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Introduction

In hydrocephalus, gross pressure-induced morphological
changes of the brain may occur such as dilatation of the
ventricles, thinning and upward bowing of the corpus cal-
losum (CC), diminution of high-convexity sulci and of cis-
terns and an interstitial oedema due to transependymal mi-
gration of cerebrospinal fluid [10–12, 29]. Motor symp-

toms and clinical signs such as parkinsonian or ataxic gait,
impaired complex movements such as handwriting, trem-
or, increased muscle tone and brisk reflexes, and some-
times extensor plantar responses [7, 10, 21, 30], have been
related to the increased intracranial pressure, with pre-
sumed secondary stretching and compression of long
tracts in the cerebral white matter of the frontal lobe, the
corona radiata and the corpus callosum. [1, 7, 10].
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Thresholds and central motor laten-
cies of corticospinally mediated re-
sponses were normal, response ampli-
tudes were smaller than in normal
subjects. Motor thresholds increased
from 38, SD 5 to 52, SD 8% (P<0.01)
within 7 days after ventricular drain-
age, reflecting the increase in the dis-

tance between stimulation coil and
brain. The threshold increase paral-
leled a restoration of normal anatomi-
cal conditions within 7 days after
shunt operation and the improvement
of motor symptoms and might be a
predictor of successful decompres-
sion. Transcallosal inhibition could be
elicited in all patients. The measure-
ments of TI lay within the normal
range except the duration, which was
prolonged in 73% of 15 patients be-
fore shunt operation as a probable in-
dicator of an increased dispersion of
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Since the functional relevance of morphological chang-
es in hydrocephalus in relation to motor function and their
reversible or irreversible nature are still unclear [33], we
tried to approach this problem by the use of transcranial
magnetic stimulation (TMS) of the cortex as a tool to in-
vestigate corticospinal [25] and callosal tract function [6,
18] and by correlating the findings with the morphological
changes of the corpus callosum on magnetic resonance
(MR) images. The questions of the reversibility of mor-
phological and functional changes and of whether the
known thinning of the CC in hydrocephalus [3, 11, 26] re-
flects an irreversible fibre degeneration or simply a poten-
tially reversible stretching of callosal fibres were ad-
dressed by serial MR imaging and neurophysiological in-
vestigations before and after ventricular shunting in a sub-
group of the investigated patients.

TMS is now well established as a diagnostic instrument
with which to assess the excitability (response threshold
and amplitude) and conductivity (central motor latencies)
of fast monosynaptic corticospinal connections [25]. Fur-
thermore TMS can be used to investigate the function of
callosal fibres that pass through the trunk of the CC and
connect the primary motor cortices of both hemispheres
[18–20]. This approach is based on the observation that fo-
cal magnetic stimulation over the motor cortex of one
hemisphere suppresses ongoing voluntary electromyo-
graphic (EMG) activity originating from the contralateral
motor cortex [6].

The effects of TMS on the motor cortex were investi-
gated in hand muscles, since only the distance between the
hand motor representations of both hemispheres is long
enough to guarantee hemisphere-selective motor cortex ac-
tivation, which is a crucial prerequisite of assessing callos-
ally mediated effects.

Methods

Patients

With ethical committee approval, fifteen patients with chronic hy-
drocephalus (mean age 57 years, range 20–85; 12 men, 3 woman)
were investigated before, and five of them also after, shunt insertion
(Table 1). Following the classification of Prokop [23], five patients
had obstructive (Table 1, patients 1–5), five communicating (patients
6–10), and five normal pressure hydrocephalus (patients 11–15). The
diagnoses were made on clinical grounds, on the basis of radio-
graphical assessment of cerebrospinal fluid dynamics, and on MR
imaging (MRI).

All investigated patients had been symptomatic for more than 2
months (Table 1) and were still able to walk (in two patients with
aid) at the time of the investigation. Clinical symptoms of the pa-
tients are summarized in Table 1. In nine patients the arm and, more
markedly, the leg tendon reflexes were increased; in patient 10 the
plantar responses was unilaterally extensor. All patients in whom
ventricular shunting was performed improved in regard to movement
velocity and postural stability of gait. Furthermore the reflex level
diminished after shunting. None of the patients were receiving medi-
cation that had any influence on central nervous system excitability.
All investigated persons gave their informed consent prior to their in-
clusion in the study.

