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Abstract
Multiple sclerosis (MS) is a demyelinating neurological disorder with a highly heterogeneous clinical presentation and course 
of progression. Disease-modifying therapies are the only available treatment, as there is no known cure for the disease. 
Careful selection of suitable therapies is necessary, as they can be accompanied by serious risks and adverse effects such 
as infection. Magnetic resonance imaging (MRI) plays a central role in the diagnosis and management of MS, though MRI 
lesions have displayed only moderate associations with MS clinical outcomes, known as the clinico-radiological paradox. 
With the advent of machine learning (ML) in healthcare, the predictive power of MRI can be improved by leveraging both 
traditional and advanced ML algorithms capable of analyzing increasingly complex patterns within neuroimaging data. The 
purpose of this review was to examine the application of MRI-based ML for prediction of MS disease progression. Studies 
were divided into five main categories: predicting the conversion of clinically isolated syndrome to MS, cognitive outcome, 
EDSS-related disability, motor disability and disease activity. The performance of ML models is discussed along with 
highlighting the influential MRI-derived biomarkers. Overall, MRI-based ML presents a promising avenue for MS prog-
nosis. However, integration of imaging biomarkers with other multimodal patient data shows great potential for advancing 
personalized healthcare approaches in MS.
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Introduction

Multiple sclerosis (MS) is the primary cause of neurological 
disability afflicting young adults, with a worldwide preva-
lence of more than 2.5 million people [1, 2]. Although there 
is uncertainty surrounding the exact cause of MS, its multi-
factorial nature has been established, arising from a combi-
nation of various factors including genetics, vitamin D defi-
ciency, Epstein–Barr infection, smoking and obesity [3, 4]. 
MS affects the central nervous system (CNS), characterized 
by demyelinating lesions throughout the brain, optic nerves 
and spinal cord, and followed by neurodegeneration [5, 6].

Two main disease courses are observed in MS. The first 
involves cycles of relapse and remission, known as relapse-
remitting MS (RRMS), which often commences in younger 
individuals, and is followed by slow, gradual progression at 
later stages known as secondary progressive MS (SPMS). 
The second course, which only represents around 10% of 
cases [7], is more common in older adults, bypassing the 
cyclic nature and following a continuous course of disease 
progression, termed primary progressive MS (PPMS) [8].

The earliest manifestation of MS is known as clini-
cally isolated syndrome (CIS), which resembles relapses 

occurring in MS but manifests as an isolated incident and 
does not necessarily progress to overt MS [9]. Recent evi-
dence also points to the possibility of a prodromal phase in 
disease evolution, in which non-specific neurological symp-
toms occur but do not qualify as CIS or definite MS [10]. 
While not officially part of the MS spectrum, radiologically 
isolated syndrome (RIS) involves the discovery of white 
matter (WM) lesions indicative of demyelinating disease 
without accompanying clinical symptoms [11, 12]. More 
than fifty percent of individuals with RIS develop clinical 
symptoms within a decade [13].

Despite the central focus on lesion formation and dis-
semination in MS [14], disability progression often occurs 
irrespective of new findings of lesions [15]. Two distinct 
processes contribute to disability accumulation in MS, 
namely relapse-associated worsening and progression inde-
pendent of relapse activity (PIRA) [16, 17]. Due to the 
significant contribution of PIRA and the limited success 
of immunomodulatory therapy in MS, the current autoim-
mune dogma has been challenged, suggesting the disease is 
essentially caused by a diffuse smoldering process with focal 
inflammation as a secondary manifestation [15].

MS profoundly affects quality of life through disability 
accumulation [18] and a wide range of symptoms. While 
there is no cure, a broad spectrum of disease-modifying 
therapies (DMTs) are available for slowing down disease 
progression and disability accumulation [19, 20].

Hence, predicting a patient’s course of disease and risk 
of progression is pertinent to properly evaluate the benefits 
of early intervention while minimizing the adverse effects 
associated with DMT administration, particularly highly 
effective treatments [21, 22]. However, the heterogeneous 
nature of MS disease course precludes an accurate prediction 
with existing prognostic indices and established biomark-
ers [23], which take a ‘one size fits all’ approach without 
accounting for individual differences. Artificial intelligence 
(AI) applications are now extensively being researched for 
the purpose of personalized healthcare [24], including their 
use in MS [25].

Magnetic resonance imaging (MRI) has proven to be a 
pivotal imaging biomarker in MS, playing an essential role 
in diagnosis, monitoring, prognosis, and outcome assess-
ment [26, 27]. However, expert visual inspection of images 
is laborious and time-consuming, bringing about the need 
for automated tools to extract beneficial biomarkers [28]. 
Furthermore, despite the leaps in MRI biomarker extraction, 
their association with clinical disability in MS remains mod-
erate at best [29]. To overcome this issue, current research is 
now combining MRI predictive power with AI, particularly 
machine learning (ML) [30].

Significant milestones in the MS disease course are the 
conversion of CIS to clinically definite MS and subsequent 
signs of increased disease activity reflecting the exacerbation 
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of MS-related disabilities. The most prominent of these dis-
abilities with the greatest impact on quality of life are motor 
and cognitive impairments [31], with the Expanded Disabil-
ity Status Scale (EDSS) representing the current standard for 
assessing MS-related disability [32]. However, the EDSS 
heavily emphasizes ambulation as a disability measure, with 
limited contribution of cognition and upper limb function, 
particularly toward the higher end of the scale [33] ⁠, neces-
sitating additional assessments for a comprehensive picture 
of disability in MS patients. Furthermore, these aspects of 
disability should be independently assessed as they do not 
necessarily manifest together [34].

The current review provides a comprehensive overview of 
ML models integrating MRI biomarkers for the task of pre-
dicting disease progression in MS. Various reviews on the 
applications of ML in MS exist in the literature [28, 35–37]. 
However, this work provides a more focused perspective 
integrating disease progression, MRI biomarkers and ML 
methods. As such, this paper is meant to serve as a reference 
for both clinicians and researchers for this application.

Methods, scope and structure

To identify relevant studies for this review, Web of Science, 
Scopus and PubMed were searched for original research 
papers published between January 2015 and July 2024 with 
the following keywords: “machine learning” OR “artificial 
intelligence” OR “neural networks” OR “deep learning” 
AND “multiple sclerosis” OR “MS”) AND (“MRI” OR 
“magnetic resonance imaging”). Additional records were 
identified through hand search of relevant studies and review 
papers.

Research papers were included if they adhered to the fol-
lowing criteria: (1) Applied ML techniques in predictive 
tasks for MS disease progression, (2) incorporated MRI bio-
markers as predictors and (3) involved predictive modeling 
with longitudinal data, using baseline data to forecast future 
outcomes. The results of the search are outlined in Fig. 1.

Through the identified body of research, studies inves-
tigating the value of ML algorithms in predicting MS dis-
ease course included the five following areas: predicting the 
conversion of CIS to MS, cognitive outcome, EDSS-related 
disability, motor disability and disease activity.

The current review is structured in accordance with the 
existing literature into the aforementioned five tasks. Sec-
tions “Magnetic resonance imaging biomarkers in MS” and 
“Overview of machine learning” aim to provide an overview 
of MRI-derived biomarkers (see Fig. 2) and ML methods for 
unfamiliar readers, and subsequent sections discuss each of 
the MS predictive tasks including the utilized ML models, 
MRI-derived predictors and model performance.

Magnetic resonance imaging biomarkers 
in MS

MRI has proven to be a pivotal imaging biomarker in MS, 
playing an essential role in diagnosis, monitoring, progno-
sis, and outcome assessment [26, 27, 38, 39]. Conventional 
MRI modalities utilized in MS include T1 (T1w) and 
T2-weighted imaging (T2w), and fluid-attenuated inver-
sion recovery (FLAIR). WM lesions have a characteristic 
hyperintense appearance on T2w and FLAIR. Some MS 
lesions are also visible on T1w as hypointensities and are 
commonly termed as black holes [40–42]. When employ-
ing gadolinium-based enhancement with T1w images 
(T1w-Gd), active lesions can be captured through the leak-
age of Gd through the compromised blood brain barrier, 
creating a hyperintense appearance [43].

Classic MRI biomarkers usually involve quantification 
through the number and volume of these lesions. How-
ever, these conventional lesion biomarkers, such as the 
number of lesions, are only moderately associated with 
MS clinical disability and disease progression at best [29], 
commonly referred to as the clinico-radiological paradox 
(CLRDP), primarily due to their failure to capture the dif-
fuse effects of the disease on the WM beyond the focal 
lesions [40, 44]. Resolving this paradox is at the forefront 
of contemporary MS biomarker research for both cognitive 
and physical outcomes of MS [29, 45–48].

MS prolonged inflammatory activity can be deter-
mined through the presence of an iron-laden paramag-
netic rim (PRL) surrounding chronic lesions, visualized 
with susceptibility-based MRI. Another viable biomarker 
of chronic inflammation is the slowly expanding lesions 
(SELs) [49, 50], that exhibit a linear expansion on con-
secutive T1w and T2w scans due to chronic demyelina-
tion. SELs contribute to MS disease trajectory and are of 
particular interest due to their association with smoldering 
disease activity [15]. The central vein sign is a relatively 
new imaging biomarker, appearing due to the perivenu-
lar nature of MS lesions, and can be captured in ultra-
high field MRI studies and T2* sequences [51]. It appears 
as a central line hypointensity, manifesting partially or 
completely within the lesion. Its primary function is in 
diagnosis, as it can successfully discriminate MS from 
disorders with a similar presentation of WM hyperintensi-
ties, such as neuromyelitis optica spectrum disorder and 
cerebral small vessel disease [52, 53]. However, some 
recent studies have raised the possibility that CVS may 
be a prognostic biomarker of RIS converting to MS [54]. 
Originally thought to be restricted to the WM, MS lesions 
also impact the gray matter (GM), including both corti-
cal and deep subcortical regions [5, 6, 55, 56]. Within 
this context, multiple measures have been explored, such 
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as cortical volume/thickness (whole vs. regional), whole 
brain parenchymal volume, subcortical volume (i.e., thala-
mus), as elaborated in the subsequent chapters focusing 
on predicting the course of MS disease. Furthermore, GM 
pathology has been observed earlier in the disease than 
WM damage and may also contribute to the CLRDP seen 
when only accounting for focal WM lesions [57], and is 
better correlated with physical and cognitive disabilities in 
patients [58, 59]. GM damage cannot be visualized clearly 
using T2w and FLAIR sequences due to the low myelin 
content and poor contrast generated by demyelination 
[55, 60, 61]. Thus, there have been increasing efforts to 
develop alternatives aiding the quantification of GM dam-
age. Double inversion recovery offers superior sensitivity 
for the detection of cortical lesions by contrast enhance-
ment through suppression of WM and cerebrospinal fluid 

(CSF) signals, though its acquisition is time-consuming 
and suffers from artifacts [62, 63]. Alternatively, phase-
sensitive inversion recovery can be used with comparable 
performance while being acquired in a clinically feasible 
timeframe [63].

