of surgeons have opened to the
physiological consequences of vitreoretinal surgery.

The aim of this essay is to clarify the physiological
consequences of vitreous surgery, some of which may be
predicted from classical laws of physics and physiology.
Understanding the mechanisms involved in the many
aspects of vitreous surgery allows a better rationale in the
management of vitreous surgery and its combination with
laser and drug injections.

Classical physics

Most of the long-term physiological effects of vitrectomy
may be understood in light of the effect it has on transport
of molecules within in the vitreous cavity and the eye.
Transport of molecules in the vitreous cavity is by two
mechanisms only: diffusion and convection currents.
Diffusion may be described by the laws of Fick and
Stokes-Einstein, and fluid currents by the law of Hagen-
Poiseuille (8). Fick’s law describes the diffusion flux, J, in
terms of the diffusion coefficient, D, and the concentration
gradient of the molecule dC/dx:

J ¼ D
dc

dx

Stokes and Einstein described the diffusion coefficient,
D, in terms of the molar gas constant, R, the temperature in
degrees Kelvin, T, the viscosity of medium, η, the radius of
diffusing molecule, r, and Avogadro’s number, N:

D ¼ RT

6p h r N

The Hagen-Poiseuille law describes flow of fluid currents
in terms of the pressure difference ΔP, the length, L, and
diameter, d, of a channel and the viscosity of medium, η.

J ¼ pd4ΔP
�
8L h

Both diffusion and convection currents are inversely
related to the viscosity of the medium. This is also intuitively
obvious: diffusion and fluid currents are slower in a highly
viscous substance than in a less viscous medium. Since
vitrectomy involves the replacement of vitreous humour with
substances which have different viscosity, this influences the
transport of molecules in the vitreous cavity. It is important
to keep in mind that this is a general principle that applies to
all diffusing molecules, including oxygen and other
nutrients, growth factors and other cytokines, both beneficial
and potentially harmful molecules.

The viscosity of vitreous humour

All vitreous surgeons know by experience that the vitreous
gel is more viscous than the balanced salt solution that
replaces it or the aqueous humour that presumably fills the
vitrectomized eye in the long run. At the same time the
silicone oils, with which we sometimes fill the vitreous
cavity, have higher viscosity than both vitreous gel and water.

The surgeons’ impression is confirmed by chemical
studies (9–12). While the viscosity of the vitreous gel is
variable and depends on species and measurement techni-
ques, it is many times more than water, balanced salt
solution or aqueous humour. Lee et al. (13) found the
viscosity of human vitreous gel to be 300–2,000 cP, while
the viscosity of water is 1 cP. Gísladóttir et al. (14) used a
kinetic viscosity meter to measure the viscosity of porcine
vitreous and found this to be bimodal; the thinner phase had
viscosity of about 5 cP and the thicker about 180 cP. Also, the
diffusion of dexamethasone was found to be about five times
greater in saline than in vitreous humour. Similarly, Sebag et al.
(15) showed that pharmacologic vitreolysis with human
recombinant microplasmin increases vitreous diffusion coef-
ficients in vitro. It is reasonable to assume that the vitreolysis
reduces the viscosity of the vitreous gel, resulting in increased
diffusion coefficients. Silicone oil that is used for vitreoretinal
surgery is available in several different viscosities, which are
considerably more viscous that vitreous gel (16).

Physiology studies

The first physiological studies of vitreous surgery were
published in the early 1980s. Stefánsson, Landers and
Wolbarsht (17, 18) performed vitrectomy and lens extrac-
tion in cats, and found that the oxygen transport between
the anterior and posterior segments of the eye were
increased in the vitrectomized–lentectomized eye compared
to the intact eye (Fig. 1). Oxygen was transported at a faster
rate from the anterior segment, resulting in a significantly
lower PO2 in the aqueous humour, especially if the retina
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was made ischemic and hypoxic with vascular occlusion
(Figs. 1, 2).

de Juan et al. (19) showed that silicone oil is the
exception that proves the rule. Using silicon oil that is more
viscous than vitreous humour, they reported that anterior
chamber hypoxia in the vitrectomized-lentectomized cat
eye is prevented if the vitreous cavity is filled with silicon
oil (Fig. 2). The silicone oil is highly viscous, slows the
transport of oxygen and re-establishes a diffusion barrier,
compared to the situation in the vitrectomized eye with
aqueous humour filling.

In the late 1980s, we induced bilateral branch retinal
vein occlusion (BRVO) in cats, where one eye had

vitrectomy and the other eye not. BRVO leads to severe
retinal hypoxia in the non-vitrectomized eye, whereas
vitrectomy prevents hypoxia in the ischemic retina (Figs. 3,
4). These studies clearly established the physiological effect
of vitreous surgery on increased oxygen transport in the
eye. Blair (20, 21) confirmed in cats that the retina may be
oxygenated from the vitreous cavity by “vitreoperfusion”.
Maeda and Tano (22) measured oxygen tension in the
human vitreous cavity before and after vitrectomy, and
concluded that “successful diabetic vitrectomy reduces the
activity of the neovascular tissue and equalizes levels of
oxygenation in the tissue of the vitreous cavity”. Holekamp,
Beebe et al. (23) have confirmed in the human eye that

