
Vol.:(0123456789)

Journal of Neurology (2024) 271:4693–4723 
https://doi.org/10.1007/s00415-024-12435-9

NEUROLOGICAL UPDATE

Update on recent advances in amyotrophic lateral sclerosis

Nilo Riva1   · Teuta Domi2 · Laura Pozzi2 · Christian Lunetta6 · Paride Schito2,3 · Edoardo Gioele Spinelli3,4 · 
Sara Cabras7 · Enrico Matteoni7 · Monica Consonni1 · Eleonora Dalla Bella1 · Federica Agosta3,4,5 · 
Massimo Filippi3,4,5 · Andrea Calvo7 · Angelo Quattrini2

Received: 9 April 2024 / Revised: 7 May 2024 / Accepted: 9 May 2024 / Published online: 27 May 2024 
© The Author(s) 2024

Abstract
In the last few years, our understanding of disease molecular mechanisms underpinning ALS has advanced greatly, allowing 
the first steps in translating into clinical practice novel research findings, including gene therapy approaches. Similarly, the 
recent advent of assistive technologies has greatly improved the possibility of a more personalized approach to supportive 
and symptomatic care, in the context of an increasingly complex multidisciplinary line of actions, which remains the cor-
nerstone of ALS management. Against this rapidly growing background, here we provide an comprehensive update on the 
most recent studies that have contributed towards our understanding of ALS pathogenesis, the latest results from clinical 
trials as well as the future directions for improving the clinical management of ALS patients.
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Introduction

Motor neuron disease (MND) covers a heterogeneous 
group of neurological disorders defined and characterized 
by degeneration of motor neurons. With an incidence of 
approximately 2.16 per 100.000 person-years and a median 
survival time of 3 to 5 years, amyotrophic lateral sclero-
sis (ALS) is the most common and severe form, involving 
both lower motor neurons (LMN) and upper motor neu-
rons (UMN), underpinned by a complex interplay between 
genetic predisposition and environmental factors [1, 2]. 
Starting from our previous update [3], this review summa-
rizes the recent highlights in ALS research published in the 
Journal of Neurology and other relevant scientific Journals 
during the last 60 months.

Epidemiology

Recent studies confirmed that ALS incidence in Euro-
pean populations is the highest worldwide, probably due 
to genetic background and high life expectancy in devel-
oped regions [2, 4–6]. Moreover, the latest studies reported 
an increasing incidence of ALS year by year in Ireland, 
Scotland and some regions of Italy [2, 7–11]. The rising 
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incidence of ALS in these countries may be related to mul-
tiple factors, such as the increased ascertainment, a reduced 
rate of emigration or increasing longevity [2, 9–11]. Con-
versely, in Asia, the overall incidence of ALS is lower than 
Europe and North America but, interestingly, the total preva-
lence is only second to that of West Europe [6], which may 
be in part linked to genetic differences, such as the lower 
prevalence of the C9orf72 hexanucleotide repeat expan-
sion in Asian countries [2, 12, 13]. To increase the knowl-
edge of the ALS genetic puzzle, it will also be crucial to 
conduct studies on admixed populations or communities 
with a non-European background [2, 14]. In this respect, 
preliminary results from the Latin American Epidemio-
logic study of ALS (LAENALS) corroborated the different 
genetic predisposition of these populations, supported by a 
low incidence and prevalence of ALS in these regions [15]. 
Previous studies initially reported an increased incidence 
of ALS among males, reporting a male-to-female ratio up 
to 2:1 [16]. However, more recent studies have refined the 
estimate of sex ratio and a recent meta-analysis described 
a male-to-female ratio of approximately 1.3:1, confirming 
that ALS is slightly more frequent in man. This difference 
may be due to sex hormones, unequal environmental expo-
sure or sex chromosomes [17, 18]. Several factors have been 
addressed to explain this variability in sex ratio, such as 
potential differences in ascertainment strategy, increased life 
expectancy among females or the type of study (population 
vs non-population-based studies) [17]. Importantly, a recent 
study highlights new findings on the relationship between 
sex and age at onset, revealing a high incidence of males 
for both youngest and oldest onset and changing ratios at 
increasing age [17]. This latter observation may be related 
to the high association between the female gender and the 
pure UMN phenotype, which is correlated with a long sur-
vival [19–21]. Sexual dimorphism indeed entails relevant 
prognostic implication since man showed an higher weight 
loss and respiratory function deterioration than women, 
resulting in a worse prognosis [22]. However, the role of 
sex is more complex and controversial since it is also recog-
nized that the flail arm phenotype, which is associated with 
a longer survival, is more common in man [18], and might 
also implicate differing structural and functional differences 
in the brain, as highlighted by recent neuroimaging studies 
[23, 24]. More studies are needed to clarify the interaction 
between sex, gene and time, which may confer susceptibility 
to the development of the disease [13, 17, 21].

Proposed disease mechanisms

In the last few years, further advances have been made in 
our understanding of MND pathogenesis, a complex process 
involving a variety of genes and multiple pathways, such as 

an imbalance of protein homeostasis in neurons, alteration of 
RNA metabolism, mitochondrial dysfunction and the accu-
mulation of protein aggregates in the cytoplasm of neurons 
with a toxic gain-of-function [3, 25–28].