While MRI investigations concerning MS have centered 
on the brain, it's crucial to note that the spinal cord also plays 
a significant role in MS-related disability. However, conduct-
ing MRI scans of the spinal cord presents more challenges 
due to its smaller anatomical size and heightened suscep-
tibility to artifacts compared to brain MRI, explaining the 
lack of inclusion of this biomarker in the prediction of MS 
disease outcomes [64].

Further, some of the more advanced MRI biomarkers, 
that quantify damage beyond focal lesions, are the diffusely 
abnormal WM (DAWM) and the normal appearing WM 

Fig. 1   Search methodology. The flow diagram depicts the records identified by searching three databases, in addition to hand searches through 
reference lists of relevant studies and review papers



Journal of Neurology	

(NAWM). NAWM appears healthy on conventional MRI, 
but damage within can be visualized using advanced MRI 
(e.g., Diffusion weighted (DWI)/ Diffusion tensor imaging 
(DTI)-based fractional anisotropy (FA) and mean diffusiv-
ity (MD)) [65] and histopathology [66]. On the other hand, 
DAWM is widespread, appearing isointense to GM on con-
ventional MRI, and is commonly situated near the occipital 
horns of the lateral ventricles (LV) [66–69]. Another prop-
erty of integrity that can be used as an indirect measure of 
myelin content in brain tissue is the magnetization transfer 
ratio (MTR) [70], which has been shown to relate to motor 
disability in MS [71].

Finally, an alternative approach to representing lesion-
inflicted damage in MS is through structural connectivity, 
which can be measured by tractography with DWI and DTI. 
Using this method, the brain is represented as a mathemati-
cal graph with GM structures as nodes and WM tracts as 
connecting edges. As such, WM lesions lead to disruptions 
in neuronal connectivity, and these structural disconnections 
are associated with cognitive and motor impairment in MS 
patients [72, 73]. In addition to structural MRI, useful bio-
markers in MS can be obtained from functional MRI (fMRI) 
through measures of functional connectivity (FC) [74, 75]. 

Recent research on FC emphasizes the notable effects on 
deep GM regions, particularly the thalamus, where both 
increased FC (with hippocampus, motor, occipital, tempo-
ral cortical region) and decreased FC (with frontal cortical 
regions) was observed [75].

Overview of machine learning

Big data is at the center of modern healthcare, revolutioniz-
ing the way we understand and approach medical challenges. 
The advent of AI has empowered the processing of vast 
datasets in an unprecedented manner, enabling healthcare 
professionals to effectively analyze patient data and make 
informed decisions [76–78]. ML is one of the most utilized 
branches of AI, particularly in healthcare applications [79]. 
ML avoids explicit programming in favor of a task- or data-
driven approach in which a specific algorithm is fit to the 
supplied data with the purpose of learning features that may 
be generalized to make predictions on new, unseen data [80]. 
The two main branches of ML are supervised and unsuper-
vised learning [81].

Fig. 2   MRI-based biomarkers for MS. Traditional biomarkers include 
lesion features, such as lesion count, volume and location, in addition 
to the volume of various brain structures. More recent biomarkers 
include the central vein sign (CVS), paramagnetic rim lesions (PRL), 
diffusely abnormal white matter (DAWM) and normal appearing 

white matter (NAWM). NAWM is not visible on conventional MRI, 
but can be measured indirectly through structural integrity features 
such as those summarized above. Additionally, biomarkers derived 
from network neuroscience, including structural and functional con-
nectivity measures, are useful in characterizing MS
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The major factor distinguishing supervised from unsu-
pervised ML is the availability of labeled data. Supervised 
learning involves mapping input data to output labels using 
a predefined mathematical function, including either clas-
sification or regression. Classification tasks aim to predict 
discrete labels, while regression is used to predict con-
tinuous output [82]. Classification can be used to predict a 
binary outcome, known as binary classification, or for three 
or more outcomes, known as multi-class classification [83]. 
Contrarily, unsupervised ML is employed to learn underly-
ing patterns from unlabeled data, comprising primarily of 
dimensionality reduction and clustering tasks [80].

The primary problem in ML is overfitting, whereby the 
model memorizes patterns—including noise—from the data 
it is trained on, leading to subpar performance on unseen 
data. The main causes of overfitting, which impairs the mod-
els' capacity for generalization, are insufficient training data 
and unduly complicated models. Reducing learnable param-
eters (model complexity) and obtaining additional training 
data via augmentation techniques are two ways to mitigate 
overfitting [84, 85].

Examples of supervised learning algorithms include 
linear (LR) and logistic regression (LoR), support vector 
machine (SVM), K-nearest neighbors (KNN) and naïve 
Bayes (NB). LR is the most basic form of regression, map-
ping predictors linearly to a continuous outcome variable 
[86]. Generalized linear models (GLM) are a class of models 
that extend LR by allowing for different types of distribu-
tions for the dependent variable, using a link function to 
model the relationship between the dependent and independ-
ent variables. LoR is a type of GLM that assumes a linear 
relationship between the predictor variables and the logit 
of the outcome, and produces output bounded between 0 
and 1. This is useful for classification tasks, as a threshold 
can be applied to the output to produce binary classes of 0 
and 1. When more than 2 classes are used, it is known as 
multinomial LoR [87].

SVMs can be used for both classification and regression 
tasks, utilizing a subsample of the training data known as 
the support vectors to find an optimal hyperplane capable of 
maximizing the separation between the classes of interest. 
Depending on the linear separability of the dataset, various 
kernel functions can be used such as linear, radial and poly-
nomial kernels [88, 89]. Another algorithm for classification 
and regression is KNN. This model does not explicitly map 
variables to their labels, but instead relies on the proximity 
of data points in the feature space. When a new data point is 
introduced to the model, its label is predicted based on the 
labels or values of a predetermined number, or k, of its near-
est neighbors [90]. On the other hand, NB, which is based 
on Bayes theorem, is primarily used for classification [91].

Additional, tree-based algorithms are decision trees (DT) 
and random forest (RF). DTs work by continuously dividing 

the data into smaller subsets according to various attrib-
ute values until a predefined stopping condition is reached. 
This iterative partitioning creates a tree-like diagram where 
each node signifies a decision point or a split based on a 
particular attribute [92–94]. RFs are an extension of DT, 
which combine a number of DTs as base learners to form 
a more robust model by averaging the predictions of indi-
vidual trees [95, 96]. This technique is known as ensemble 
learning, which can also aid in alleviating overfitting [97]. 
Another form of ensembles is boosting, which iteratively 
adds weaker base learners, or DTs in this case, with each 
new tree added to correct the errors made by the previous 
ones, thereby improving the model's overall accuracy and 
robustness. Examples of this are Adaptive Boosting (AdB), 
Gradient Boosting (GB) and eXtreme Gradient Boosting 
(XGBoost) [95, 96].

Unsupervised ML, as previously referred to, identifies 
underlying patterns or structures within the data without 
requiring labeled outcomes. Clustering algorithms, such as 
k-means clustering, partition datapoints into groups based 
on similarities or distances from each other, aiming to 
minimize within group variance and maximize intergroup 
variance [98, 99]. For example, Gaussian Mixture Models 
(GMMs) extend the concept of Gaussian Probability (GP) 
using multiple Gaussian distributions to model complex data 
structures. While GP describes a single Gaussian, GMMs 
combine several components, each with their mean and 
covariance [98].

Alternatively, dimensionality reduction techniques trans-
form datasets into a lower-dimensional space while retaining 
as much of the original variability or essential information as 
possible [98, 99]. Examples of this are principal component 
analysis (PCA) and the uniform manifold approximation and 
projection (UMAP). Where PCA finds linear combinations 
of the variables, UMAP captures nonlinear relationships by 
preserving the local and global structure of the data in the 
reduced space [100].

The aforementioned algorithms are part of traditional 
ML, requiring feature engineering to curate raw data into 
useful features that can greatly influence model performance 
[101]. Additionally, the emergence of high dimensional data-
sets brought about the well-known “curse of dimensional-
ity”, when features are highly sparse and exceed the number 
of training points. High dimensionality can also contribute to 
overfitting, thus requiring feature selection methods to select 
a smaller subset of the variables, or projection into a smaller 
feature space through dimensionality reduction techniques 
discussed above [102]. Feature selection can be carried out 
in three different manners according to the level of integra-
tion with the model. Filter methods are done independently 
prior to model training, and rely on statistical techniques 
such as correlation analysis or information gain. Wrapper 
methods, on the other hand, are employed as part of the 



Journal of Neurology	

training process. Feature selection relies on the performance 
of the model, such as recursive feature elimination (RFE), 
where features with the least importance are systematically 
removed, and the model is re-evaluated until the optimal 
subset of features is identified. Finally, embedded methods 
are integrated into the training algorithm of the model, such 
as the addition of regularization, which penalizes added 
complexity by shrinking or eliminating the contribution of 
some features, thereby automatically performing feature 
selection. Examples include LASSO and ridge regulariza-
tion, often combined with LR and LoR modeling [103–105].

Deep learning (DL) is a branch of ML that differs from 
traditional techniques by removing the necessity for feature 
engineering [101]. In essence, DL can be seen as a revival 
of the artificial neural network, where artificial neurons 
are arranged in stacked layers [106]. Modern DL architec-
tures include multilayer perceptrons (MLP), convolutional 
neural networks (CNN), recurrent neural networks (RNN), 
generative adversarial networks (GAN), long short-term 
memory networks (LSTM), gated recurrent units (GRU), 
and encoder-decoder, among others [107].

CNNs are the most popular architecture for computer 
vision applications, consisting of a series of layers that 
obtain latent features from an image in a process known 
as feature extraction, which is done through convolutional 
operations that apply filters to the input image [108]. Resid-
ual Networks (ResNet) is a deep CNN architecture that uses 
skip connections, or residual learning, to allow for deeply 
stacked layers without suffering performance degradation 
[109]. Another form of deep CNN consisting of either 16 
or 19 layers is the VGG-Net architecture, which works by 
capturing fine-grained patterns through small convolutional 
filters [110]. Specifically designed for image segmentation, 
the U-Net architecture is another variation of the CNN, in 
which an encoder–decoder structure is used to first compress 
the input image into a lower-dimensional representation and 
then reconstruct it with high spatial resolution, enabling pre-
cise localization of features within the image [111].

A specialized form of DL models, known as the graph 
neural network (GNN), is useful for handling data structured 
as graphs, composed of a series of vertices and edges, with 
edges representing the relationships between vertices. Such 
models are especially useful in neurological disorders, where 
different brain regions and their connectivity patterns can be 
modeled as graphs. Examples of GNN architectures include 
graph convolutional networks (GCN) and graph attention 
networks (GAT) [112–115].

