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Abstract This review will discuss
some of the implications for using
cells from aged donors for retinal
pigment epithelium (RPE) transplan-
tation. It will consider age-related
changes in the structure and function
of RPE cells and the accumulation of
potentially damaging photoreactive
constituents. The review will focus
on the role of the ocular pigments 

lipofuscin and melanin in respect to
age-related changes in composition,
photoreactivity and potential role in
retinal ageing and age-related macu-
lar degeneration. The article con-
cludes by considering the suitability
of senescent RPE cells for transplan-
tation and whether such cells can be
rejuvenated.
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Introduction

The retinal pigment epithelium (RPE) is essential for
maintaining optimal photoreceptor structure and function
[7, 10, 47, 48]. Loss or atrophy of the RPE results in not
only photoreceptor loss but also abnormalities in the un-
derlying choriocapillaries [38]. Specific gene defects in
the RPE have been identified (e.g. RPE65 and mertk) in
animals [2, 52, 70] which have also been confirmed in
human disease [69, 78, 79]. Most complex eye diseases
will have multigene defects which in many instances will
render an individual more susceptible to environmental
insult rather than the gene defect itself. However, envi-
ronmental factors per se may well be equally important
contributors toward the onset of RPE dysfunction. Evi-
dence for this comes from age-related macular degenera-
tion (AMD), in which abnormalities in the RPE–Bruch’s
membrane complex are apparent and may well represent
the accumulation of random damage from a variety of
direct environmental insults (e.g. age, oxidative stress,
smoking, light exposure) [4, 14]. A further major insult
to the RPE is the repeated phagocytosis of photoreceptor
outer segments by the retinal pigment epithelium. This
allows the renewal of outer segments while removing the
spent outer segment discs which will have become oxidi-
sed and accumulated numerous adducts. This can lead to
a reduction in membrane fluid dynamics and increasing

phototoxicity. It is highly probable that these oxidative
changes to the outer segments render them partially non-
degradable when in the phagolysosomal system and that
this contributes to the progressive accumulation of lipo-
fuscin in RPE cells throughout life [4, 21]. The age-relat-
ed changes in RPE often lead to pathological tissue dam-
age that warrants intervention (e.g. transplantation) in 
order to maintain quality of sight. The compositional
changes that occur to and compromise the function of
the RPE during life may themselves hinder the benefits
of RPE transplantation [9].

RPE ageing

Age-related changes in the RPE and underlying Bruch’s
membrane are well documented [7, 10, 29, 49]. The 
human RPE is normally a non-dividing system which,
with increasing age, is seen to undergo a variety of struc-
tural and biochemical changes which are generally con-
sidered to be detrimental to optical cell function.

Morphology

Structural changes include loss of cell shape, hyperplasia
with regions of multilayered cells, atrophy, hyperpig-
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mentation and an increase in cell diameter as cells spread
to fill the spaces left by dead cells [34].

RPE cell density decreases by up to 0.3% per year
with increasing age [53]. Whether this cell loss is great-
est in the macula, where metabolic activity is highest, re-
mains equivocal.

Pigmentation

Both fundus examination and morphology demonstrate
significant pigmentary changes in the RPE with increas-
ing donor age. These changes include a linear increase in
lipofuscin granules, a decrease in melanosome numbers
and an increase in pigment complexes (e.g. melanolipo-
fuscin and melanolysosomes) [7].

Advanced glycation endproducts

There is increasing evidence that advanced glycation
endproducts (AGEs) accumulate within Bruch’s mem-
brane and may modulate RPE cell behaviour. AGEs have
been identified in RPE cells associated with lipofuscin
[67], and AGEs have been shown to decrease lysosomal
enzyme function if ingested [46].

Antioxidants

Age-related changes in antioxidant enzyme activity have
been reported but their contribution to RPE dysfunction
is difficult to interpret. Levels of vitamin E decrease with
age [25], catalase activity increases with age (possibly
due to an overall increase in H2O2-induced oxidative
stress throughout life) and superoxide dismutase levels
remain constant throughout life [42].

Molecular damage

Numerous studies in cell types other than the RPE have
reported greater amounts of mitochondrial DNA dam-
age, nuclear DNA damage, protein cross-linking and lip-
id hydroperoxides in aged cells than in their younger
counterparts. It is likely such damage will also occur in
RPE cells. RPE cells have been shown to demonstrate
senescence-related b-galactosidose staining and telomere
loss [33, 51].