Magnetic stimulation and recording

General procedure:Focal TMS of the motor cortex of each hemi-
sphere was performed consecutively with an eight-shaped coil (o.d.
of half-coil, 8.5 cm) of the Magstim 200 stimulator (2-T version;
Magstim Company, Dyfed, UK) with the coil centre placed over the
hand representation area. For each subject, the stimulation point for
eliciting maximal hand motor responses was determined individually
and lay, on average, 6 cm lateral to the vertex and 1 cm anterior to
the interaural line. The coil currents were directed anteroposteriorly
(with the handle of the coil pointing backwards) and the induced cur-
rents posteroanteriorly (Fig. 1). The elicited surface compound EMG
responses (electrode area 70 mm2) were recorded bilaterally from the
first dorsal interosseous muscle. Data were collected using a CED
1401 interface and a data collection program (SIGAVG, sampling
frequency of 5000/s per channel).

Thresholds of corticospinally mediated contralateral EMG re-
sponses were determined in relaxed muscles. Cortex stimulation was
performed with maximally tonically contracted muscles and 80% of
the maximum stimulator output, since for such intensities stimula-
tion effects had previously been found to lie in a range of amplitude
saturation [18]. After stimulation, 20 consecutive EMG signals elic-
ited by stimulation over each hemisphere were averaged (peak-to-
peak amplitudes, onset latency) or rectified and then averaged (other
parameters; Fig. 1). To avoid central or peripheral fatigue during
maximal tonic muscle contraction, the subjects paused for 3 min af-
ter blocks of 10 stimuli. The stimuli were applied over the cortex
with a frequency of 0.2 Hz.

To determine peripheral conduction times, magnetic stimulation
was performed over the cervical nerve roots with a standard round
coil (o.d. 11.6 cm).

Twelve healthy volunteers (aged 24–34 years, mean 28.4) served
as a reference.

Response parameters

In muscles contralateral to the side stimulated, the thresholds, ampli-
tudes, and central motor latencies of corticospinally mediated re-
sponses were measured. In muscles ipsilateral to stimulation, we de-
termined the onset latency, duration, and the transcallosal latency
(TCL) of transcallosal inhibition to investigate the function of callos-
al fibres. The procedure of measuring the different response parame-
ters is illustrated in Fig. 1.

The response threshold(% of maximum stimulator output) of
corticospinally mediated responses was determined for the relaxed
contralateral hand and defined as the stimulus intensity at which
small responses of 0.2 mV occurred in about half of the trials.

The amplitude of the contralateral EMG response was deter-
mined peak-to-peak for 20 averaged consecutive responses.

Central motor latency timeswere calculated by subtracting the
longest peripheral conduction time following magnetic root stimula-
tion from the onset latency of the fastest cortically elicited contralat-
eral EMG response.

The onset-latencyof TI was measured from the stimulation arte-
fact to a point where the signal of the averaged tonic EMG activity in
the hand ipsilateral to stimulation clearly fell under the mean ampli-
tude of the EMG activity before the stimulus.

The duration of TIwas measured from the onset of the suppres-
sion of EMG activity to a point were the EMG activity again reached
the baseline EMG activity before the stimulus.

The TCL was calculated by subtracting the onset latency of the
contralateral excitatory responses in a given muscle from the onset
latency of ipsilateral TI (Fig. 1).

In general, low thresholds, short central motor latencies and large
response amplitudes of contralateral excitatory responses indicate a
high excitability of the corticospinal system. Short TCLs and long
durations of TI of EMG activity in muscles ipsilateral to stimulation
indicate a strong activation of the callosal connections.
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The Mann-Whitney rank sum test and the Wilcoxon signed-rank
test were used for statistical analysis of the neurophysiological data
comparing the patient and the normal subject group and the patients
before and after shunt operation.