Fig. 1 Stefánsson et al. (1981) reported the oxygen tension in the
anterior chamber of cat eyes. The mean anterior chamber oxygen
tension in 34 mmHg in the intact eye, 22 mmHg after vitrectomy and
lens extraction, which is similar to the normal retinal oxygen tension

in cats. The anterior chamber oxygen tension falls to 17 mmHg if the
retinal veins are occluded in the vitrectomized, lentectomized eye.
Published with permission from The American Ophthalmological
Society

Fig. 2 The schematic drawing shows the theoretical fluxes of oxygen
and VEGF (and any molecule) in the vitrectomized, lentectomized eye
(left) and silicone oil filled vitreous cavity (right). The low viscosity of
the fluid increases diffusion and convection currents compared with
the intact eye. Oxygen will be transported from the anterior segment
and well-perfused retinal areas to ischemic retinal areas. VEGF will be
cleared away from the ischemic retinal areas by diffusion and
convection at a much higher rate than before vitrectomy. The retina

receives oxygen and gets rid of VEGF, and the risk of retinal
neovascularization decreases. At the same time, the iris loses oxygen
and receives VEGF from the retina, and the risk of iris neovascula-
rization is increased. Silicone oil is more viscous than vitreous gel,
and transport of all molecules is slowed accordingly. It re-establishes
the diffusion barrier between the anterior and posterior segments, and
reduces the risk of iris neovascularization
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vitrectomy facilitates the diffusion of oxygen. In the
vitrectomized eye, the oxygen tension gradients are flatter
than in the normal eye, and the oxygen flux from the retina
to the lens is increased. They have also suggested that
oxygen consumption by ascorbic acid in the vitreous gel
may play a role in increasing oxygen availability after
vitrectomy (24). Jampol (25) Ben-Nun et al. (26), Wilson
et al. (27, 28) and Cringle et al. (29) have also demonstrated
oxygen delivery to the retina through the vitreous cavity.

Vitreous liquefaction and posterior vitreous detachment

Presumably, the physiological situation in a vitrectomized
eye and an eye with posterior vitreous detachment are
related. In all probability, there is a spectrum from the fully
attached, homogenous vitreous gel in a young healthy eye,
through the various stages of vitreous liquefaction (30) and
posterior vitreous detachment, the partially vitrectomized
eye, to the totally vitrectomized eye on the other extreme
(31).

Some of the clinical consequences of vitrectomy may be
seen in eyes with vitreous liquefaction and posterior
vitreous detachment. Pharmacologic enzymatic vitreolysis
(15, 32–34) may also contribute to a physiological situation
with improved transport of molecules in the vitreous cavity.
Quiram et al. (35) showed that pharmacologic vitreolysis
improves oxygen diffusion within the vitreous cavity.

Clearance in vitreous cavity

The physiological studies have focused on oxygen, but the
principle of increased transport following the replacement

of vitreous gel with saline includes all molecules. This
means that following vitrectomy or a posterior vitreous
detachment, the transport of all molecules to and from the
retina is increased (Figs. 2, 4). Molecules that are produced
in the retina, such as vascular endothelial growth factor,
VEGF, may be cleared into the fluid vitreous cavity at a
higher rate following vitrectomy or posterior vitreous
detachment. This serves to reduce the VEGF concentration
(Fig. 4), and may be important in several diseases.
Obviously, the clearance of VEGF and other cytokines
may help prevent macular edema and retinal neovasculari-
zation in ischemic retinopathies, such as diabetic retinop-
athy and retinal vein occlusions. The possible role of this
phenomenon in age-related macular degeneration will be
discussed later. The positive or negative effect of clearance
of molecules from the retina into the vitreous cavity
following vitrectomy or posterior vitreous detachment
needs further study in a variety of eye diseases.

Fig. 3 Stefánsson et al. (1990) reported that pre-retinal oxygen
tension falls with branch retinal vein occlusion, BRVO, in the intact
eye, but vitrectomy prevents retinal hypoxia in this situation.
Published with permission from IOVS

Fig. 4 Schematic drawings showing the diffusion and convection
fluxes of oxygen and VEGF (and any molecule) in the intact eye (top);
vitrectomized eye (bottom). The transport of all molecules is relatively
slow through the viscous vitreous humor in the intact eye, and much
faster when this is replaced with low viscosity saline or aqueous
humour. In the vitrectomized eye, oxygen diffuses from well-perfused
to ischemic retinal areas, thus reducing hypoxia and VEGF produc-
tion. At the same time, VEGF is cleared away from the retina at a
faster rate. Both mechanisms combine to lower VEGF levels in the
retina, and inhibit neovascularization and edema
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Vitreous clearance of VEGF may have the same effect as
the presence of VEGF antibodies in the vitreous cavity.
VEGF, which is produced in the retina, will diffuse from
the retina into the vitreous cavity. If VEGF is constantly
removed through clearance by diffusion, convection,
binding with an antibody (for example bevacizumab) or
other mechanisms, the removal of VEGF from the retina
will increase and the concentration of VEGF in (and under)
the retina decrease.