Despite rapid developments in ML and DL algorithms, 
numerous challenges persist in healthcare predictive tasks. 
Medical datasets often suffer from class imbalance due to 
the relatively low prevalence of certain conditions. Most 
classification algorithms do not perform well on imbalanced 
datasets, often showing bias toward the majority class [116]. 

To address this, popular methods include up-sampling of the 
minority class, such as the synthetic minority oversampling 
technique (SMOTE) [117].

Another major challenge in disease risk prediction is the 
black box nature of many predictive models. Commonly 
used models, such as RF, SVM, and DL models, are effec-
tive but often lack interpretability. This lack of transparency 
can hinder their utility in healthcare, where clear and under-
standable explanations are crucial for supporting medical 
professionals in decision-making. To circumvent this, vari-
ous interpretability methods have been developed, including 
Shapley Additive exPlanations (SHAP), which borrows from 
game theory to assess the importance of predictive features 
after model training [118, 119].

Medical image analysis has undergone a transformation 
with the wake of DL, producing impressive outcomes in 
tasks like registration, segmentation, and classification [108, 
120]. Neuroradiology is at the forefront of ML and DL appli-
cations, and MS ranks among the ten most actively explored 
neurological diseases in this area of research [37]. Applica-
tions have included MS diagnosis, disease course, disability 
progression, in addition to treatment responses [35, 36, 121]. 
Figure 3 displays the most popular ML algorithms utilized 
for prognostic tasks in MS with the inclusion of MRI-based 
biomarkers.

Machine learning studies for the prediction 
of multiple sclerosis progression with MRI 
biomarkers

This section offers a discussion of the most recent studies 
integrating MRI biomarkers into ML models for the prog-
nosis of MS progression. Disease prognosis is divided into 
five main categories: conversion of CIS to overt MS, cogni-
tive outcome, EDSS-related disability, motor disability and 
disease activity. The model architectures and MRI-derived 
biomarkers are discussed, and details for included studies are 
displayed in Tables 1, 2, 3, 4, 5, 6. Additionally, Fig. 4 shows 
the frequency of use for different ML model types across the 
five prognostic applications, and Fig. 5 illustrates biomark-
ers used throughout the discussed studies, specifically those 
related to MS lesion imaging.

Conversion of clinically isolated syndrome to overt 
multiple sclerosis

CIS describes the condition preceding MS, in which patients 
present with a single episode suggestive of CNS demyeli-
nation, most often impacting the optic nerve, brain stem or 
spinal cord [11, 122] ⁠. For a diagnosis of CIS, episodes must 
persist for at least 24 h without qualifying for a diagnosis 
of MS, and devoid of signs and symptoms indicative of an 
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alternative condition [123] ⁠. While 85% of MS patients origi-
nally present with CIS, around 20% of those with CIS never 
progress to overt MS [124], implying a heterogeneous and 
unpredictable course of disease.

Timely administration of DMTs can delay CNS damage 
and prevent future disabilities [124, 125], but comes with 
several risks, such as serious infections and DMT-specific 
infections [126–128]. Therefore, caution is required for 
selecting patients most likely to benefit from early interven-
tion, which is currently problematic due to the low speci-
ficity of the 2017 McDonald criteria [14] alone for identi-
fication of early MS [124]. Therefore, advancing methods 
to predict CIS to MS conversion is vital for personalized 
patient care, including the utilization of ML with MRI bio-
markers for this purpose.

In [129–132], traditional ML algorithms were employed 
for predicting CIS conversion to MS. In Zhang et al. [129] 
and Bendfeldt et al. [131], MRI-derived lesion geometric 
features were highlighted as features of importance. The 
first study [129] utilized a RF model incorporating lesion 
shape features, with minimum sphericity, surface–volume 
ratio as well as mean lesion volume, achieving a superior 
specificity compared to the 2010 McDonald criteria (50% 
versus 22%). The second study [131] employed linear and 
kernel-based SVMs, integrating Minkowski functionals of 
lesion geometry from T1w-Gd lesion masks (volume, sur-
face area, mean breadth and Euler-Poincare characteristic). 
Combining these features with clinical variables achieved 

an accuracy of 70.4% in patients under interferon beta-1b 
treatment, particularly when summarizing lesion charac-
teristics for the entire brain as opposed to specific regions 
of interest.

For Wottschel et al. [130] and Rasouli et al. [132], lesion 
location was accounted for as a MRI predictor. In [130]⁠, the 
average distance of lesions from the brain center and the 
shortest distance from the vertical axis horizontally were 
selected as influential features through forward RFE and 
subsequent SVM modeling. In [132], an XGBoost model 
was employed using clinical, demographic, and brain/spinal 
cord MRI lesion location to predict conversion to MS within 
10 years. The model achieved an area under the receiver 
operating characteristic curve (AUROC) of 0.858 on test 
data, with periventricular and infratentorial lesions emerging 
as the strongest predictors as determined by SHAP.

Tayyab et al. [133] introduced two aspects of novelty 
to their predictive model. First, the volumes of deep GM 
nuclei were included as predictor variables along with T2-w 
lesion load, brain parenchymal fraction (BPF) and anatomi-
cal location of CIS onset. Second, instead of excluding par-
ticipants with uncertain outcome labels, they were included 
in a probabilistic RF model, which models outcome as a 
probability rather than a deterministic label. This approach 
outperformed models trained by either excluding subjects 
with uncertain labels or assigning post hoc labels. In terms 
of feature importance, thalamic and lesion volumes were 
the highest-ranking predictors. This model achieved a 

Fig. 3   The application of MRI-based biomarkers and ML methods 
for prognostic tasks in MS. The most popular ML algorithms include 
logistic regression (LR), support vector machine (SVM), random for-
est (RF), multilayer perceptrons (MLP) and convolutional neural net-

works (CNN). Prognostic applications include predicting the conver-
sion of clinically isolated syndrome (CIS) to MS, cognitive outcome, 
EDSS-related disability, motor outcome and disease activity
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Table 1   ML models for prediction of CIS conversion to overt MS, along with MRI-based biomarkers and performance metrics
Study Cohort size MRI 

modality 
ML model MRI biomarkers Additional 

biomarkers 
Prediction 

interval 
Accuracy (%) 
Sensitivity (%) 
Specificity (%) 

Validation scheme 

[129] 
84 

T1w 

FLAIR oRF 

-Lesion volume 

-Intensity histogram 

features 

-Lesion shape features 

(surface area, sphericity, 

surface-volume ratio) 

- 3 years 

82 

94 

50 

3-fold CV 

[130] 74 T2w 

PDw 

SVM 

-Lesion load and volume 

-Intensity features 

-Lesion location 

-Age 

-Gender 

-EDSS 

-Type of CIS  

1 year  

71.4  

77 

66  

LOOCV 

3 years 

68 

60 

76 

[131] 61 (Placebo) 

99 (IFN-b) 

T1w 

T1-Gd 

SVM 

-Lesion Minkowski 

features 

-GMV 

-Lesion count 

-Age 

-Gender 

-EDSS 

-Number of relapses 

2 years 71.2 

64 

78 

10-fold CV 

[136] 140 

T2w 

PDw 

DBN + CNN -Lesion mask latent 

features - 2 years 

72.9 

78.6 

65.1 

 7-fold CV 

[135] 21 T2w CNN -T2w latent features - 1 year 

83.3 

66.6 

100 

Train-test split 

[136] 140 T2w 

PDw 

DBN + CNN 

-Lesion mask latent 

features  

-T2w lesion volume 

-Normalized whole brain 

volume 

-DAWM 

-EDSS 

-Symptoms 

(monofocal/ 

multifocal) 

2 years 75 

78.7 

70.4 

7-fold CV 

[132] 273 

Brain/spin

al cord  

XGBoost 

Lesion type (cortical, 

infratentorial, 

periventricular, spinal) 

-Age 

-Sex 

-Varicella history 

-Symptom types 

-CSF oligoclonal 

bands 

10 years 78.3 

75 

81.1 

Train-test split 

[134] 400 

T1-w 

T2/PD-w 

or FLAIR 

SVM 

-GM probability 

-T2 lesion load 

-GM and WM region 

volumes 

-Cortical thickness 

-Age 

-Sex 

-EDSS 

CIS type 

1 year 

64.8-91.5 

63.7-88.9 

65.6-99.6 

2 fold CV 

5 fold CV 

10 fold CV 

LOOCV 

[138] 266 T1-w SVM 

MKL 

-T1 hypointensity map 

-GM maps - 3 years 

47.7-56.5 

19.3-67.4 

38.3-82.5 

k-fold per  

group CV 

[133] 142 

T2-w 

T1-w 

PD-w 

Probabilistic 

RF 

-Location of CIS onset 

-BPF 

-T2 lesion load 

-Volumes of the right 

and left thalamus, 

caudate, putamen and 

pallidum 

-Sex 

-EDSS 

-CIS type 

(monofocal/ 

multifocal) 

-Treatment with 

minocycline 

2 years 

-AUROC: 0.76 

(0.14) 

-Sensitivity: 92.32 

(4.22) 

-Precision: 82.31 

(7.78) 

-F1 score: 86.57 

(6.71) 

Nested 7-fold  

CV 
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particularly high recall at 0.923, however, the AUROC was 
modest at 0.76.

The challenges of MRI data heterogeneity in multicenter 
datasets were highlighted in [134]. Despite the inclusion of 
biomarkers that are more robust to MRI variations, includ-
ing GM probability and cortical thickness, predictive mod-
eling with linear SVM and RFE produced a large variation 
in accuracies between single-center experiments, extending 
from 0.73 to 0.93 when using leave-one-out cross-validation 
scheme. Furthermore, models utilizing combined datasets 
from multicenter data achieved the lowest accuracy when 
patients from all centers were included in the analysis with 

a value of 0.70. However, on RFE, a consistent subset of 
features was selected including deep GM, frontal, temporal 
and limbic lobe-derived features.

Recently, studies have gravitated toward utilizing latent 
imaging features obtained from segmented lesion masks via 
DL models, rather than traditionally extracted MRI lesion 
features that are heavily reliant on domain expertise and are 
prone to bias. An example of this application is evident in 
the prediction of CIS disease progression as demonstrated 
in [135–138].

Two related studies [136, 137] explored the use of 
CNNs for predicting the two-year outcome of CIS based 

AUROC Area under receiver operating characteristic curve, BPF Brain parenchymal fraction, CIS Clinically isolated syndrome, CNN Convolu-
tional neural network, CV Cross-validation, DAWM Diffusely abnormal white matter, DBN Deep belief network, EDSS Expanded disability sta-
tus scale, FC Functional connectivity, GM Gray matter, GMV Gray matter volume, serial addition test, LOOCV Leave-one-out cross-validation, 
MKL Multiple-kernel learning, oRF Oblique random forest, RF Random forest, SVM Support vector machine, WM White matter.