Imaging and morphometry

For MRI, axial, sagittal and coronal spin-echo T1-weighted, axial
spin-echo T2-weighted and axial proton density-weighted sequences
in a 1.5-T imager were performed. The height of the CC above a de-
fined baseline, its length as distance between genu and splenium,
and its midsagittal area (Table 1) were measured by using Kontron-
Videoplan software in all patients except patient 9, who refused MRI
owing to claustrophobia. All values in Table 1 represent means of
three consecutive measurements on the same slice by the same oper-
ator. In five patients, changes of the form and cross-sectional area of
the CC due to ventricular shunting were measured on the 7th day af-
ter the operation. The morphometrical data were compared with nor-
mative data, obtained from 22 healthy subjects (22–92 years, mean

age 45 years; 8 men, 14 woman) published by Hofmann and collabo-
rators [11].

Results

Corticospinally mediated contralateral 
excitatory responses

Before shunt operation, patients had normal central motor
latencies (6.7, SD 1.0 ms) (Table 2). In contrast, the re-
sponses amplitudes were significantly smaller in the pa-
tients than in normal subjects (5.4, SD 1.7 mV in patients
compared with 7.5, SD 1.9 mV in normal subjects;
P=0.001, Table 2), while the response thresholds lay with-

Fig. 1 Principle of transcranial magnetic motor cortex stimulation
and mode of determination of different response parameters: Stimu-
lation is performed with anteroposterior coil currents and 80% of the
maximum stimulator output and with a focal coil centred over the
hand-associated motor cortex (upper left). Stimulation of the motor
cortex of one hemisphere activates the corticospinal tract resulting in
contralateral hand motor responses (1st, 2nd and 4th EMG trace on
the right) and callosal fibres which leads to a suppression of tonic
EMG activity in maximally contracted ipsilateral hand muscles (3rd
and 5th EMG trace). To determine transcallosal conduction latency

(TCL) the onset latency of the corticospinally mediated excitatory
motor response (L) in a given muscle is subtracted from the onset la-
tency of transcallosal inhibition (LTI) in the same muscle (lower
right). Averages of 20 rectified (2nd, 3rd and 5th EMG trace) and
non-rectified surface compound EMG recordings (1st and 4th trace)
are shown. For further explanations see text. (R ID, L ID right and
left first dorsal interosseous muscle, AMP amplitude, Ti transcallosal
inhibition, DTI duration of TI). Note the different amplifications and
time bases of the recordings
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in normal range (36, SD 7% in patients compared with 40,
SD 7% in normals; P=0.1, Table 2).

Measurements made seven days after ventricular drain-
age showed a remarkable increase in the response thresh-
olds when compared with the pre-operative values (52, SD
8 post-operative compared with 38, SD 5 pre-operative;
figures reflect % of maximum stimulator output n=10
hands, P<0.003, Table 2), while the central motor latencies
and response amplitudes remained unchanged. Examples
of original recordings of one patient (patient 4) before and
after shunt insertion are shown in Fig. 2. The individual
changes of cortical response thresholds after ventricular

shunting and the corresponding changes of the area of the
CC are illustrated in Fig. 3.

Callosally mediated ipsilateral inhibition of EMG activity

In all patients, transcallosal inhibition of tonic EMG activ-
ity could be elicited. The mean onset latency of TI lay
within the normal range (37.0, SD 4.1 ms in patients com-
pared with 35.8, SD 3.6 ms in normals; P=0.8; Table 2),
but the duration of TI was prolonged in 11 of 15 patients
(13 of 30 hands) before (means, 30.3, SD 8.7 ms in pa-
tients compared with 24.8, SD 2.7 ms in normals; P <

Pat. Sex Age Type of Preoperative Duration of Preoperative morphometry of corpus
(years) hydro- symptoms symptoms callosum

cephalus (months)

Height Length Area
(cm) (cm) (cm2)