The clinical consequences of vitrectomy

The initial rationale for vitrectomy was entirely structural.
Removal of bloody and opaque vitreous humour would
restore a clear visual pathway and the patients’ vision, for
example in cases of vitreous hemorrhage. The long-term
consequences came as a surprise.

Iris neovascularization

The first unexpected clinical consequence of vitreous
surgery was the increased risk of iris neovascularization
following vitrectomy in diabetic retinopathy eyes, in
particular if the lens had also been removed (36, 37). In
light of the previously described physiology this is easy to
understand. In the vitrectomzed eye, and in particular in the
vitrectomized-lentectomized eye, both oxygen and various
growth factors/cytokines will be transported faster through
the vitreous cavity (Figs. 1 and 2). Oxygen will be
transported by diffusion and convection from the anterior
chamber (where the PO2 is normally higher than at the
retina) to the posterior segment, resulting in anterior
segment and iris hypoxia (Figs. 1 and 2). At the same
time, growth factors such as vascular endothelial growth
factor (VEGF) will be transported more readily from the
retina to the iris. Anterior segment hypoxia and additional
VEGF from the retina will stimulate neovascularisation on
the iris. The practice of endophotocoagulation during
vitreous surgery helped reduce this threat, as the photoco-
agulation reduced retinal hypoxia (17, 22, 38–50) and
VEGF production, thus decreasing concentration gradients
and transport of both oxygen and VEGF between anterior
and posterior segments.

Silicone oil, which is highly viscous and reduces
transport of oxygen and growth factors between anterior
and posterior segments of the eye, is known to reduce the
risk of iris neovascularisation in vitrectomized eyes (Fig. 2).
de Juan et al. (19) showed that silicone oil filling of the
vitreous cavity re-establishes a diffusion barrier between the
anterior and posterior segments, thus reducing the exchange
of oxygen and VEGF and reducing risk of iris neo-
vascularization.

Retinal neovascularisation

The next clinical observation was a positive one. Two
pioneers in vitreous surgery, Blankenship and Machemer,
observed that diabetic patients who underwent successful
vitrectomy did not have recurrent retinal neovascularization
(51). This is also easily understandable in light of the
physiological principles stated above. In the vitrectomized
eye, oxygen will be transported from well-perfused areas to
the ischemic zones (23, 52), relieving the local hypoxia and
decreasing VEGF production (Fig. 4). At the same time,
VEGF and other cytokines will be cleared away from the
ischemic retina faster than before. Thus, VEGF levels will
be reduced both from reduced production and increased
clearing into the vitreous cavity (Fig. 4). Naturally, laser
photocoagulation will contribute to this by also relieving
hypoxia of remaining retinal cells and thus reducing VEGF
production (8, 17, 22, 38–50)

Understanding the physiological principles makes it
possible to combine treatment modalities in a sensible
way (Fig. 5). Vascular endothelial growth factor (VEGF) is
a major (but not the only) stimulus for retinal neovascula-
rization. VEGF production is controlled by oxygen tension,
and therefore retinal photocoagulation, vitrectomy and
oxygen breathing can reduce VEGF production (Fig. 5).
VEGF can be cleared away from the retina into low-
viscosity fluid in the vitrectomized eye or in an eye with
posterior vitreous detachment. VEGF antibodies in the
vitreous gel will also remove VEGF from the solution and
similarly clear it away from the retina.

Diabetic macular edema

Nasrallah et al. (53) showed that posterior vitreous adhesion
plays a major role in the development of macular edema in
diabetic retinopathy. We may deduce that a posterior
vitreous detachment tends to prevent diabetic macular
edema, in the same fashion as vitrectomy does. Similarly,
Sivaprasad et al. (2008) suggested that posterior vitreous
detachment plays a role in reducing diabetic macular edema
following intravitreal injections (54).

Lewis et al. (55–57) were the first to note that
vitrectomy is beneficial in diabetic macular edema. He
emphasized the use of vitrectomy and membrane peeling
in cases where vitreo-retinal traction contributed to
macular edema. While this issue is still controversial,
other experts have since reported that vitrectomy also
successfully decreases macular edema in cases where no
vitreoretinal traction can be detected (58–64). Hoerle et al.
(65) reported therapeutic effects of vitrectomy on diabetic
macular edema in patients with proliferative diabetic
retinopathy. Terasaki et al. (66) found improved vision
and electroretinographic activity and thinning of retina
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following vitrectomy in patients with diabetic macular
edema. Yamamoto et al. (67) proposed that the creation of
a posterior vitreous detachment is critical in order to
influence diabetic macular edema through vitreous sur-
gery. In all reports there is structural improvement of
macular edema following vitrectomy, but visual improve-
ment is variable and in some cases either minimal or
transient (60, 68, 69). The improvement in macular edema
following vitrectomy has been reported with and without
the presence of vitreoretinal traction (57–64). Both
situations are easily understandable in light of the
physiological principles above and laws of physics (see
“Traction” below and Fig. 6).