Table 1   (continued)

Table 2   ML models for prediction of cognitive outcome, along with MRI-based biomarkers and performance metrics
Study MS cohort 

Phenotype 

(N) 

MRI 
modality 

ML 
model(s) 

Cognitive 
assessment 

MRI biomarkers Additional 
biomarkers 

Prediction 
interval 

Performance 
metrics 

Validation 
scheme 

[152] 

RRMS (870) 

SPMS (259) 

PPMS (54) 

T2w 

RF *, 

XGBoost, 

SVM, MLP 

KNN, 

PLoR 

PST T2 lesion load 

-Age at MS onset 

-Age at first PST 

-EDSS 

-Disease duration 

-Baseline PST scores 

-MS phenotype 

-Time on heDMT 

12 months 

-AUROC: 0.90 

- Specificity: 0.85 

- Accuracy: 0.82 

- PPV: 0.81 

- NPV: 0.83 

Train-test split 

with 10-fold CV 

[162] 

CIS (19)  

RRMS (176)  

SPMS (13)  

PPMS (4)  

MPRAGE 

FLAIR 

Logistic 

Lasso 

regressions 

The Rao’s 

battery 

-Lesion volume 

-Regional cortical 

and subcortical 

volumes 

-Sex 

-Education 

-Disease duration 

-Disease type 

-EDSS 

-Use of DMTs 

2.1 (0.9-7.9) 

years 

- Sensitivity:  

0.51-0.76 

- BA: 0.72-0.79 

- PPV: 0.33-0.89 

- NPV: 0.29-0.92 

Train-test split 

with 10-fold CV 

[161] RRMS (43) T1-MPRAGE 

T2-FLAIR 

DWI 

MRS 

Penalized 

LR 

ARCS 

SDMT 

-MRS-derived 

metabolite 

concentrations 

- DTI-derived 

(FA, AD) for 

NAWM and 

lesions 

- T2 Lesion 

volume 

- TBV, GMV, 

WMV, CSF 

volume 

-

5 years 

SDMT: 

R
2

=0.39, 95 % 

CI=0.48–0.51  

ARCS: 

R
2

=0.54, 95 % 

CI=0.48–0.51  

No train-test 

split performed 

AD Axial diffusivity, ARCS Audio recorded cognitive screen, AUROC Area under receiver operating characteristic curve, BA Balanced accuracy, 
CIS Clinically isolated syndrome, CV Cross-validation, EDSS Expanded disability status scale, FA Fractional anisotropy, FC Functional connec-
tivity, GMV Gray matter volume, heDMT High-efficacy disease-modifying therapy, KNN K-nearest neighbor, MAE Mean absolute error, MLP 
Multilayer perceptron, MPRAGE Magnetization prepared rapid acquisition gradient echo, MRS Magnetic resonance spectroscopy, NPV Negative 
predictive value, PLoR Penalized logistic regression, PPMS Primary progressive MS, PPV Positive predictive value, PST Processing speed test, 
RF Random forest, RRMS Relapse-remitting MS, SDMT Symbol digit modalities test, SPMS Secondary progressive MS, SVM Support vector 
machine, TBV Total brain volume, WMV White matter volume, XGBoost Extreme gradient boosting
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on lesion masks and other features. The first study [137] 
focused on using preprocessed lesion masks, incorporat-
ing downsampling and Euclidean distance transform as 
inputs to the CNN model, achieving an accuracy of 0.729 
on sevenfold cross-validation. The subsequent study [136] 

extended this approach by adding demographic, clinical, 
and additional MRI parameters as detailed in Table 1. 
This enhanced model, which also utilized latent features 
from lesion masks preprocessed in the same manner as 
[137], achieved a higher accuracy of 0.75 and particularly 

Table 3   ML models for prediction of EDSS-related disability, along with MRI-based biomarkers and performance metrics
Study MS cohort 

Phenotype
(N)

MRI  
modality 

ML models Criteria for 
EDSS 

progression 

MRI biomarkers Additional 
biomarkers 

Prediction 
interval 

Evaluation 
metrics 

Validation scheme

[181]  -RRMS 

(428) 

-SPMS (72) 

T1w 

FLAIR 

-SVM* 

-Ridge 

regression 

- RF 

- 

-Volumetric features 

-Structural 

connectivity 

analysis 

-Radiomics features 

-Age 

-Sex 

-Disease 

duration 

-Disease course 

2 years -r: 0.794 

-R2: 0.631 

-MAE :1.112  

7-fold CV 

[183] MS (446) 

T1w 

T2w 

T1w-Gd 

PDw 

LR 

LoR 

XGBoost 

- 

- Number of brain 

lesions 

-Number of spinal 

cord lesions 

-Presence of lesions 

in the following 

regions: 

Infratentorial, 

supratentorial, 

juxtacortical, 

periventricular, optic 

nerve, cervical and 

thoracic spinal cord. 

-Age 

-Sex 

 1 year �

-AUROC:  

0.74-0.91 

-Sensitivity: 

0.75-0.89 

-Accuracy: 

0.42-0.79 

-Precision: 

0.50-0.81 

5 iterations of 

train-test split 

[182] 

RRMS 

(122) 

Progressive 

MS (41) 

T2w/FLAIR 

T1w 

DWI RF 

Increase of 1.5 for 

EDSS of 0, 1 for 

 5 ≥ EDSS ≥ 1, 

and 0.5 for  

EDSS ≥5.5 

-T2LV 

-Thalamic and 

cerebellar GMV 

-FA of NAWM 

-Age 

-Sex 

-Baseline EDSS 

-Therapy 

-Follow up time 

-Phenotype 

2-6 years 

-Accuracy: 0.79 

-Sensitivity: 

0.90 

-Specificity: 

0.71 

-AUROC: 0.81 

Train-test split 

[176]  SPMS 

(485) 

T2w 

-ensLoR 

-eLSVM  

-DT* 

-RF* 

-AdB-DT* 

Sustained increase 

of 0.5 or 1 for 

EDSS ≤ 5.5 and ≥ 

6, respectively, for 

6 months 

-T2LV 

-BPF 

-Baseline EDSS 

-T25W 

-9HP 

- PASAT 

-Disease 

duration 

-Age, sex 

2 years 

-AUROC: 60.2-

61.8%  

-Sensitivity: 

53.0-59.1%  

-Specificity: 

61.1-62.4%  

10-fold CV 

[175] MS (1693) T2w 

-LoR 

-LSVM* 

Increase of ≥ 1.5 

in EDSS after 5 

years 

-T2LV 

 -BPF 

-Age, sex, 

ethnicity 

-Smoking, 

disease duration 

-Family history 

-Baseline EDSS 

- FS scores 

-One-year 

changes in 

EDSS and FS 

5 years 

-Sensitivity: 

0.81 

-Specificity: 

0.59 

- Accuracy: 0.67 

10-fold CV 

T2w 

-LightGBM* 

-XGBoost*  

- T2LV 

-

�

�BPF 

-EDSS 

-Pyramidal 

function 5 years 

-Sensitivity: 

0.75 

10x10 nested  

 CV 
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Table 3   (continued)
[177]  MS (1124) 

T1w-Gd 

-RF 

-Meta learner 

(SVM, LR, 

RF) 

Increase of ≥ 1.5 

in EDSS after 5 

years 

MRI status  -Ambulatory 

index 

- FS scores 

-2-year change 

in scores 

-Specificity: 

0.60-0.73 

-Accuracy: 

0.68-0.73 

[178] MS (971) FLAIR 

-CNN +  

 RF regressor 

+      UMAP - 

-Whole brain 

volume 

- WM tract-based 

lesion load 

-LV volume 

-CNN latent features 

-Age 2 years MSE: 3 External 

validation 

[184] RRMS 

(465) 

T1w 

T2w 

T1w-Gd 

FLAIR 

-3D CNN 

Sustained increase 

for 12 weeks of: 

-1.5 for EDSS=0 

-1 for EDSS ≤ 5.5 

and ≥ 0.5 

-0.5 for EDSS ≥6 

-T2w and T1w-Gd 

lesion masks 

-Latent features 

extracted from 

multimodal MRI 

- 

1 year AUC: 0.701 

(0.027) 

4-fold 

 CV 

[180] 

-RRMS 

(136) 

- PMS (45) 

T1w -ResNet50 

Increase of: 

-1.5 for EDSS=0 

-1 for EDSS ≤ 5.5 

and ≥ 0.5 

-0.5 for EDSS ≥6 

Slabs of 

anatomically sorted 

2D MRI slices 

- 

2-6 years AUC: 0.69-0.93 100 train-test  

splits 

[186] MS (300)

T1w 

T2w 

FLAIR 

PDw

-1D CNN 

-GCN 

-ResNet

-EDSS >4 

-EDSS >6 

-EDSS >7

Latent features 

extracted through 

ResNet

Current and 

previous: 

-Electronic 

health records 

-Unstructured 

clinical notes

Cross-

sectional

-Sensitivity: 

0.667-0.790 

-Specificity: 

0.804-0.991 

-Accuracy: 

0.667-0.935 

-F1 score: 

0.811-0.984 

-AUPRC: 

0.742-0.917 

-AUROC: 

0.910- 0.977

5-fold CV 

[185] MS (393) T1w  

FLAIR 

SVM 

RF 

GP 

VGG 

Increase of 1.5 for 

EDSS of 0, 1 for 

5 ≥ EDSS ≥ 1, and 

0.5 for 

EDSS ≥5.5 

-Latent features 

from T1w and 

FLAIR images 

- Brain substructure 

volumes 

-Age 

-Sex  6 months 

-AUROC:  

0.60-0.75 

-Precision: 

0.39- 0.49 

-Recall:  

0.12-0.60 

-Specificity: 

0.81-0.95 

4-fold CV 

-Accuracy: 

0.74-0.76  

9HP Nine-hole peg test, AdB-DT AdaBoost decision tree, AUPRC Area under precision–recall curve, AUROC Area under receiver operating 
characteristic curve, BPF Brain parenchymal fraction, CIS Clinically isolated syndrome, CNN Convolutional neural network, CV Cross-valida-
tion, EDSS Expanded disability status scale, FS Functional systems, GCN Graph convolutional network, GMV Gray matter volume, GP Gauss-
ian Processes, LR Logistic regression, MAE Mean absolute error, MSE Mean square error, PASAT Paced auditory serial addition test, PPMS Pri-
mary progressive MS, PST Processing speed test, ResNet Residual Networks, RF Random forest, RRMS Relapse-remitting MS, SDMT Symbol 
digit modalities test, SPMS Secondary progressive MS, SVM Support vector machine, T2LV T2w lesion volume, T25 Timed 25 walking scale, 
UMAP Uniform manifold approximation and projection, XGBoost Extreme gradient boosting
* Best-performing model
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improved specificity, outperforming the previous model 
and other ML techniques like multivariate LoR and RF. 
Although the gain in accuracy was not large, the compara-
tive results emphasize the importance of incorporating a 
broader range of features alongside lesion masks for more 
accurate and balanced predictions in CIS outcomes.