1a F 73 HO DOG 12 3.1 7.6 4.5

2a F 60 HO Vertigo 3 3.2 7.6 4.5

3 M 58 HO Lack of concentration, 3 2.9 6.9 5.2
double vision

4a M 20 HO Heachache 3 4.0 8.2 6.1

5a M 58 HO Heachache 6 2.9 6.9 5.2

6 M 32 HC DOG 3 5.2 10.1 4.6
double vision

7 M 22 HC DOG, Since birth 3.9 8.0 4.7
mental retardation

8 M 37 HC Heachache 2 4.3 9.7 2.7

9 M 59 HC Lack of concentration 3 – – –

10 M 68 HC DOG, 180 4.2 8.0 5.2
lack of concentration

11 M 85 NPH DOG, 36 3.9 7.2 4.6
urinary incontinence

12 M 79 NPH DOG, 25 3.2 7.1 4.2
dementia,
urinary incontinence

13 F 79 NPH DOG, 86 3.0 6.8 4.3
dementia

14 M 73 NPH DOG, 13 3.3 7.2 4.0
dementia

15a M 52 NPH DOG, 4 3.5 8.0 4.2
dementia,
urinary incontinence

a MRI morphometry was also investigated 7 days after ventricular drainage

Table 1 Preoperative symptoms and morphometric data of the cor-
pus callosum obtained by measurements on sagittal MR slices in pa-
tients with different types of hydrocephalus. See text and Fig. 4 for
definitions of height, length and area of the corpus callosum. All val-

ues are means of three consecutive measurements. (F female, M
male, HO obstructive, HC communicating, NPH normal-pressure
hydrocephalus, DOG disturbance of gait)
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0.01) and in four of five patients (five of ten hands, mean
32.3, SD 7.4 ms) after shunt operation. The side difference
of the duration of the TI tended to be higher than in norm-
als (7.5, SD 5.3 ms in patients compared with 3.3, SD 2.2
ms in normals; P<0.1; Table 2). In the patients, the TCL
lay within the normal range (16.0, SD 4.3 ms in patients
compared with 15.5, SD 2.5 ms in normals; P=0.9; Table
2). Shunt operation led to a significant increase in the on-
set latency of TI which even then lay within the normal
range. Other parameters of TI did not change significantly
in relation to shunt operation.

Morphometry of the corpus callosum

Figure 4 illustrates the morphological alteration of the
brain through increased intraventricular pressure in patient
4. The compression of the gyri against the skull and the
thinning of the CC regressed within 7 days after shunt im-
plantation. After shunt implantation, all morphometric
measurements became normal in the five investigated pa-
tients (Table 3, Figs. 3, 5).

Before shunt operation, the midsagittal area of the CC
was reduced by 34% on average and the height and, to a
lesser degree, the lengths of the CC were increased (Table
3). Twelve of 14 patients (except patients 6 and 7) showed
pathological periventricular white matter changes before
ventricular shunting. Figure 5 shows the mean values for
the area, height and length of the CC of the normal sub-
jects and patients before shunt operation and after ventric-

ular drainage. In hydrocephalus the height and length of
the CC were increased, while the cross-sectional area was
reduced. In patients the mean height of the CC was 3.6,
SD 0.6 cm (n=14; normal subjects, 2.5, SD 0.4, n=22, af-
ter Hofmann and collegues et [11], the length 7.8, SD 1.0
cm (normal, 7.1, SD 0.5 cm) and the area was 4.6 ( 0.8
cm2 (normal, 7.0 (1.2 cm2). The most pronounced changes
in height and length of the CC were observed in communi-
cating hydrocephalus (Fig. 5).

Discussion

In this study of patients with different types of hydroceph-
alus, the midsagittal area of the CC was found to be much
reduced and its length and height increased. These chang-
es reflect a thinning and elongation of the CC secondary to
a pressure-induced rolling out [8, 17]. The most prominent
changes were observed in patients with slowly progressive
communicating hydrocephalus. The area of the CC was re-
duced in all investigated patients and amounted to 66% of
the normal value, which was obtained with the same tech-
nique of measurements [11]. Similar findings were ob-
tained with slighly different methods [13, 16, 24]. Eighty-
six percent of the patients investigated with MRI in our
study showed periventricular white matter changes before
shunt operation. Such appearance of the periventricular
white matter has been attributed to an axonal loss of cal-
losal fibres [9], probably as a consequence of a reduced

Normal subjects All patients (pre-shunt) Patients pre-shunt Patients post-shunt
(12 subjects/24 hands) (15/30) (5/10) (5/10)

Corticospinally mediated contralateral excitation
Response threshold   40 (7) (33–55) 36 (7) (21–45) 38 (5) (28–45) 52 (8) (43–64)#