In the vitrectomized eye, oxygen will be transported
from well-perfused areas to ischemic retinal zones to reduce
hypoxia and VEGF production (Fig. 4) (23, 52). At the
same time, VEGF and other cytokines will be transported
faster away from the hypoxic area (Fig. 4). The improved
oxygenation and reduced VEGF concentration will reduce
stimulus for edema formation. This works both through the
osmotic and hydrodynamic arms of Starling’s law, which
will be discussed below (47).

Retinal photocoagulation also reduces diabetic macular
edema (70). Photocoagulation improves retinal oxygenation
(17, 22, 38–50), reduces VEGF production and constricts
retinal arterioles to influence both the osmotic and
hydrodynamic arms of Starling’s law (8, 71–74).

Macular edema in retinal vein occlusions

Hikichi et al. (75) suggested that posterior vitreous
attachment contributes to edema develoment in patients
with central retinal vein occlusion, and conversely that
posterior vitreous detachment helps to prevent macular
edema and retinal neovascularization in central retinal
vein occlusion. Takahashi et al. (76) made a similar
observation in branch retinal vein occlusion, and Char-
bonnel et al. (77) suggested that vitrecomy with posterior
vitreous separation (and sheathotomy) was helpful in
reducing macular edema in branch retinal vein occlusion.
Kumagai et al. (78) suggested that the vitrectomy is
critical in treatment of branch retinal vein occlusion, and
sheathotomy may or may not have an additional effect.
Hvarfner and Larsson (79) suggested that vitrectomy
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Fig. 5 Vascular endothelial
growth factor (VEGF) is a ma-
jor stimulus for retinal neovas-
cularization. VEGF production
is controlled by oxygen tension
(green arrows), and therefore
retinal photocoagulation, vitrec-
tomy and oxygen breathing can
reduce VEGF production.
VEGF can be cleared away from
the retina into low viscosity
fluid in the vitrectomized eye or
in an eye with posterior vitreous
separation (purple arrows).
VEGF antibodies in the vitreous
gel will also remove VEGF
from the solution and similarly
clear it away from the retina (red
arrow)
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reduces macular edema in central retinal vein occlusion.
All these observations agree with the physiological effect
of posterior vitreous detachment in improving oxygen
transport and cytokine clearance.

Vitreoretinal traction

Vitreoretinal traction has been associated with macular
edema in diabetic retinopathy (55–57) and following
complicated cataract surgery (Irvine–Gass syndrome), and
the removal of such traction through vitreoretinal surgery
has been found to be useful. What might be the mechanism

through which vitreoretinal traction influences edema
formation?

The effect of traction on retinal edema is understand-
able in light of Newton’s third law (80, 81): to any
action (force) there is always an opposite and equal
reaction (counter-force); in other words, a force is always
met by an equal force in the opposite direction. The force
of vitreoretinal traction will be met by an equal and
opposite force in the retina, and these tend to pull the
tissue apart. This results in a lowering of the tissue
pressure in the retina (Fig. 6). The lowered tissue pressure
increases the difference between the hydrostatic pressure
in the blood vessels and the tissue, and contributes to
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Fig. 6 Top: a vitreoretinal traction force is indicated with the large
white arrow. Inside the retinal tissue, the two smaller arrows indicate
force and counterforce according to Newton’s third law. The counter-
acting forces result in lowering of the hydrostatic tissue pressure,
indicated by P. The lowered tissue pressure will increase the pressure
gradient between vascular and tissue compartments and stimulate fluid
flux from vessel to tissue resulting in edema accumulation according
to Starling’s law. Bottom: this figure indicates the several ways
macular edema may be treated. Releasing vitreoretinal traction will
increase the tissue pressure, reduce hydrostatic pressure gradient
between vessel and tissue and reduce edema according to Starling’s
law (white central arrows). Vitrectomy (or posterior vitreous
detachment) will increase oxygen delivery to the retina and reduce
hypoxia and VEGF production (green upper right-hand arrow).
Vitrectomy (or posterior vitreous detachment) will clear VEGF and

other cytokines from the retina, due to increased diffusion and
convection currents (purple upper left-hand arrow). VEGF antibodies
(bevacizumab) in the vitreous cavity would similarly increase VEGF
clearance from the retina. Retinal photocoagulation decreases outer
retinal oxygen consumption, increases oxygen delivery to the inner
retina and reduces hypoxia and VEGF production (green lower
arrow). Steroids reduce permeability of retinal blood vessels, reduce
leakage of proteins into the tissue and help restore the osmotic
gradient between blood and tissue, thus reducing edema (gray left
horizontal arrow). Lowering of arterial blood pressure or constriction
of retinal arterioles (oxygen, photocoagulation, vitrectomy) will
reduce the hydrostatic pressure in the microcirculation, reduce
hydrostatic pressure gradient between vessel and tissue and reduce
edema according to Starling’s law (red right horizontal arrow)
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edema formation according to Starling’s law (47). Releas-
ing the traction will increase tissue pressure, and thus
lower the hydrostatic pressure gradient and reduce the
water flux from blood vessels into retinal tissue and edema
formation (see Starling’s law below).