It is therefore clear that RPE cells undergo significant
age-related changes, many of which are non-reversible in
such post-mitotic cells. The specialised role of the RPE
lends itself to the accumulation of novel inclusions. This
review focuses on the photochemical properties of lipo-
fuscin, A2E and melanosomes since their presence im-
pacts on the applicability of RPE cells for transplanta-

tion. Furthermore, it is unclear whether aged RPE cells
can be rejuvenated in cell culture, and this will be dis-
cussed later in the review.

What is lipofuscin?

Lipofuscin is a lipid/protein aggregate that is generated
within the lysosomal system of a variety of postmitotic
cell types [71]. Lipofuscin accumulation has a positive
correlation with increasing age which has led to this pig-
ment being referred to as “age pigment” or a “senes-
cence marker”. However, the photochemical properties
of lipofuscin may themselves influence the ageing pro-
cess. The common substrate for lipofuscin formation is
autophagy of spent intracellular organelles such as mito-
chondria, Golgi bodies and endoplasmic reticulum [7,
13, 21]. However, the RPE is unique in that in this cell
the major substrate for lipofuscin appears to be photore-
ceptor outer segment tips [7, 21]. An extrafoveal human
RPE will phagocytose in the region of 40 outer segment
tips per day and 40 complete rod outer segments every
10 days. It is believed that these tips undergo oxidative
modification with the formation of cross-links and ad-
ducts which renders the outer segments only partially di-
gestible [7]. It is this indigestible material which accu-
mulates within the lysosomes in the form of lipofuscin
granules. A unique feature of RPE lipofuscin is that it
contains retinoid metabolites derived from the ingestion
of outer segments [21]. These granules are about 1 mm in
diameter and located within the mid-portion of RPE cells
beneath the melanosomes (Fig. 1) [34]. Analyses have
shown that lipofuscin progressively accumulates
throughout life to eventually occupy up to 19% of cyto-
plasmic volume by 80 years of age [24]. Topographical-
ly, maximal accumulation of lipofuscin granules occurs
in the posterior pole, albeit with a decrease at the fovea
[81, 82]. This correlates with the density distribution of
rod photoreceptor cells and points to outer segments be-
ing the primary substrate for lipofuscin [48, 82].

A characteristic feature of RPE lipofuscin is its gold-
en-yellow fluorescence (Fig. 1). Studies have revealed
that there are substantial differences in emission proper-
ties between individual lipofuscin granules, and within a
single granule, indicating a great heterogeneity within
and among lipofuscin granules [16, 31, 32, 39].

Due to the complex nature of lipofuscin granules it
has been difficult to identify constituent components. 
Eldred and Katz undertook a Folch’s chloroform/metha-
nol extraction of RPE cells and identified at least 10 flu-
orophores in the chloroform fraction [22]. One of the
fluorophores was a yellow–orange emitter. Further ana-
lyses of this fluorophore by Eldred and Lasky [23] led to
the identification and structural characterisation of A2E
[5, 61] now known to be a pyridinium bisretinoid occur-
ring as a Schiff base reaction product derived from two
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generate A2E epoxides [75]. Eldred and Katz also identi-
fied retinylpalmitate in RPE extracts [22], and this was
later confirmed as a constituent of lipofuscin [41].

More extensive analysis did not take place until 2002,
when Schutt and colleagues published a proteome of
RPE lipofuscin [65]. Using a combination of 2D-gel
electrophoresis, MALDI and HPLC-coupled electrospray
tandem mass spectroscopy they were able to identify 76
proteins representing membrane, cytoskeletal, mitochon-
drial, metabolic and phototransduction and chaperone
proteins. While these data provide an important insight
into lipofuscin composition, any cellular contaminants in
the granule preparation could have accounted for some
or many of these proteins. The same group have also re-
ported the presence of proteins modified by malondial-
dehyde, 4-hydroxynonenal and advanced glycation end-
products (AGEs) in lipofuscin granules, which supports
the view that much of lipofuscin is made up of oxida-
tively modified proteins [67].

The phototoxicity of lipofuscin

Taking into account the absorption spectra of lipofuscin,
the repeated exposure of lipofuscin to visible light and its
location in a region of high oxygenation, it is reasonable
to hypothesise that lipofuscin may have the capacity to
generate reactive oxygen species (ROS) [11, 83]. We have
previously confirmed this hypothesis by demonstrating (a)
that exposure of isolated lipofuscin granules to white light
results in the generation of superoxide anions, their rate of
production increasing with increasing light intensity and
decreasing wavelength [11]; (b) that oxygen uptake (a
measure of ROS production and susceptibility to photoox-
idation) by isolated RPE cells increases with donor age
and that this is due to lipofuscin [57]; (c) that exposure to
blue light results in the photogeneration of superoxide an-
ions, hydroxyl radicals, singlet oxygen and lipid hydroper-
oxides [26, 57, 58]; (d) that triplet excited states, singlet
oxygen and radical species produced by lipofuscin have
sufficient lifetimes to allow interaction with biomolecules
such as DNA, proteins and lipids [12]; and (e) that the in-
crease in the susceptibility to photooxidation and photoin-
duced generation of ROS per lipofuscin granule with in-
creasing donor age is due to an increase in the amount of
the chloroform-insoluble fraction rather than a change in
the concentration of chloroform-soluble fluorophores [60].