(%Max.) 
∆ R/L 3 (4) (0–11) 4 (4) (0–13)

CML (ms) 6.7 (1.0) (4.6–8.8) 6.6 (0.8) (5.2–8.8) 6.7 (0.3) (5.6–8.6) 6.7 (1.0) (5.2–8.0)
∆ R/L 0.6 (0.4) (0–1.2) 0.8 (0.7) (0–2.2)

Amplitude (mV) 7.5 (1.9) (3.1–10.6) 5.4 (1.7) (2.3–8.6)* 4.7 (1.8) (2.3–7.4) 4.9 (0.8) (3.7–5.9)
∆ R/L 1.7 (1.2) (0.1–4.0) 1.7 (1.8) (0.3–6.3)

Transcallosal ipsilateral inhibition
Latency of TI (ms) 35.8 (3.6) (25.2–40.4) 37.0 (4.1) (32.2–51.6) 34.9 (1.9) (33.2–39.2) 37.4 (2.6) (34.4–40.8)##

∆ R/L 2.6 (2.0) (0.2–7.0) 3.5 (4.2) (0.6–16.2)
Duration of TI (ms) 24.8 (2.7) (19.2–30.1) 30.3 (8.7) (17.8–51.2)* 29.5 (6.6) (21.0–41.4) 32.3 (7.4) (24.0–44.2)

∆ R/L 3.3 (2.2) (0.4–7.6) 7.5 (5.3) (1.6–20.8)
Transcallosal 15.5 (2.5) (10.2–20.0) 16.0 (4.3) (10.0–31.0) 13.8 (2.8) (10.0–19.2) 15.7 (2.5) (12.8–20.8)
latency (ms)  

∆ R/L 2.1 (2.1) (0.2–7.6) 3.6 (4.5) (0.4–17.2)

*P<0.001, #P<0.01, ##P<0.05

Table 2 EMG effects of transcranial magnetic cortex stimulation in
hand muscles: Different parameters of corticospinally mediated con-
tralateral excitatory effects and transcallosal inhibition of tonic vol-
untary ipsilateral EMG activity. Data for all investigated patients and
a subgroup of patients investigated before and after shunt operation.
For comparison, our own normative data are given (mean values

(SD), ranges in parentheses). ∆ R/L right-left difference, CML cen-
tral motor latency, TI transcallosal inhibition. Statistical analysis was
performed with the Mann-Whitney rank sum test (* normal com-
pared with patients) and the Wilcoxon signed-rank test (#, ## pre-
compared with post-shunt operation)
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number of capillaries, and thus reduced tissue perfusion
[4]. Furthermore it is claimed that continuing ventricular
dilatation causes an irreversible destruction of callosal fi-
bres and may lead to permanent gliosis [27, 29]. However,
Adams and Victor emphasize that the degree of fibre inju-
ry is “not to the extent that one might expect from the de-
gree of compression” [2]. The normalization of the area
and the deconvolution of the CC within 7 days after onset
of ventricular drainage in all investigated patients exclude
a pressure-induced atrophy of a significant number of cal-
losal tract fibres and hint at a relaxation of the previously
stretched and pulled callosal fibres. Our findings do not re-
veal the time course of the reconstitution of the gross brain
anatomy which might have occurred already after 48–96 h
of decompression [5, 27]. Short-term morphological
changes cannot be investigated in man, since there is con-
sent that a quick decompression of hydrocephalus should

Fig. 2 Example of original EMG recordings of contralateral excita-
tory and ipsilateral inhibitory effects of transcranial magnetic motor
cortex stimulation in patient 2 with hydrocephalus before (pre-shunt)
and after (post-shunt) ventricular drainage. In contralateral muscles,
shunting led to corticospinally mediated excitatory hand motor re-
sponses (upper two traces) with a reduced amplitude and number of
late components (traces 3 and 4). In ipsilateral muscles the duration
of transcallosal inhibition of EMG activity (lower two traces) be-
came shorter. Traces 3–6 are rectified and averages of 20 responses
each. See stimulation conditions and response parameters in Fig. 1