Starling’s law and macular edema

Ernest Henry Starling (1866–1927, Fig. 7) discovered the
first hormone, formulated the law of the function of the heart
which bears his name, and described the transport of fluid
between the microcirculation and a tissue, including edema
formation. Starling stated in 1896: “...there must be a balance
between the hydrostatic pressure of the blood in the
capillaries and the osmotic attraction of the blood for the
surrounding fluids.... and whereas capillary pressure deter-
mines transudation, the osmotic pressure of the proteins of
the serum determines absorption.” In other words, the
hydrostatic pressure forcing fluids from the vessel into the
tissue must be balanced by the osmotic pressure, generated
by the colloidal protein solutions in the capillary, forcing an
absorption of the fluid from the tissues (82).

The four Starling’s forces that govern the transport of
water between the vascular compartment and the tissue
compartment are the following:

1. Hydrostatic pressure in the capillary (Pc).
2. Hydrostatic pressure in the tissue interstitium (Pi)
3. Osmotic (oncotic) pressure exerted by plasma proteins

in the capillary (Qc).

4. Osmotic pressure exerted by proteins in the interstitial
fluid (Qi)

The balance of these forces allows the calculation of the
net driving pressure for filtration

Net Driving Pressure ¼ Pc� Pið Þ � Qc� Qið Þ
The hydrostatic pressure, which originates in the heart, is

higher in the vessel than in the tissue, and this drives water
from the vessel into the tissue. The hydrostatic pressure
gradient, ΔP, must be balanced by the osmotic pressure
gradient, ΔQ, where the osmotic pressure is higher in the
blood than in the interstitial fluid, and this pulls water back
into the blood vessel. If the hydrostatic pressure gradient and
the osmotic pressure gradient are equal, no net transport of
water takes place, and edema is neither formed nor resolved.
Starling’s law is frequently shown in this form as

ΔP�ΔQ ¼ 0

describing the steady state of the equal and opposing
hydrostatic,ΔP, and osmotic pressure,ΔQ, pressure gradients.
(82).

Starling’s law has been generally accepted in medicine
and physiology for more than a century as the fundamental
rule governing the formation and disappearance of vaso-
genic edema in the body. It is reasonable to believe that the
ocular tissues follow the same general laws of physiology
and physics as the rest of the body, and those who believe
otherwise should be burdened with the duty to disprove
Starling’s law in the eye (47, 83, 84).

Edema

Edema is the swelling of soft tissues due to an abnormal
accumulation of fluid, i.e. water. Edema may be cytotoxic or
vasogenic in origin. In cytotoxic or ischemic edema the
abnormal water accumulation and swelling occurs within cells
(85), whereas in vasogenic edema the water accumulates in
the interstitial space between cells. While retinal edema may
be either cytotoxic or vasogenic, Starling’s law applies to the
vasogenic edema, which presumably is the most frequent and
important form of edema in vascular retinopathies. With
abnormal accumulation of water in the retina, the tissue
volume increases and the retina thickens. The thickening may
be measured with ocular coherent tomography (OCT) (86). At
the same time, the specific gravity of the tissue is decreased
proportionally with the increased water content (87–90).

What creates edema?

According to Starling’s law, edema will form if the
hydrostatic pressure gradient between vessel and tissue is

Fig. 7 Ernest Henry Starling (1866–1927). English physician and
physiologist
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increased or the osmotic pressure gradient is decreased. The
hydrostatic gradient increases if the blood pressure in the
microcirculation rises or the tissue pressure decreases. The
osmotic pressure gradient decreases if proteins accumulate
in the interstitium to increase the osmotic pressure in the
tissue, and also if the osmotic pressure in blood goes down.

Increased hydrostatic pressure gradient

The hydrostatic pressure in the microcirculation, capillaries
and venules is a function of the work of the heart, arterial
blood pressure and the resistance and pressure fall in the
arterioles. Arterial hypertension tends to increase the
hydrostatic pressure in the capillaries and is a well-known
risk factor for diabetic macular edema (91, 92). Diabetic
macular edema tends to improve if arterial hypertension is
successfully treated (93, 94).

The resistance in the retinal arterioles, and thereby the
pressure drop in the arterioles, is a function of the diameter
of the arterioles. The resistance to flow is described by the
Hagen-Poiseuille law, where the resistance is inversely
related to the fourth power of the vessel radius (82). If the
arterioles dilate, as they do in hypoxia, the resistance in
the arterioles decreases and the hydrostatic pressure in the
capillary bed rises (17, 47, 95). This is also seen in diabetic
retinopathy, where progressive dilatation of the retinal
blood vessels has been observed during the development
of diabetic macular edema (96, 97).

The hydrostatic pressure gradient between vessel and
tissue is the difference between the hydrostatic pressure in
the microcirculation and the intraocular pressure. In ocular
hypotony, where the intraocular pressure is low the
hydrostatic pressure gradient in Starling’s law will increase.
Ocular hypotony is associated with retinal edema, which
may improve if the intraocular pressure increases (98–100).
The hydrostatic pressure in the tissue also decreases if there
is vitreal traction on the retina, which decreases the
hydrostatic tissue pressure, according to Newton’s third
law (Fig. 6). Relieving such traction will restore the tissue
pressure to normal, and decrease the hydrostatic pressure
gradient between the vessel and tissue (55–57).