On the other hand, Afzal et al. [135] directly fed T2w 
images into the CNN network, mitigating overfitting with 
data augmentation and a smaller network architecture. Due 
to limited data availability, model evaluation was carried 
out with the baseline MRIs of only 6 subjects to predict 
conversion to CDMS after one year. Prediction accuracy 
ranged from 0.833 to 1.0 when varying the data subset 
utilized for training. However, the extremely small sample 
size raises concerns about the study's generalizability and 
the potential for overfitting, even with the applied miti-
gation strategies. The reported high accuracy, especially 
given the limited data, suggests that the model might have 
learned specific characteristics of the training set rather 
than generalizable patterns. Additionally, the variation in 
accuracy depending on the training subset used indicates 
a lack of consistency, further questioning the robustness 
of the model.

Furthermore, a study by Pareto et al. [138] attempted to 
predict a second clinical event in CIS patients based solely 
on features derived from T1w MRIs. However, the perfor-
mance did not outperform random guessing, suggesting 
the need for other MRI modalities and clinical variables to 
enhance the separation of patient subgroups.

While the discussed predictive models for the conver-
sion from CIS to overt MS present promising avenues for 
early intervention, comparing their efficacy poses significant 
challenges. The reliance on cross-validation in these stud-
ies raises concerns about potential overfitting and the true 
generalizability of the models to unseen data. Moreover, 
the studies use various prediction intervals and definitions 
for conversion to MS that further complicates comparisons. 
Different criteria were used across the studies to classify 
patients as having CIS according to differing versions of 
the McDonald criteria. The 2005 McDonald criteria [139] 
required more stringent clinical and MRI evidence for diag-
nosing MS, often resulting in more patients being classified 
with CIS until a second clinical event occurred. The 2010 
[140] and 2017 [14] updates relaxed these requirements, 
allowing for earlier diagnosis based on MRI findings alone. 
Therefore, many CIS cases diagnosed according to earlier 
criteria would have qualified for a diagnosis of MS.

Cognitive outcome

Cognitive impairment (CI) is a common disability affect-
ing individuals with MS, with as many as 70% of patients 
impacted [141], and may be the earliest neurological 
symptom in patients with RIS [142, 143]. The aspects of 
cognition most often altered in MS are working memory 
and information processing speed (IPS), in addition to 
executive functions, complex attention, and visuospa-
tial ability [144, 145]. Despite the debilitating effects of 

Table 4   ML models for prediction of motor outcome, along with MRI-based biomarkers and performance metrics
Studies MS cohort 

Phenotype 
(N) 

MRI  
modality 

ML 
models 

Motor 
outcome 

MRI biomarkers Additional 
biomarker 

Prediction 
interval 

Evaluation metrics Validation  
scheme 

[201] PPMS (596) 

T1w-Gd 

T2w 

LoR 

SVM 

RF 

MLP 

GB 

XGBoost 

9HPT 

-Brain volume 

-T2LV 

-Gd+ lesion count 

-Age 

-Weight 

-Sex 

-Serum NfL 

-Baseline 9HPT, 

T25FW, EDSS 

-Years since 

symptom onset 

- Treatment type 

144 weeks AUROC: 0.63-0.67 

Train-test split 

with 3-fold CV 

repeated over 6 

splits 

[71] RRMS (29) 

DTI 

MT LoR Falls

Corticospinal FA 

and MTR 

-Walking 

assessment 

-Vibration 

sensation 

Retrospective -Accuracy: 73.8% LOOCV 

AUROC Area under receiver operating characteristic curve, CNN Convolutional neural network, CV Cross-validation, EDSS Expanded disability 
status scale, FA Fractional anisotropy, FC Functional connectivity, GB Gradient boosting, GMV Gray matter volume, LOOCV Leave-one-out 
CV, LoR Logistic regression, LR Linear regression, MAE Mean absolute error, MD Mean diffusivity, MSWC MS walking scale, MT Magneti-
zation transfer imaging, MTR Magnetization transfer ratio, PPMS Primary progressive MS, RF Random forest, RRMS Relapse-remitting MS, 
SPMS Secondary progressive MS, SVM Support vector machine, T2LV T2w lesion volume
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Table 5   ML models predicting disease activity, along with MRI-based biomarkers and performance metrics
Study MS cohort 

Phenotype 
(N) 

MRI  
modality 

ML model(s) Disease outcome MRI biomarkers Additional biomarkers Prediction 
interval 

Evaluation 
metrics 

Validation  
scheme 

[209] CIS (39) 

RRMS (109)

MPRAGE 

FLAIR 

MKL NEDA-3 

-T2w lesion load 

-Total brain volum 

-GMV 

-WMV 

-Cropped FLAIR 

images around LV

-Age 

-Sex 

-EDSS 

-Disease duration 

Annualized 

score 

-Sensitivity:  

0.45-0.62 

-Specificity: 

0.40-0.73 

-AUROC:  

0.62-0.70 

_BA: 0.51-0.63 

10 iterations of

5-fold nested 

CV 

[210] RRMS (271) 

SPMS (28) 

PPMS (29)

MPRAGE 

FLAIR 

RF 

9HPT 

 T25WT  

SL25 

EDSS 

SDMT 

-Presence of 

contrast 

enhancing lesions 

-T2LV  

-New or enlarging 

T2 lesions 

 -Volumetric 

analysis  

-Clinical 

-Demographics 

-Disability scales 

-OCT  

-MSGB  

-Cytomics  

-Phosphoproteomics  

2 years 

-Recall:  

0.61-0.93 

-Precision:  

0.60-0.90 

-Accuracy: 

0.47-0.69 

-AUROC: 

0.12-0.80 

External 

validation 

[212] CIS + RRMS 

(1935) 

T1w 

T2w 

FLAIR 

T1w-Gd

XGBoost EDSS 

Relapses 

MRI activity 

-T1LV 

-T2LV 

-Number of Gd+ 

lesions 

-Number of T1 

lesions 

-Number of 

T2/FLAIR lesions 

-Demographics 

-Clinical assessments 

-Neurological 

assessments 

-Laboratory 

measurements 

6 months 

-Sensitivity:  

0.81-0.84 

-Specificity: 

0.76-0.78 

-AUROC: 0.8 

-BA: 0.8

Train-test split 

with  

10-fold CV

[211] RRMS (25) 

T1w 

T2w

KNN 

SVM 

LoR 

RF 

Annualized  

relapse rate 

Radiomics 

features 

-PET-derived radiomics 18 months 

-Precision: 0.89 

-Recall: 0.80 

-F1 score: 0.84 

-Specificity: 

0.93  

-AUROC: 0.96 

-Accuracy: 0.88 

5-fold CV 

[214] MS (373) 

T1w 

T2w 

CNN SDMT 

EDSS

Latent features 

extracted from 

T1w and T2w 

images 

- 2 years 

Accuracy for: 

-EDSS: 0.83 

-SDMT:0.68 

-Combined:0.86 

Train-test split

[213]

CIS (32) 

RRMS (93) 

T1w 

FLAIR LoR 

SVM 

RF 

XGBoost

EDSS 

SDMT 

9HPT 

T25 

-T2LV 

-Whole brain 

volume 

- LV volume 

-Global and 

regional: 

Cortical GMV 

Deep GMV 

-Sex 

-Age 

-Symptom duration 

-MS subtype 

-DMT 

2 years 

-AUROC: 

0.66�0.11 

-BA:  

0.60 � 0.14 

-Precision: 

0.46�0.22 

-Recall: 

0.47�0.19 

10 iterations of

Train-test split 

with  

5-fold CV 
RRMS (174) 

SPMS (34) 

PPMS (18) 

5 years 

-

AUROC:0.60 0

.07 

-Balanced 

accuracy: 0.59 

0.08 

-Precision: 

0.71 0.07 

-Recall: 

0.61 0.05�

�

�

�
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cognitive decline in this group of patients, the bulk of 
research efforts is focused on physical disability, and the 
cognitive domain remains largely underrepresented [146]. 
Depending on the course of the disease, CI may develop 

insidiously over time, or present as an abrupt decline dur-
ing disease relapses [147] ⁠.

Treatment of existing cognitive decline in MS has largely 
shown to be ineffective, and compensatory solutions for its 

9HP Nine-hole peg test, BA Balanced accuracy, CV Cross-validation, EDSS Expanded disability status scale, GMV Gray matter volume, KNN 
K-nearest neighbors, LoR Logistic regression, LV Lateral ventricles, MKL Multiple kernel learning, MPRAGE Magnetization prepared rapid 
acquisition gradient echo, MSGB MS genetic burden score, NEDA-3 No evidence of disease activity, OCT Optical coherence tomography, PET 
Positron emission tomography, RF Random forest, SL25 2.5% low contrast visual acuity, SDMT Symbol digit modalities test, SL25 2.5% low 
contrast visual acuity, SVM Support vector machine, T25 Timed 25 walking scale, T2LV T2 lesion volume, WMV White matter volume

Table 5   (continued)

Table 6   ML models predicting lesion evolution, along with MRI-based biomarkers and performance metrics
Study MS cohort 

Phenotype (N) 
MRI  

modality 
ML model(s) MRI biomarkers Additional 

biomarkers 
Prediction 

interval 
Evaluation metrics Validation  

scheme 

[229] RRMS (798) 

T1w 

T2w 

PDw 

FLAIR 

RF 

Bag of lesions (RIFT, 

LBP, intensity)   - 2 years 

-Sensitivity: 70% 

-Specificity: 58% 

50-fold CV 

[230] 

MS (36) FLAIR 

LoR 

SVM* 

RF 

-Lesion radiomics 

features 

- 17.6 months 

-Average accuracy: 

0.827 

-Sensitivity: 0.809 

-Specificity: 0.841 

-Precision: 0.921 

-AUROC: 0.857 

5-10 fold CV 

[231] RRMS (937) 

T1w 

T2w 

FLAIR 

3D CNN 

-T2w lesion masks 

- Multimodal MRI 

latent features 

- 2 years 

-Accuracy: 80.21% 

-Sensitivity: 80.11% 

-Specificity: 79.16% 

-Precision: 91.82% 

Train-test split 

[232] RRMS (886) 

T1w 

T2w 

PDw 

FLAIR 

3D UNet with 

attention 

-T2w lesions masks 

- Multimodal MRI 

latent features 

-Subtraction images 

between baseline and 

outcome MRI 

- 1-2 years -Sensitivity: 0.9774 

(.0089) 

-Specificity: 0.6926 

(.05316)  

Train-test split with 5-

fold CV 

[234] RRMS (1817) 

T1w 

T2w 

T1w-Gd 

FLAIR 

PDw 

ResNet encoder 

MLP 

- Multimodal MRI 

latent features 

-Age 

-Sex 

-EDSS 

1-2 years -Average precision: 

0.79- 0.996 4x4 nested  

 CV 

[235] RRMS (430) FLAIR 

T1w 

GNN 

Self-supervised, 

individual lesion 

features 

- 1 year 

2 years 

-AUROC: 0.67 

-AUROC: 0.66  

Train-test split 

[233] MS (40) FLAIR KNN, DT 

SVM *, RF 

NB, LoR 

Second level LLL 

Discrete wavelet 

transform from 

Symlet, Daubechies, 

Haar and Coiflets 

family members 

- 1-3 years -Precision: 0.95 

-Recall: 0.95 

-F1-score: 0.95 

Train-test split with 5-

fold CV 

AUROC Area under receiver operating characteristic curve, CNN Convolutional neural network, CV Cross-validation, EDSS Expanded disability 
status scale, GNN Graph neural network, LoR Logistic regression, ResNet Residual Networks, RF Random forest, RRMS Relapse-remitting MS, 
SVM Support vector machine
* Best-performing model
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manifestations are scarce, rendering prevention of its occur-
rence the best course of action [148, 149]. Furthermore, clin-
ical trials with cognition as a primary endpoint are rare [150, 
151]. Therefore, early prediction of susceptible individuals 
for inclusion can aid in enhancing the predictive power of 
these trials to produce reliable assessments of experimental 
therapies [152].