Fig. 3 Shunt-related changes of the cortical threshold for transcra-
nially elicited corticospinally mediated hand motor responses (mean
values and 1SD, individual threshold changes of ten hemispheres)
and of the area of the corpus callosum (five brains). Measurements
were made before (pre) and seven days after (post) ventricular drain-
age

Fig. 4 Midsagittal T1-weighted MRI scans of the brain of patient 4
with hydrocephalus due to aquaeductal stenosis before (pre-shunt)
and after (post-shunt) ventricular drainage (TR 480 ms/ TE 12 ms,
1.5 T). Shunt operation normalized the pressure-induced dilatation
of the third and lateral ventricles, thinning of the corpus callosum
and diminution of supratentorial sulci
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be avoided to reduce the risk of intracranial bleeding or
slit ventricle syndrome [2].

A large-scale fibre atrophy of callosal fibres due to hy-
drocephalus can also be excluded on the basis of this first
systematic neurophysiological callosal “disconnection”

test in man with TMS of the cortex, which did not reveal
increased interhemispheric conduction times. The pro-
longed duration of TI hints at an increased dispersion of
callosal excitation volleys. The simple approach of the in-
vestigation of transcallosal suppression of voluntary EMG
activity in small hand muscles ipsilateral to cortex stimula-
tion allows an assessment of the function of fibres con-
necting the primary motor cortex of both hemispheres [20]
passing through the trunk of the CC [18, 19] which is
roughly in accordance with anatomical studies in monkeys
[22]. When the interhemispheric distances and the tran-
scallosal conduction latency of, on average, 15 ms were
taken into account, a callosal conduction velocity of about
10 m/s was calculated [18], which suggests an activation
of large-diameter callosal fibres [32], which should theo-
retically be the fraction of callosal fibres most sensitive to
pressure-induced lesions.

However, before ventricular drainage, an interhemi-
spheric inhibition could be elicited in all patients. All pa-
rameters lay within normal range except the duration of
TI, which was uni- or bilaterally prolonged in 73% of the
15 patients before and four of five patients after shunt op-
eration. The persisting prolonged duration of TI even 7
days after decompression might reflect a continuing in-
creased dispersion of callosal impulse conduction due to
continuing oedema of periventricular white matter or that,
despite restoration of the macroscopic anatomy, histologi-
cal changes persist [26]. Even 7 days after shunt operation,
persistent patchy areas of fluid accumulation are still to be
seen scattered within the CC [27]. Furthermore, ependy-
mal disruption and periventricular interstitial oedema were
observable in cats after ventricular decompression at a
stage in which the ventricles were already of normal vol-
ume and the cortex of normal thickness [27]. Shunt opera-
tion led to a significant increase in the onset latency of TI
but which even then lay within normal range. This might

Subjects (n) Normal Hydrocephalus patients
subjects

All HO HC NPH pre-shunt post-shunt

22 14 5 4 5 5 5

Height (cm) 2.5 (0.4) 3.6 (0.6) 3.2 (0.5) 4.4 (0.6) 3.4 (0.3) 3.3 (0.5) 2.5 (0.2)

Length (cm) 7.1 (0.5) 7.8 (1.0) 7.5 (0.6) 9.0 (1.1) 7.3 (0.4) 7.7 (0.7) 7.2 (0.2)

Area (cm2) 7.0 (1.2) 4.6 (0.8) 5.2 (0.6) 4.3 (1.1) 4.3 (0.2) 5.0 (0.7) 6.7 (0.4)

Table 3 Height, length and area
of the corpus callosum obtained
by measurements on sagittal
MRI-slices in patients with 
different types of hydrocephalus
(HO obstructive, HC communi-
cating, NPH normal-pressure
hydrocephalus). In 5 patients,
measurements were performed
before and after shunt operation.
(Means (1 SD)). Reference 
values after Hoffmann and 
collegues [11]

Fig. 5 Morphometric data of the area, height (h) and length (l) of the
corpus callosum in 14 patients with occlusive (HO), communicating
(HC), and normal pressure hydrocephalus (NPH). In five patients
measurements (mean values of three consecutive measurements in
each patient) were made before and after ventricular drainage (see
also Fig. 5). Reference values were taken from another study using
the same technique of morphometry [11]. (black areasmean values;
white areas1SD, see also Table 2)
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