With the demonstration that lipofuscin is a photoin-
ducible generator of ROS it was not surprising that lipo-
fuscin under laboratory conditions was able to cause ex-
tragranular lipid peroxidation, inactivate lysosomal en-
zymes and reduce antioxidant activity [80]. In order to
confirm the potential of lipofuscin to cause RPE dys-
function it is important to determine whether lipofuscin
is able to elicit damage in a cellular system with a full
complement of antioxidant enzymes and repair systems.
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molecules of vitamin A aldehyde and one molecule of
ethanolamine. A2E can also exist as a slightly less hy-
drophobic photoisomer, iso-A2E, and other cis-isomers.
In addition, there is recent evidence that A2E can photo-

Fig. 1A, B Photographs of the RPE. A Electron micrograph of
human RPE from a 52-year-old donor (reproduced courtesy of
John Marshall, St Thomas’s Hospital, London). Lipofuscin gran-
ules (thick arrows) can be seen in the mid portion of the cell and
are often associated with small melanin deposits. Melanosomes
(thin arrows) can be seen in the apical portion of the cell and are
predominantly vertically oriented. Magnification ¥13,100. B Fluo-
rescence light micrograph showing RPE cells filled with fluores-
cent granules. Magnification ¥1,000
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Cultured RPE cells loaded with lipofuscin granules and
exposed to “blue” light (400–550 nm) at an irradiance of
2.8 mW/cm2 demonstrated vacuolation and blistering of
the cell membrane, a time-dependent loss of cells, loss of

lysosomal stability, a two-fold increase in the lipid per-
oxidation endproducts, malondialdehyde and 4-hydroxy-
nonemal [18] and an increase in oxidised membrane pro-
teins (Fig. 2). Early changes in RPE dysfunction (usually

Fig. 2A–F The phototoxic ef-
fects of lipofuscin on cell via-
bility and lysosomal integrity
[18]. Lipofuscin-fed cells (+)
and cells lacking lipofuscin (-)
were A exposed to “blue” light
(390–550 nm) or B exposed to
“amber” light (550–800 nm) 
or maintained in the dark for up
to 48 h. The loss of cell viabili-
ty is confirmed by the photomi-
crographs, which show C cell
death following exposure of li-
pofuscin-fed cells to blue light
for 48 h and D lipofuscin-fed
cells appearing normal after 
exposure to amber light or be-
ing maintained in the dark for
48 h. Fluorescent micrographs
of acridine orange-stained lipo-
fuscin-fed cells demonstrated 
a loss of lysosomal integrity in
cells exposed to blue light 
(E) but a normal lysosome dis-
tribution and appearance in
cells exposed to amber light
(F). Magnification ¥240



within 3 h exposure to blue light) are associated with a
decrease in lysosomal enzyme activity, a reduction in 
antioxidant status [68], changes in gene expression and
nuclear DNA damage.

Thus there is clear evidence that lipofuscin has the
potential to damage RPE cells and to increase oxidative
stress as the number of lipofuscin granules increase
throughout life. It is also likely that lipofuscin will be at
its most damaging in regions of hyperfluorescent RPE
cells as seen in some forms of AMD. However, while li-
pofuscin is likely to contribute to the ageing process and
pathology in the RPE-Bruch’s membrane complex it is
unlikely to be the sole cause with a variety of other envi-
ronmental insults and genetic susceptibilities making a
contribution.

How important is A2E?

A2E is one of the emissive molecules in the chloroform
soluble component of lipofuscin responsible for its gold-
en yellow fluorescence. Since the chloroform soluble
fraction represents only a small portion of the lipofuscin
granule with the majority being in the chloroform insolu-
ble fraction (greater than 65% in lipofuscin from individ-
uals older than 50 years of age [60]), A2E itself is only a
minor constituent of lipofuscin. A2E contained in the
chloroform soluble fraction of lipofuscin [68] has only a
minor contribution to the absorption of blue light [55],
and it is so also in the whole lipofuscin granules [32].
The majority of photoexcited A2E (above 96% in alco-
hol) returns to the ground state via non-radiative relax-
ation [40]. Even though A2E has a low quantum yield of
fluorescence [40], it can significantly contribute to lipo-
fuscin fluorescence by serving as an energy acceptor
from other blue-light-absorbing molecules of lipofuscin
and therefore increasing the number of excited A2E mol-
ecules [32].