Damage to the GM and WM of the brain are likely the 
cause of CI in MS patients. However, the etiology is com-
plex, and conventional MRI biomarkers of structural integ-
rity do not necessarily correlate with symptoms of CI in this 
subpopulation [141] ⁠. Studies in functional brain networks 
have revealed a possible compensatory effect to structural 
damage offered by dynamic changes in brain connectiv-
ity, with functional reorganization potentially masking the 
clinical expression of CI [153] ⁠. While GM damage, WM 
lesions, and changes in structural and functional connectiv-
ity all offer insights to the heterogenous presentation of CI 
in MS, cortical atrophy has been shown to be the strongest 
MRI predictor of future cognitive decline [147] ⁠.

A series of studies [154–156] used statistical models to 
identify MRI biomarkers predicting CI in MS patients. Key 
findings included the role of various brain volumes as pre-
dictors of CI, with cortical GM volume (GMV) emerging as 
a strong predictor of CI across different MS stages. Further-
more, various cross-sectional studies [157–159] explored 
the use of ML and MRI biomarkers for the prediction of the 
Symbol Digit Modalities Test (SDMT) scores [160]. SDMT, 
which can be carried out within 5 min, is considered the gold 
standard for quick cognitive assessment in MS. However, it 
can only assess a single aspect of CI, namely IPS [142] ⁠. A 
variety of ML models were employed including XGBoost 
[157], RF [158] and SVM [159], all using a combination 
of clinical and MRI predictors for analysis. These studies 
reiterated the significance of cortical and deep GMVs for the 
prediction of CI, in addition to the increased connectivity of 
the cingulo-opercular task control network in resting-state 
fMRI [158].

Three studies [152, 161, 162] involved predictive mod-
eling across different timeframes for various aspects of 

Fig. 4   Proposed ML models and their frequency according to appli-
cation in MS disease prognosis. The most popular algorithms include 
random forest (RF), support vector machine (SVM) and convolutional 
neural networks (CNN). Additional models include AdaBoost deci-
sion trees (AdB-DT), deep belief networks (DBN), decision trees 
(DT), graph neural networks (GNN), ensemble modeling, K-nearest 

neighbors (KNN), light gradient boosting (L-GBT), logistic regres-
sion (LR), multiple kernel learning (MKL), multilayer perceptrons 
(MLP), residual networks (ResNet), ridge regression (RR), uniform 
manifold approximation and projection (UMAP), U-Nets and extreme 
gradient boosting (XGBoost)
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cognitive decline, revealing the limited contribution of 
lesion volume alone [152] and emphasizing the added ben-
efit of integrating multimodal MRI features. Labiano-Font-
cuberta et al. [152] ⁠ constructed a longitudinal ML model 
designed specifically for routine clinical practice, thus utiliz-
ing features that are feasibly attainable in a clinical setting. A 
single aspect of cognitive functioning was measured through 
the Processing Speed Test (PST), serving as a substitute for 
the SDMT. The only MRI biomarker employed was T2 
lesion load, along with multiple clinical and demographic 
predictors as detailed in Table 2. Various linear, nonlinear 
and tree-based models were utilized along with SMOTE 
for class-balancing, with the tree-based models XGBoost 
and RF performing best on both training and testing data, 
achieving an AUROC of 0.94 and 0.90 respectively. Given 
the emphasis on clinical application in this study, variable 
importance scores were computed for each of the predic-
tors, placing T2 lesion load on the lower end of variable 
importance.

In the remaining two studies [161, 162], multiple aspects 
of cognition were assessed employing a larger number of 
MRI biomarkers. While [162] utilized lesion volume and 
76 cortical/subcortical GMVs, Al-iedani et al. [161] offered 
the most advanced MRI biomarkers including DTI-derived 
measures, MRS-derived neurometabolite concentrations 
from the hippocampus, prefrontal cortex and posterior cin-
gulate cortex, in addition to lesion and structural volumes. 
Given the large number of predictor variables employed, 

both studies leveraged multivariable GLMs with regulari-
zation to select the best subset of features for subsequent 
modeling. The variables selected for [162] were best for 
the prediction of IPS (Acc = 73%) and verbal memory 
(Acc = 79%), whereas those utilized in [161] did not per-
form well for IPS, yielding an R2 of only 0.31 as opposed 
to a value of 0.54 for the remaining cognitive tests. How-
ever, the results are not necessarily comparable given the 
heterogeneous cohort in [162] involving various MS disease 
stages, as opposed to [161] which only constituted RRMS. 
Furthermore, a train-test split was not employed in [161], 
thus lacking information on model generalizability. None-
theless, the most promising biomarkers included the FA of 
NAWM and Glutathione levels in the prefrontal cortex for 
[161], and cingulate and medial temporal lobe volumes for 
the models in [162].

A scarcity is evident for applications of ML to predictive 
modeling of cognitive decline, and this is further accen-
tuated for longitudinal predictive tasks. The feasibility of 
implementing various cognitive tests in a clinical setting is 
challenged by time constraints, emphasizing the need for 
standardized testing protocols to ensure comparable and 
reliable results. The influence of the disease stage on pre-
dictive accuracy warrants further exploration, as does the 
need for consensus on defining CI, including the choice of 
thresholds and the number of cognitive domains exhibiting 
decline. Additionally, the integration of motor components, 
especially in patients with upper limb disabilities, remains 

Fig. 5   Biomarkers extracted from MS lesion masks for subsequent ML modeling. From binary lesion masks, various biomarkers can be 
obtained, such as lesion load (GM and WM), radiomics-based features, distance transforms and latent features extracted via neural networks
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a critical consideration for accurate predictions given the 
reliance of these testing procedures on upper limb mobility 
[163]. Addressing these nuances will enhance the practical-
ity and effectiveness of ML models in predicting cognitive 
outcomes in MS patients.

EDSS‑related disability

The Expanded Disability Status Scale (EDSS) [164]⁠ is the 
most commonly employed instrument for assessing disease 
severity and tracking disease progression in MS [32] ⁠. It 
consists of a scale ranging from 0 to 10, with 0 indicating 
no neurological abnormalities, and 10 representing death 
due to MS. Seven functional systems are assessed, includ-
ing the pyramidal, cerebellar, brainstem, sensory, bowel/
bladder, mental and visual functions, in addition to an 8th 
category signifying the presence of other symptoms outside 
of the aforementioned categories [165] ⁠. The final EDSS 
step is established based on the interplay between the eight 
functional systems and ambulatory function [33] ⁠. Despite its 
widespread use, the reliability of EDSS has been questioned 
due to several limitations: emphasis on ambulation at the 
higher end of the scale [33] ⁠, nonlinear nature of the scale 
[166] ⁠, variable duration at each stage [165], and underrep-
resentation of vision, cognition and upper limb function at 
values of 4 and above [167]⁠. Nonetheless, since its inception 
in 1983, the EDSS has been valuable for objective long-term 
monitoring of MS patients [166] ⁠.

Numerous studies have investigated the relationship 
between MRI biomarkers and EDSS in MS [168–170] ⁠, 
revealing moderate relationships with T2 lesion volume 
(T2LV) and its change [168] ⁠, cerebral atrophy rate [170] ⁠, 
and various brain volumes [168] ⁠. This relationship is more 
pronounced, however, in the earlier stages of the disease 
[171] ⁠. Unconventional biomarkers were also associated 
with EDSS progression, such as signal intensity variations 
of lesions through inversion recovery ultrashort echo time 
(IR-UTE) [172] ⁠, volume of MS lesions present at baseline 
but atrophied on follow-up [173]⁠, and structural cortical net-
works [174] ⁠. Therefore, various studies have incorporated 
MRI biomarkers in ML models for prediction of disease 
progression as determined through EDSS [175–180], which 
are summarized in Table 3.

Combining MRI volumetric, connectivity and radiom-
ics features with clinical variables, Pontillo et al. [181] 
utilized a range of ML regression models for the prediction 
of EDSS. With over 125,000 extracted features, a combi-
nation of collinearity, variance, LASSO regression and 
correlation analyses were employed to reduce the predictor 
variables to only 9 features, which included a subset of 
radiomics features obtained from the cerebellum, prefron-
tal cortex, and deep GM structures. The best-performing 
models were SVM and ridge regression, achieving a MAE 

of 1.112 and 1.155 on external validation, respectively 
[181]. Tommasin et al. [182] included FA maps of NAWM 
in 1000 RF classifier models that were trained to assess 
EDSS worsening in addition to cerebellar and thalamic 
volumes, among others detailed in Table 3. Classifiers 
trained with radiological features alone outperformed 
those trained on clinical data or combined clinical/radio-
logical variables, achieving an AUROC of 0.92. The only 
variable identified as influential in all model iterations was 
T2 lesion load, while the remaining MRI features were 
only prominent in less than 40% of trained models.

By modeling MS disease trajectories as changes in 
EDSS, Campanioni et al. [183] employed regressors and 
classification models to forecast disability accrual using 
baseline MRI features, patient age and sex. Regression 
models aimed to predict the change in EDSS, normalized 
by time interval, while the classification models were 
for the purpose of predicting EDSS values at 5 different 
timepoints, where categories represented the individual 
scores on the scale. XGBoost models performed best for 
both tasks, and SHAP identified the most influential fea-
ture across most models as the number of brain lesions 
on MRI.

The value of ensemble modeling for prediction of future 
decline, as measured through EDSS, was assessed by authors 
in [175–177], with all models utilizing BPF and T2LV as 
MRI-derived predictors. Zhao et al. [175] focused on opti-
mizing SVM models with strategies like undersampling, 
bagging, and penalizing false negatives, finding that BPF 
was a predictor for non-progressive MS, while T2LV pre-
dicted EDSS progression. Interestingly, longitudinal changes 
in EDSS, ambulation index and FS scores were also incor-
porated into the model. When limiting predictors to clini-
cal and demographic data, an overall accuracy of 0.55 and 
a sensitivity of 0.78 were achieved, while including MRI 
biomarkers improved these scores to 0.67 and 0.81, respec-
tively. This work was extended in [177] using two independ-
ent datasets (EPIC and CLIMB) with both homogeneous and 
heterogeneous ensembles. Similarly, longitudinal changes in 
clinical variables were employed, revealing that, while GMV 
and ventricular CSF were strong predictors in homogeneous 
models, these clinical features remained the most influential 
across all models.