Decreased osmotic pressure gradient

The traditional example of a decrease in the osmotic
pressure in blood is in hypoalbuminemia, which may be
seen in nephrotic syndrome or starvation with severe
generalized edema. A more frequent cause of decreased
osmotic pressure gradients between vessel and tissue comes
from capillary leakage, where plasma proteins leak from the
capillaries and venules into the tissue. The accumulation of
plasma proteins in the tissue increases the osmotic pressure
in the tissue, and thereby decreases the osmotic pressure

difference between the vessel and the tissue compartment.
The reduction of the osmotic pressure gradient reduces
water movement from tissue into the vessel and leads to
edema formation (47). Funatsu et al. (101) demonstrated
the close correlation between macular edema and vascular
endothelial growth factor, which is a potent stimulator of
capillary leakage (102). Retinal edema, such as in diabetic
retinopathy and branch retinal vein occlusion, is highly
associated with retinal capillary leakage (47, 83, 84, 103).
Fluorescein angiography and fluorophotometry have shown
a close association between retinal and macular edema
formation and fluorescein leakage, and this has indeed been
one of the most frequently used clinical tools to evaluate
retinal edema (104–109). It is the leakage of plasma
proteins that matters, due to the effect they have on osmotic
pressure. The leakage of fluorescein itself is naturally not
involved in the pathophysiology of edema, and the
capillaries are naturally permeable to water.

It is important to realize that Starling’s law takes into
account both the osmotic pressure gradient and the
hydrostatic pressure gradient. It is the balance between the
two that governs water movement and the formation and
disappearance of edema.

How do we treat edema?

It should be obvious from the previous discussion that
according to Starling’s law retinal edema may be treated
either by decreasing the hydrostatic pressure gradient
between vessel and tissue, or by increasing/restoring the
osmotic pressure gradient between vessel and tissue (Fig. 8).

Decreasing hydrostatic pressure gradient

Treatment of arterial hypertension is a well-established
method for treating diabetic macular edema, and is certainly
beneficial in some cases (93, 110). Another way to reduce
the hydrostatic pressure in the microcirculation is to
constrict the arterioles. This may be done simply by
breathing oxygen-enriched air which has been shown to
constrict retinal blood vessels and reduce diabetic macular
edema (111–114). Retinal oxygenation may also be
improved by scattered laser treatment, which destroys a
part of the retina and thereby reduces its oxygen consump-
tion (17, 22, 38–50). Retinal laser treatment destroys some
of the photoreceptors, and allows oxygen to diffuse from
the choroid through the laser scars into the inner retina,
where it improves retinal oxygen tension (17, 38–46, 48–
50, 115, 116) and leads to constriction of retinal blood
vessels (71–74). Retinal vessel constriction has been shown
with oxygen breathing and laser treatment, and the
vasoconstriction goes hand in hand with the resolution of
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retinal edema, both in diabetic retinopathy and branch
retinal vein occlusion (71, 73). Vitrectomy also improves
the oxygenation of the retina, as was discussed earlier in
this essay.

Interestingly, intravitreal bevacizumab (117) and triam-
cinolone (118) have been reported to constrict retinal blood
vessels, suggesting that these drugs may have a hemody-

namic effect, in addition to their main role of reducing
VEGF-induced permeability. This is possibly related to the
role of VEGF in inflammation, where the anti-VEGF drugs
would decrease inflammation and therefore constrict the
retinal blood vessels.

Retinal vein occlusions are an obvious case of high
hydrostatic pressure, due to the occlusion of the central
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Fig. 8 Physiological principles explain the combination of various
treatment modalities for diabetic macular edema and edema in other
ischemic retinopathies, such as vein occlusions. Starling’s law governs
the formation of vasogenic edema, based on osmotic and hydrostatic
gradients between microcirculation and tissue. The osmotic gradient is
influenced by vascular endothelial growth factor (VEGF), which
controls the leakage of osmotically active proteins into the tissue
compartment (blue balloon). VEGF is controlled by oxygen tension.
Laser treatment, vitrectomy and oxygen breathing can increase retinal
oxygen tension and thereby reduce VEGF production (green arrows).
Vitrectomy and posterior vitreous detachment (purple arrows)
increase diffusion and convection in the vitreous cavity and increase
clearance of VEGF (and other cytokines) from the retina, thus
reducing VEFG concentration in the retina. VEGF antibodies in the
vitreous cavity also remove VEGF from the retinal surface and
decrease VEFG concentration in the retina by clearance (red arrows).