Furthermore A2E is only weakly photoreactive due to
inefficient intersystem crossing and quantum yield of
singlet oxygen photosensitisation, which is substantially
lower than that determined for the hydrophobic compo-
nents of lipofuscin [15, 26, 40, 55, 56]. The weak photo-
reactivity of A2E in comparison to lipofuscin has also
been confirmed in cell culture experiments. Exposure of
these cells to blue light resulted in a significant loss of
cell viability by 72 h which was not observed in A2E-
loaded cells maintained in the dark [64]. A comparison in
phototoxicity between lipofuscin granules and their en-
dogenous A2E equivalent demonstrates that A2E was at
least 2 orders of magnitude less photoreactive than lipo-
fuscin, further confirming its weak photoreactivity [68].

Despite its relatively weak photoreactivity compared
to lipofuscin, studies have clearly demonstrated that A2E
can induce cellular damage and RPE dysfunction in cell
culture [73, 77]. A2E-loaded cells exposed to blue light

undergo apoptosis executed by a proteolytic caspase cas-
cade involving caspase-3 [72, 73]. Not surprisingly for a
photoreactive system, A2E mediates its action via the
generation of ROS [74] which have the ability to cause
DNA damage [76], possibly through the formation of
A2E epoxides [75].

Given the weak photoreactivity of A2E and the fact
that A2E has lysosomotropic properties [21], studies
have examined the effect of A2E on lysosomal activity.
Exogenous A2E has been shown to localise predomi-
nantly to the RPE lysosomes, causing an increase in ly-
sosomal pH [64] and exerting an inhibitory effect on
protein and glycosaminoglycan catabolic pathways [36].
This effect is likely to be mediated by the ability of A2E
to modify the properties of biomembranes and, in the
case of the lysosome, may be detrimental to the proton
pump [66]. Furthermore, the sensitivity of different cel-
lular membranes is, in decreasing order, mitochondrial >
lysosomal > Golgi / endoplasmic reticulum, with the
plasma membrane being insensitive [66]. The contribu-
tion of A2E to lipofuscin toxicity is unclear and likely to
be minimal due to its weak photoreactivity and relatively
low concentration in lipofuscin granules. In fact studies
in our laboratory (Boulton, unpublished) suggest that
A2E cannot be released from lipofuscin granules under
physiological or pathological conditions. Release can on-
ly be achieved after solvent extraction. Therefore, it
seems likely that lipofuscin acts as a sink for A2E, and
once A2E is incorporated into lipofuscin any adverse ef-
fect of A2E is negated. Thus RPE dysfunction caused by
A2E is likely to originate prior to A2E being incorporat-
ed into the lipofuscin granule, either indirectly through
modification of outer segments or through incorporation
of A2E into cellular membranes.

Melanosomes and the RPE

In the eye melanogenesis occurs first in the RPE, with
immature melanosomes visible as early as 7 weeks of
gestation in man. Between the 8th and the 14th gestatio-
nal week melanosomes at all stages of maturation can be
observed. Production ceases within the next few weeks
as the cells attain their full compliment of melanosomes
[8]. Maturation of these granules combined with poly-
merisation of melanin continues until approximately 2
years of age in human RPE cells. Thereafter, the litera-
ture is equivocal over whether melanogenesis is signifi-
cant in the adult RPE. Numerous studies support the con-
cept of melanin production (albeit at a very slow rate)
throughout life and melanogenesis can occur in patho-
logical conditions such as proliferative vitreoretinopathy
[1]. However, it appears that in the main melanosomes
are contained within the RPE throughout life (Fig. 1) and
that such granules will be exposed to a variety of envi-
ronmental and metabolic insults.
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Age-related changes in melanosomes include disori-
entation within the RPE [34], a decline in number after
the age of 40 years [24, 81], an increase in melanosome
complexes with lysosomes and/or lipofuscin [24], and
loss of melanin resulting in the transition of melanin par-
ticles with a high extinction coefficient to weakly ab-
sorbing aggregates containing less melanin per unit area;
these changes manifest as the fading of eye colour with
age [62]. In addition to the morphological features, the
photophysical characteristics of melanosomes also change
with age; absorption increases at the shorter wave-
lengths, and there is a decrease in the blue and a shift to-
wards the red in fluorescence spectra [7], which may re-
sult in diminished antioxidant potential and a reduced
ability to bind divalent cations [62]. It appears, therefore,
that melanosomes undergo significant age-related chang-
es, possibly as a result of oxidative damage [37, 63]. Re-
cent studies have reported that aged human melanoso-
mes are highly photoreactive and can result in RPE dys-
function, while young melanosomes appear to confer
photoprotection [19, 27, 59].