In [176], the authors aimed to develop a prognostic tool 
for predicting EDSS-based disease progression in SPMS 
patients, also leveraging ensemble learning. Various ensem-
ble methods were considered, including LoR, linear SVM, 
and tree-based models, such as RF and AdaBoost decision 
trees (AdB-DT). Tree-based models showed superior per-
formance, particularly in specificity, compared to parametric 
models. Among parametric models, BPF was more effec-
tive than T2LV, whereas tree-based models performed bet-
ter with T2LV. Nonetheless, clinical features like baseline 
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EDSS and 9-Hole Peg Test scores were more predictive than 
MRI-based features.

Roca et al. [178] extended ensemble modeling by com-
bination with DL, constructing a model consisting of a RF 
regressor, UMAP and CNN for latent feature extraction from 
FLAIR images and lesion masks. MRI biomarkers fed into 
the RF and UMAP included whole brain and WM tract-
based lesion load, in addition to LV volume. By combining 
the aforementioned features with age in the ensemble regres-
sor, MSE values of 3 were achieved on unseen test data. 
The performance of the various models varied across EDSS 
scores, with most models performing best in the intermedi-
ate range of the EDSS and more prone to error at the higher 
and lower ends of the scale. Overall, RF models utilizing 
engineered features performed better in predicting EDSS 
than latent features extracted by CNN. Notably, the standout 
performers among these features were the lesion load in the 
posterior corona radiata L tract and the volume of the LV 
[178].

In [179], multicenter clinical trial data was also utilized 
to build a classifier to identify progressors in terms of EDSS 
over one year. This approach relied entirely on DL, namely 
CNN blocks consisting of parallel pathways with various 
resolutions that are concatenated before being passed to 
the next layer. Five MRI modalities were included as input 
(T2w, T1p, T1c, PDw and FLAIR), in addition to T2w and 
T1w-Gd lesion masks. When including the 5 modalities 
alone, the AUROC achieved was 0.66, while including the 
lesion masks boosted the performance to 0.701. Dular et al. 
[184] also utilized multimodal MRI in a DL architecture, 
employing transfer learning for enhanced latent feature 
extraction. A VGG network was trained for the task of brain 
age estimation, and the resulting pretrained model was then 
leveraged for the task of disease progression classification 
according to changes in EDSS. This study, however, per-
formed poorly in terms of precision and recall, which can 
be seen in Table 3.

Utilizing the DL architecture ResNet50, Taloni et al. 
[180] constructed a classifier discriminating MS progres-
sors from non-progressors over the course of 4 years. Rather 
than implementing a 3D-based model on patient MRIs, 2D 
slices were extracted in the coronal, sagittal and axial planes, 
then further divided into 4 slabs of slices per plane according 
to anatomical location and structural similarity. The model 
training unfolded in a dual-phase approach: initially, a pre-
trained ResNet50 underwent three rounds of fine-tuning—
once for each plane—to discern and classify slices based 
on their slab location. The outcome of this process yielded 
3 Brain Scan Optimized Models (BSOM). The 3 models 
were then expanded to a total of 12 by passing the slices of 
each slab through the finetuned ResNet50, this time with 
the prediction of EDSS-progressors as the target. Overall, 
models exploiting individual slices for prediction performed 

better than those incorporating 3D slabs of MRI data for 
prediction, particularly axially directed slices incorporating 
information on the lateral and third ventricles.

Leveraging a multimodal deep neural network, Zhang 
et al. [185] integrated various encoder architectures into 
a single DL model for the classification of patients based 
on three-year EDSS scores. ResNet, 1D CNNs, and graph 
attentional convolutional encoders were used to generate 
embeddings from MRIs, structured electronic health records 
and unstructured clinical notes, respectively. Given the inte-
gration of longitudinal data, a bidirectional GRU was inte-
grated into the pipeline as the decoder structure. Including 
MRI embeddings improved AUROC from 0.8078 to 0.8380 
for classification of patients reaching a milestone of EDSS 
greater than 4 [185].

It is crucial to note that there were varied definitions of 
sustained disability increase across the discussed ML mod-
els (Table 3), highlighting the need for standardized criteria 
in future research. Furthermore, prediction accuracies may 
benefit from the inclusion of spinal cord parameters. Spinal 
cord imaging is not recommended for routine monitoring of 
MS patients [186], hence the lack of their incorporation in 
the aforementioned studies. Given the motor-centric focus 
of the EDSS, it is unsurprising that significant correlations 
have been found between spinal cord imaging features and 
this disability scale [187, 188].

Motor disability

The most recognized symptoms of MS are the occurrence of 
motor impairments, which impart a heavy impact on patient 
quality of life. Frequently manifesting deficits include ambu-
lation, upper limb (UL) movements, balance [189, 190] and 
gait impairment, which is the clinical hallmark of MS [191]. 
However, MS patients are not characterized by a typical gait 
due to the wide dissemination of lesions throughout the cen-
tral nervous system, which can impact gait in various man-
ners [192]. Balance impairment is a pivotal concern, as it 
increases the risk of falls in patients with MS and hinders 
independence in daily life [193].

Walking impairment was reported to have the greatest 
impact on quality of life by both MS patients and physicians 
[191], with as many as 75% of patients reporting reduced 
mobility as a consequence [192]. In a cross-sectional 
study by Buckova et al. [194], fMRI-derived FC measures 
combined with a SVM model were predictive of walking 
ability as measured by the Multiple Sclerosis Walking 
Scale (MSWS).

Despite the wide focus on lower limb function, UL 
impairments are significantly experienced in MS, ranging 
from fine to gross movements [195, 196]. The gold standard 
for assessing distal UL function, or manual dexterity, is the 
nine-hole peg test (9HPT). 9HPT measures manual dexterity 
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by recording the amount of time taken to place and remove 
nine pegs from nine holes within a peg board, assessing both 
hands separately [197, 198]. In Cordani et al. [199], the MD 
of premotor cortex transcallosal fibers, GM, WM and whole 
brain volumes were predictive of 9HPT scores in a cross-
sectional cohort using RF modeling.

The only recent study, to our knowledge, assessing 
longitudinal motor impairment in MS patients is Mostafa 
et  al. [200], which assessed changes in UL function as 
determined by 9HPT scores over 144 weeks for a cohort of 
PPMS patients in an ocrelizumab clinical trial. A variety 
of ML models were used along with demographic, clini-
cal and MRI biomarkers. Specifically, brain volume, T2LV 
and Gd + lesion count were employed as the MRI-derived 
features. All models performed similarly in spite of algorith-
mic complexity, however, there was a notable drop in per-
formance on testing (AUROC = 0.63–0.67) in comparison 
to training (AUROC = 0.74–0.89) when experiments with 
6 different splits of the data were performed, most likely 
reflecting a problem of overfitting. However, this study pro-
vides a critical contribution to the field by the inclusion of 
a relatively large cohort of PPMS patients. The focus on 
PPMS patients addresses a crucial gap in research focused 
on prediction of progression in this less frequently studied 
but significant subgroup of MS patients [201].

Due to combined cognitive and motor deficits, MS 
patients are at increased risk of experiencing falls, which 
adversely affects daily life on various physical, psychologi-
cal, and social fronts. Fall history is the greatest predictor 
of future events. However, this impairs preventative strate-
gies and does not offer an understanding of the mechanism 
behind fall occurrences [202, 203]. Furthermore, the mul-
tifactorial nature of falls encompassing motor, sensory and 
cognitive deficits hinders the use of a single clinical measure 
for accurate risk assessment.

In [71], classification models distinguishing fallers 
from non-fallers in a cohort of RRMS patients were con-
structed using multiple LR with forward stepwise selection 
of variables based on Akaike Information Criterion (AIC). 
To enhance fall prediction accuracy, the study proposed a 
comprehensive approach integrating clinical measures and 
advanced imaging techniques, specifically corticospinal 
tract (CSI) FA and magnetization transfer ratio (MTR). 
In addition, MRI measures, clinical measures of walking 
assessment and vibration sensation were incorporated into 
the modeling. Inclusion of CST measures in the model 
raised the accuracy from 50 to 73.8%, where CST MTR 
was selected in the final model. The major drawback of this 
study was the retrospective prediction of falls, using data 
collected after the fall occurrence rather than baseline data 
prior to the event.

Notably, a significant gap exists in our ability to predict 
future motor progression through baseline MRI and clinical 

data. While cross-sectional studies and retrospective anal-
yses contribute valuable insights into the current state of 
motor impairment, they fall short in providing robust mod-
els for forecasting the course of MS over time. The lack of 
predictive models based on longitudinal data hampers our 
capacity to identify individuals at risk for escalating motor 
deficits early on, hindering the timely implementation of 
targeted interventions. This underscores the urgent need for 
prospective, longitudinal studies that integrate comprehen-
sive baseline assessments.

Disease activity

Considering the complexity of the MS disease course, evalu-
ating disease activity requires a holistic approach incorporat-
ing various clinical, imaging and serum biomarkers [204]. 
Commonly used to assess disease activity is the No Evi-
dence of Disease Activity (NEDA), termed NEDA-3 due to 
its combined assessment of 3 aspects of the disease. To be 
classified as NEDA-3, a patient must exhibit no evidence 
of relapses, MRI activity or EDSS progression [205, 206]. 
NEDA-4 has incorporated brain volume loss as an additional 
criterion [205]. Accurate prediction of future disease activity 
can aid in determining patients most likely to benefit from 
new therapeutics [207].

In [208], LV intensity was recognized as an important 
predictive feature of future disease activity as assessed by 
NEDA-3. A combination of clinical variables, MRI-derived 
features (T2w lesion count, WMV, GMV, CSF volume and 
total brain volume) and flattened, cropped FLAIR images 
centralized around the LV were utilized for modeling. MKL 
was employed for the prediction task, with each of the three 
feature subsets represented as a radial basis function kernel. 
The model combining all three kernels revealed an AUROC 
of 0.70 and balanced accuracy of 0.61, improving these met-
rics from 0.63 and 0.55 achieved by the model excluding 
LV-cropped images [208]. Also considering NEDA as an 
endpoint, Andorra et al. [209] utilized RF modeling inte-
grating clinical, MRI, genetic and omics data for two-year 
prediction of disease activity. MRI measures included whole 
brain volume, GMV, WMV, T2LV and number of T1w-Gd 
lesions. The dataset was high dimensional, including 100 
features, requiring dimensionality reduction techniques 
including correlation analysis, PCA and selection using 
feature importance. A balanced accuracy and AUROC of 
0.6 and 0.79 were obtained. However, MRI features were 
not ranked among the top 10 predictors [209].