The permeability effect of VEGF can be reduced by the administration
of steroids (grey bar). The hydrostatic arm of Starling’s law is
indicated by the brownish-red arrows. The hydrostatic gradient
between microcirculation and tissue may be reduced through several
mechanisms. Releasing vitreoretinal traction will increase the tissue
pressure, reduce hydrostatic pressure gradient between vessel and
tissue and reduce edema according to Starling’s law (see also Fig. 6).
Treating ocular hypotony by raising intraocular pressure will do the
same. Reduction of arterial blood pressure will reduce hydrostatic
pressure in the microcirculation, and thus reduce the hydrostatic
gradient between vessel and tissue and reduce edema. Finally,
improved retinal oxygenation through laser treatment or vitrectomy
constricts the retinal arterioles, increases their resistance and reduces
hydrostatic pressure in the microcirculation, thus reducing the
hydrostatic gradient between vessel and tissue and edema
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retinal vein or a branch retinal venule. The high hydrostatic
pressure in the venule is obvious from the dilatation and
tortuosity, which reflects the increased transmural pressure
difference according to the law of Laplace (97, 119–121).
Laser treatment has been shown to reduce the vessel
diameter in branch retinal vein occlusion and resolve the
macular edema at the same time (71–73). Presumably
this involves a reduction in the intravascular hydrostatic
pressure. It may be presumed that other methods to
relieve the high intravascular pressure, such as the
creation of shunt vessels or resolution of the occlusion
for example with sheathotomy, would have the same
effect (122–126).

Since the hydrostatic pressure gradient is the difference
between the blood pressure in the microcirculation and the
intraocular pressure, this is increased in ocular hypotony,
which may be associated with retinal edema as was
previously mentioned (100). Such edema may be success-
fully treated simply by raising the intraocular pressure
(127). It is less clear whether intraocular pressure changes
have a function when the intraocular pressure is in the
normal range, and whether the intraocular pressure should
be considered in patients with macular edema and normal
or high intraocular pressure. Vitreoretinal traction decreases
tissue hydrostatic pressure (Fig. 6), as discussed earlier, and
increases the hydrostatic pressure difference between blood
and tissue compartments. This stimulates water flux from
vessel to tissue and edema formation and releaving the
vitreoretinal traction reduces the water flux and retinal
edema.

Increasing osmotic pressure gradient

Leaking capillaries and venules in the retina are closely
associated with retinal and macular edema (104–109).
Fluorescein leakage has been used for diagnostic purposes
in macular edema. The leaky blood vessels presumably leak
plasma proteins from blood into the interstitial tissue
compartment, thus decreasing the osmotic pressure gradient
between the two compartments. The protein leakage may
be influenced by administering drugs that reduce vascular
endothelial growth factor, which is one of the most
powerful agents known to induce capillary leakage (128,
129). Reducing hypoxia is a natural way to reduce VEGF
production, and this may be achieved through retinal
photocoagulation or vitrectomy. Corticosteroids such as
triamcinolone and dexametasone also stabilize capillaries
and tend to reduce capillary leakage (130–133). These
treatment modalities will decrease the leakage of proteins
into the interstitial tissue compartment and help to restore
the osmotic gradient between blood and tissue compart-
ments. This will resolve edema formation according to
Starling’s law (134–136) (Fig. 8).

The central role of oxygen

Oxygen plays an important role in influencing both the
hydrostatic and the osmotic forms of Starling’s equation. On
one hand, oxygen controls the diameter of retinal arterioles
and thereby the hydrostatic pressure in the microcirculation.
On the other hand, oxygen is a major regulator of the
production of vascular endothelial growth factor and other
hypoxia-induced growth factors, and exerts influence on
capillary leakage. Vascular endothelial growth factor is
produced in hypoxia, and oxygen is the natural anti-VEGF
factor (137). At the same time, we should keep in mind that
hypoxia is not the only stimulant for VEGF production.

Retinal oxygenation may be improved by breathing
oxygen. Retinal photocoagulation, as well as vitreous
surgery, improve retinal oxygenation (17, 22, 38–50) as
discussed above. The mechanism by which retinal photo-
coagulation improves retinal oxygenation has recently been
reviewed (47, 95) and the reader is referred to these review
papers as well as reports from a number of laboratories (17,
38–46, 48–50). Retinal photocoagulation and vitreous
surgery improve oxygenation, and thereby influence the
hemodynamic consequences of hypoxia, as well as the
hypoxia-induced VEGF. If these measures do not correct
the hypoxia, it is possible to decrease the effect of the hypoxia
with anti-VEGF drugs, and with corticosteroids, which
decrease the permeability effect of VEGF. All these actions
are easily understood in the light of Starling’s law, keeping in
mind the hydrodynamic and osmotic arms of the law (Fig. 8).

Age-related macular degeneration (AMD)

Krebs et al. (138) have recently suggested that vitreoretinal
adhesion contributes to exudative AMD. The physiological
considerations above suggest a possible mechanism for this
effect. The presence of adherent vitreous over the macula
will not allow VEGF and other cytokines to be cleared
away into the vitreous cavity. Following a posterior vitreous
detachment or vitrectomy, the clearance of the cytokines
will be vastly increased and the VEGF load in the macular
area be decreased. The oxygenation may also improve, and
this would reduce the VEGF production. It is reasonable to
presume that VEGF and other cytokines may be important
in the development of exudative AMD, and the improved
clearance of the cytokines following posterior vitreous
detachment or vitrectomy would offer some protection from
the development of exudative AMD.