Is there an association between lipofuscin 
and retinal degeneration?

There is considerable circumstantial evidence to link li-
pofuscin with a variety of retinal degenerations, in par-
ticular AMD. First, pigment granules are observed in
early small drusen [30]; drusen always precede AMD.
Second, the highest density of lipofuscin is located in the
perimacular region where there is the highest density of
rod photoreceptor cells [48]. It is interesting to note that
there is a loss of rods in this region as a function of age
and in age-related maculopathy [17]. Third, high levels
of lipofuscin appear to precede RPE cell death associated
with geographic atrophy [35, 43]. Fourth, A2E, a compo-
nent of lipofuscin, has been shown to up-regulate VEGF
expression in cells exposed to blue light below the tres-
hold for cell death (Janet Sparrow, Columbia University,
personal communication); VEGF is associated with sub-
retinal neovascularisation.

Increased lipofuscin accumulation is also associated
with Leber’s amaurosis, Best’s disease and Stargardt’s
disease. In Stargardt’s, there is an abnormality in the
abcr gene that encodes an ATP-binding cassette trans-
porter which leads to a build-up of A2E within the RPE
[50].

While there is a clear association between lipofuscin
and a variety of retinal degenerations, it remains to be
proven whether such accumulation is cause or conse-
quence of retinal dysfunction.

Are RPE cells suitable for transplantation?

Both fresh and cultured RPE cells have been success-
fully transplanted into the sub-retinal space of animal
models and AMD patients. While some success 
has been observed in animal models with recovery of
vision [28, 44], results have been limited in humans
with either a halt in progression or 1–2 lines of 
improvement [3, 6]. The poor outcomes are due to
many factors: source of RPE (fresh or cultured), age of
donor, type of delivery (suspension or cell sheets), sta-
tus of host (normally late-stage disease). The influence
of melanosomes and lipofuscin on phototoxicity will
detract from the normal functioning of the RPE and
will not provide the ideal constituents for transplanted
RPE cells from aged donors. If young melanosomes
confer protection to RPE cells and aged RPE melanoso-
mes appear to be detrimental, it is the former that ideal-
ly should be present in transplanted RPE cells. Howev-
er, for fresh cells the donors tend to be elderly, while in
culture cells lose their pigment, which can reduce the
phototoxic potential of aged melanosomes but which
will fail to confer the protection provided by young
melanosomes.

From the findings presented above, the choice of au-
tologous RPE cells from aged donors, while overcoming
immune rejection, will provide a senescent, dysfunc-
tional RPE phenotype which will be unlikely to have a
major impact on recovering vision in compromised
eyes. A young or rejuvenated cell would seem the best
option, but many issues will need to be addressed to en-
sure a beneficial outcome following RPE transplanta-
tion.

Can aged RPE cells be rejuvenated?

The disposable soma theory of ageing proposes that the
soma is programmed to ensure multicellular organism
survival through development, maturity and production
of new progeny. Thereafter, the organism is no longer
required, survival is not a prerequisite and tissues begin
to degenerate. The retinal/RPE complex is no exception
to this theory, with age-related changes and retinal dys-
function appearing around the age of 50 years. With
this in mind, many RPE cells from aged individuals
may have suffered both genetically programmed and
environmentally induced ageing. Rejuvenation of aged
RPE cells to improve transplantation outcome will
present a number of challenges [e.g. ex vivo gene thera-
py to promote the “younger” RPE phenotype, up-regu-
lation of depressed enzyme systems, removal of senes-
cent changes in RPE cells (lipofuscin, AGEs) and the
potential for increased survival in a potentially hostile
host retina].
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Conclusions

In conclusion, transplantation of fresh RPE cells from el-
derly donors imposes a risk of introducing senescent cells
which, in addition to accumulated damage, will contain
photoreactive constituents—lipofuscin and modified
melanosomes. While some rejuvenation of cells can take
place in culture, and both types of pigment granules can

be “diluted” by cell division in culture before transplanta-
tion, it remains to be determined whether the presence of
pigment granules and other insults in the initial cells does
not irreversibly affect the DNA. Given the limitations of
fresh and cultured cells there is a desperate need for a ge-
netically engineered RPE cell that meets all the require-
ments of a young healthy RPE cell if RPE transplantation
is to be truly successful and restore vision.
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