In a small study conducted by Du et al. [210], multimodal 
MRI and PET radiomics features were extracted from WM 
lesions and employed in subsequent ML modeling. Various 
combinations of ML models and feature elimination meth-
ods were tested, with the best-performing combination being 
SVM with RFE with an AUROC of 0.96. The individual 
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best-performing modality was T2w, outperforming both 
PET and T1w radiomics features. However, the combina-
tion of all modalities provided the best performance by a 
wide margin.

Similarly, Basu et al. [211] aimed to predict disease activ-
ity using XGBoost modeling in a cohort of patients enrolled 
in cladribine clinical trials. The MRI features involved total 
number and volume of T1w, T2w and T1w-Gd lesions, 
in addition to combined unique lesion count of the vari-
ous modalities and new T1w lesions. Disease activity was 
also defined by a composite score involving EDSS, relapses 
and MRI activity. By combining the MRI-derived features 
with various neurological, hematological, and biochemical 
testing results, the XGBoost model achieved an AUROC of 
0.8 and balanced accuracies of 0.75–0.8. Using SHAP, the 
most influential MRI predictors were the multimodal unique 
lesion count and new T1w lesions.

Two studies defined disease activity by combining EDSS 
with cognitive outcome [212]. Storelli et al. [213] devel-
oped a DL algorithm utilizing baseline T2- and T1-weighted 
MRI scans to predict disease worsening in MS patients over 
2 years. The algorithm was based on a CNN designed to 
predict clinical worsening, cognitive deterioration, or both, 
using EDSS and SDMT as outcome measures. The model 
demonstrated high predictive accuracy, reaching up to 
85.7%, and outperformed two expert physicians (70%). In 
Nateboom et al. [212], motor disability progression was also 
evaluated through the 9HPT and Timed 25-Foot Walk Test 
(T25FW), in addition to EDSS and SDMT. This study was 
conducted on two separate cohorts, as described in Table 5, 
utilizing combinations of clinical and MRI-derived global 
and regional volumes. However, evaluation on the test set 
yielded poor results for both cohorts, most likely due to the 
large class imbalance present in the datasets.

Monitoring disease activity through lesion activity on 
MRI is particularly advantageous, as it can allow for earlier 
determination of treatment efficacy [214]. The relationship 
between individual MS lesion patterns and clinical disability 
is a research topic of rising interest, though routine clinical 
MRI modalities have limitations in the inflammatory char-
acterization of lesions. T2w images are sufficiently sensitive 
for the detection of WM lesions, however, more advanced 
modalities are required for the differentiation of lesion sta-
tus, such as T1w-Gd imaging and quantitative T1 relaxation 
time mapping (T1-RT) [215–219].

The evolution of WM and GM lesions in MS entails 
cycles of inflammation and demyelination, remyelination, 
and axonal loss, progressing through four main stages [220]. 
Early lesions are characterized by an active, inflammatory 
demyelination with infiltration of macrophages, lymphocytes 
and microglia surrounding a central vein [221] [222]. Once 
the inflammatory cells retreat to the border of the lesion, 
rendering the lesion center demyelinated and hypocellular, 

the lesion is considered chronic active. This is followed by 
a period of inactivity, and finally remyelination or repair of 
the lesion, known as lesion resolution [220].

Interest in chronic active lesions has gained momentum 
due to their high prevalence [220], association with clini-
cal disability and specificity to MS in comparison to other 
neurological conditions [223]. These lesions are also known 
as smoldering lesions or SELs, due to the active demyelina-
tion occurring at the lesion borders [216, 220], which can be 
detected by the presence of a paramagnetic rim, primarily 
characterized on 7 T MRI [224]. SELs are of particular inter-
est due to their association with smoldering disease activity, 
which is theorized to be the true pathological basis of MS 
[15].

Longitudinal analysis of serial MRIs in MS poses a sig-
nificant challenge due to the diversity introduced by varying 
MRI machines and acquisition protocols, in addition to the 
nuances of registration in the case of pathological brains 
[225]. Various methods have been developed to overcome 
this challenge, which substantially improve downstream pre-
diction tasks reliant on accurate segmentation and detection 
of new and enlarging lesions (NEL). However, advances in 
segmentation architectures are not discussed in the current 
work, and interested readers are encouraged to refer to com-
prehensive review papers for an in-depth discussion of this 
particular field of research [225–227].

Numerous studies have investigated ML for the predic-
tion of MS lesion emergence and expansion, with various 
textural and geometric descriptors of lesions leveraged as 
model features. In [228], GMMs were employed to catego-
rize subtypes of lesion features from textural information, 
including RIFT, local binary pattern and intensity features. 
For each patient, a “bag of lesions” representation was con-
structed based on the lesion type probabilities obtained from 
the GMM, which was then fed into a RF model to predict 
whether the subject will develop new or enlarging T2 lesions 
within the next 24 months. In [229], however, the empha-
sis of the ML model was on the prediction of individual 
unenhanced lesion evolution in terms of expansion/shrink-
age using FLAIR radiomics-based features. Given the large 
number of available attributes, various combinations of fea-
ture selection and ML algorithms were evaluated, demon-
strating non-linear SVM with ReliefF as the best-performing 
model at an accuracy of 0.827.

Similar to [228], Sepahvand et  al. [230] predicted 
MRI activity status within 2 years using baseline images 
(T1w, T2w, FLAIR), in addition to T2w lesions masks. 
The method relied on latent features extracted through 
a CNN for prediction, achieving a maximum accuracy, 
sensitivity and specificity of around 80%. Providing the 
segmented masks to the network proved crucial in these 
experiments, as utilizing only MRI modalities as input 
diminished accuracy to only 26.31%, primarily due to the 
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reduced sensitivity for detection of active cases (8.45%) 
[230]. The authors later developed a follow-up model, 
named NE Subnet, for the segmentation of new and enlarg-
ing T2w lesions using a U-Net with subtraction imaging, 
included as an attention mechanism, which improved the 
detection of small-scale changes and differentiation from 
noise. Classification of future disease activity was then 
carried out on the basis of this model, achieving a higher 
sensitivity of around 0.977, with a trade-off in specificity 
(0.693) [231].

Alternatively, Acar et al. [232] predicted the emergence 
of new lesions utilizing 3D discrete wavelet transforms of 
whole FLAIR images, where images were treated as 2D sig-
nals. Specifically, the second-level LLL (low pass filtering) 
sub-bands were utilized as the feature vector for subsequent 
ML modeling. Out of the 10 different wavelet families ana-
lyzed, the best-performing features were extracted from the 
Symlet8 family when combined with a SVM model, achiev-
ing a measure of 0.95 in precision, recall and F1 score.

More recently, treatment-modified course of disease 
activity was predicted using a combination of baseline mixed 
MRI modalities and clinical data. The goal was to develop a 
clinical tool for evaluating the efficacy of various treatment 
options for MS, weighing the associated risk with the pre-
dicted benefit in terms of reduction in NEL. MRI-specific 
features were extracted using a ResNet encoder, concat-
enated with clinical features, and finally passed through a 
multihead MLP, with the various output heads representing 
the treatment-specific outcome in terms of future disease 
activity. Implementation of this architecture for regression 
provided superior results to classification, where regression 
predicted the difference in lesion count from baseline, while 
classification simply predicted future disease activity status 
based on the minimal evidence of disease activity on future 
T2 sequences (MEDA-T2), which applies a threshold of 3 
NEL for recommendation of MEDA-T2 status. Based on this 
model, a clinical tool was implemented in which a patient’s 
predicted NEL according to treatment arm was employed for 
improved treatment recommendation [233].

In [234], the authors harnessed the power of GNNs to 
forecast inflammatory disease activity within a period of 
1–2 years, defined by the emergence of new or enlarged 
inflammatory lesions on MRI within the specified time-
frame. Self-supervised features were extracted from all seg-
mented MRI lesions, and various GNNs were employed to 
generate a classification of inflammatory status, with indi-
vidual lesions representing graph nodes, and spatial loca-
tions of lesions characterized through edge information. To 
enhance the interpretability of the model, a self-pruning 
module was introduced. This module played a pivotal role in 
identifying and highlighting the specific lesions that signifi-
cantly contributed to the final prediction. Using this method, 
the best-performing GNN was the GCN, and outperformed 

other traditional ML and DL methods. The results from 
[228–231, 233, 234] are summarized in Table 6.

Predicting disease activity in MS is an extensive topic of 
interest, highlighted by the large number of studies discussed 
in this section. While NEDA and MRI activity are of grow-
ing interest as endpoints for clinical trials, EDSS remains 
the primary endpoint most commonly used for clinician 
assessment [235, 236]. Furthermore, NEDA has also been 
suggested for monitoring the effectiveness of DMTs to avoid 
the accumulation of irreversible disability [237]. However, 
the focus on the inflammatory aspect in this measure has 
raised doubts regarding its suitability in PPMS patients with 
limited MRI inflammatory activity. Finally, the definition 
of disease activity in terms of timeframes, and whether to 
include only new lesions or both new and enlarging lesions 
differs between studies, further complicating standardization 
and hindering comparisons between studies [236].

Conclusions

The integration of ML and MRI biomarkers for predictive 
tasks in MS progression presents a promising avenue for 
advancing clinical insights. Though the primary emphasis 
of this review centers around brain imaging, it is evident that 
relying on a singular measure is insufficient for obtaining 
predictions that are accurate enough to be deployed in clini-
cal practice. The integration of multimodal data is likely the 
best solution for a personalized medicine approach in MS 
prognosis [238].

The integration of network neuroscience with ML may 
prove advantageous in overcoming the CRDP given the rec-
ognition of MS as a disconnection syndrome. This can be 
done by integrating both structural and functional connec-
tivity-derived measures into ML models [29, 239]. Addition-
ally, combining graph representations of neurological dis-
orders such as MS with DL in graph neural network models 
leverages the advantages of spatially aware geometric deep 
learning [112]. Finally, a multiresolution, multimodal rep-
resentation of brain connectivity could potentially improve 
prognostic accuracy [240].

Furthermore, the use of ML and DL comes with a number 
of limitations that need to be addressed. First, the quality 
of the data is paramount to the success of any AI model, 
requiring extensive datasets sufficiently representing the het-
erogeneity of population characteristics, disease course and 
scanning parameters [241]. Moreover, there remains a con-
siderable gap, particularly for DL, between AI and medical 
applications due to a lack of consideration for explainability, 
which is a necessary ethical and legislative consideration for 
any clinical decision support system [119]. In addition, the 
lack of consensus regarding clinical endpoints for measuring 
disease progression in MS studies hinders direct comparison 
of model architectures and the predictive power of utilized 
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features. Finally, only a few of the discussed models were 
externally validated. Prognostic models cannot be deployed 
in clinical practice before undergoing external validation on 
different datasets from the ones on which they were trained. 
Given that performance is usually inferior outside of the 
training population, this is essential to avoid adverse effects 
by making clinical decisions based on incorrect predictions 
[242].
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