It is the experience of several experienced vitreoretinal
surgeons that vitrectomized eyes do not as a rule develop
exudative AMD. This clinical observation has not been
studied systematically, and must be taken with some
caution. However, the physiological principles suggest that
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such a mechanism may be present. Improved clearance of
growth factors from the macular area after vitrectomy or
posterior vitreous detachment, along with improved oxy-
genation, might help prevent exudative AMD. The recur-
rence of neovascularization after retinal rotation surgery for
exudative AMD is an exception here, but may be a wound-
healing response in severely diseased eyes and not
representative of prevention in less advanced AMD.

Schulze et al. (1) reviewed the role of the vitreous in
AMD and suggest that “incomplete or anomalous posterior
vitreous detachment is suspected to play a crucial role in
the pathogenesis of different forms of age-related macular
degeneration.” They review several studies that have show
vitreoretinal adhesion in patients with AMD. Weber-Krause
and Eckardt (139) showed a higher rate of posterior
vitreous attachment in patients with AMD, and Ondes et
al. (140) and Hayreh and Jonas (141) reported similar
findings. Lambert et al. (142) found vitreoretinal attach-
ment in 80% of patients undergoing vitrectomy for
subretinal neovascularization in AMD. Schmidt et al.
(143) reported a high incidence of vitreoretinal traction in
recurrent subretinal neovascularization, suggesting that a
complete posterior vitreous separation (or vitrectomy)
would be protective in AMD. Meyer and Toth (144)
suggested that vitreomacular traction might play a role in
the development of pigment epithelial detachments, and
Gross-Jendroska et al. (145) reported that pigment epithelial
detachments flatten following an intravitreal gas bubble.

In the light of the previous discussion about vitreous
physiology, it is reasonable to speculate that with a posterior
vitreous detachment or vitrectomy, the clearance of cytokines
from the retina will be increased and the oxygenation of the
retina improved. Both mechanisms will reduce the concen-
tration of VEGF and other cytokines in and under the retina,
and this may hinder the development of neovascularization
and edema. In addition, traction will reduce tissue pressure in
the retina and possibly also in a pigment epithelial detach-
ment, and contribute to edema formation and fluid accumu-
lation. Release of such traction should reduce edema and fluid
accumulation, for example in a pigment epithelial detachment.

Cataract

Liang et al. (146) reported that vitrectomy may increase the
oxygen delivery to the lens in the rabbit. Holekamp et al.
(23, 147) have shown in the human eye that the transport of
oxygen through the vitreous cavity to the lens in increased
after vitrectomy, and propose that the increased oxygen
tension of the lens contributes to nuclear sclerosis cataract.
This fits perfectly with the physical and physiological
principles stated above, and confirms the principles
previously demonstrated in animal studies (20, 52).

It is likely that the nuclear sclerosis cataract frequently
seen following trabeculectomies for glaucoma may be of
similar nature. The increased flow rate of aqueous humour
following glaucoma filtration surgery in very likely to
increase the oxygen delivery to the lens, and may contribute
to nuclear sclerosis cataract formation (148–154).

Glaucoma

Chang observed that there is an increased risk of open-
angle glaucoma after vitrectomy, especially if the
crystalline lens has also been removed. He suggested
that oxidative stress in the trabecular meshwork may
have a role in the pathogenesis (155). However, the
oxygen tension in the anterior chamber has been shown to
decrease, not increase, following vitrectomy and lens
extraction (Fig. 1) (17, 18). The reason for this is that
the oxygen tension is normally higher in the aqueous
humour than in the retina and vitreous cavity. When the
vitreous gel and lens are removed and oxygen moves
freely throughout the one-chamber eye, the oxygen
tension is reduced to the normal level of the retina, which
in the cat is about 20 mmHg compared to 34 mmHg in the
normal anterior chamber (Fig. 1) (17, 18). Helbig et al.
(156, 157), Sakaue et al. (158) and Wilson et al. (159)
reported comparable findings in the human eye. The
oxidative stress hypothesis may be doubtful as the
mechanism of glaucoma development following vitrecto-
my, but other molecules that move freely from the retina
towards the trabecular meshwork may be worth consider-
ing to explain this phenomenon (155).

Conclusion

The vitreous humour regulates the transport of molecules
within the vitreous cavity. This transport will increase when
the vitreous gel liquifies with advancing age, with a
posterior vitreous detachment and vitrectomy. The change
in transport patterns will involve all molecules that dissolve
in the vitreous cavity fluids. Some molecules will be
cleared away from the retina and others will be transported
to distant sites, such as the lens or distant parts of the retina.
The physiological effects may be variable. Ischemic retinal
areas may benefit from the added supply of oxygen, while
the lens suffers from the same. Ischemic tissue may benefit
from VEGF clearance, while other tissues may lose
necessary molecules, that are cleared away by low viscosity
fluid in the vitreous cavity. Is it possible that some of the
degenerative diseases in the posterior segment of the eye,
that start after middle age, may be due to vitreous
liquifaction and separation, leading either to harmful loss
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of molecules from some tissues or harmful abundance in
other tissues?

While this paper presents a general theory for the
physiologic and pharmacologic processes in vitreous
surgery, retinal laser treatment and drug treatment, it leaves
out some important aspects. Inflammation, wound healing
and perhaps other processes also play a role, and their
influence can hopefully be added to the physiological
theory.

Acknowledgement Mr. Arni Corlett drew the schematics.
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