Since the first ALS-causing gene Cu–Zn superoxide dis-
mutase 1 (SOD1) was discovered almost 30 years ago [29], 
more than 40 genes have been associated with the inherit-
ance or pathogenesis of ALS. To date, four major genes are 
known to cover up to 60% of familial forms of ALS and 
10–13% of sporadic ALS cases, i.e., SOD1, the chromosome 
9 open reading frame 72 (C9orf72), TAR DNA-binding pro-
tein (TARDBP) [30, 31], and fused in sarcoma (FUS). The 
C9orf72 hexanucleotide repeat expansion, discovered in 
2011 [32, 33], is the most common genetic cause in Euro-
pean familial ALS (fALS) cases (more than 30%), but also 
accounts for approx. 7% cases of sporadic ALS (sALS). 
A great portion of familial FTD cases (approx. 25%) also 
carried the C9orf72 pathological expansion, explaining the 
genetic overlapping of ALS and FTD diseases.15, [34, 35]

Most of SOD1 disease-causing variants are missense 
mutations and account for 15–30% of fALS cases and less 
than 2% of sALS cases [36]. Mutations in TARDBP are 
found in approx. 4% of European fALS cases, whereas FUS 
is more common in Asian fALS cases (6.4% vs 2.8% of 
European fALS) [37]. Variants in other genes are found in 
less than 1% of patients [38]. A significant proportion of 
fALS patients still remain without a genetic diagnosis, sug-
gesting a more complex disease pathogenesis and that other 
ALS genes may be involved and remain to be discovered 
[38].

An acceleration in ALS-related gene discovery came in 
the 2010s with the advent of next generation sequencing 
(NGS) and more recently, of whole-genome and exome 
sequencing (WGS/WES, respectively), technologies that 
facilitated the discovery of numerous genetic variants and 
enabled large-scale studies to identify ALS risk genes [39]. 
TANK-binding kinase 1 (TBK1) [40, 41] and NIMA-related 
kinase 1 (NEK1) [42] are two examples of genes discovered 
thanks to these large-scale studies, and subsequently con-
firmed as ALS-related genes [43, 44]. Broadly speaking, 
the advent of WGS/WES allows today the detection of more 
than 250 new genetic association each year, which includes 
a number of disease relevant variants [45], as well as many 
variants of uncertain significance (VUS). Interpreting the 
disease relevance of VUS represents a major challenge as 
many variants initially reported to be potentially patho-
genic, from in silico prediction tools, are later reclassified 
as benign after additional experimental evidence is accumu-
lated [39]. Loss-of-function (LoF) mutations of the TBK1 
gene are nowadays accepted as the cause of a dominant form 
of ALS and FTD, potentially explaining up to 4% of fALS 
cases, including TBK1 in the ALS-major genes group. These 
mutations result in an impaired interaction of TBK1 with 
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optineurin and p62, both already implicated in ALS patho-
genesis, through a common pathway of autophagy regulation 
[41, 43, 46–48]. In the last few years, different studies have 
highlighted a significant enrichment of NEK1 LoF variants 
in ALS, and an additional role for the p.Arg261His missense 
variant in ALS susceptibility. A study conducted in an Ital-
ian ALS cohort suggested also a correlation between the 
presence of NEK1 variants and the flail arm-ALS phenotype 
[42, 44, 49].

A loss-of-function mechanism has also been associ-
ated with the DnaJ heat shock protein family member C7 
(DNAJC7), which has been identified as a genetic risk factor 
for ALS according to a large-scale WES study [50]. Indeed, 
a functional study has recently shown reduced protein lev-
els in ALS patients carrying a p.R156X variant, suggesting 
a role of DNAJC7 in the regulation of protein misfolding, 
which is a major molecular pathology in ALS, through its 
interaction with HSP90 and HSP70 [51].

Haploinsufficiency is a disease mechanism shared by 
different ALS-related genes, such as TBK1 and DNAJC7.
[43, 51] A recent study reported a variant leading to small 
ubiquitin-like modifier (SUMO4) haploinsufficiency as a 
novel potential genetic risk factor for ALS. Recent evidence 
does point towards a role of the SUMO system in protecting 
from ALS pathology, by regulating both the assembly and 
dissolution of the stress granules, possibly acting in a syn-
ergistic manner with environmental oxidative stress-related 
factors [52].

Single-nucleotide variants in the gene encoding Kine-
sin Family Member 5A (KIF5A), a neuronal motor protein 
involved in anterograde transport along microtubules, have 
been also recently associated with ALS [53, 54]. Aberrant 
splicing has been identified as the mechanism by which 
KIF5A mutations cause ALS through a toxic gain-of-func-
tion, leading to the aggregation of KIF5A in distal axons and 
thus to neuronal toxicity. Numerous KIF5A mutations found 
in ALS patients are, indeed, clustered near the splice-site 
junctions of exon 27 and are predicted to alter the cargo-
binding domain of KIF5A [55].

More recently, chloride channel CLIC-like 1 (CLCC1) 
has also been reported as a novel ALS-related gene. The 
loss of CLCC1 by a functional mutation was found to 
cause an ALS-like phenotype in mice [56]. CLCC1 is a 
transmembrane protein localized on the ER, which main-
tains ionic homeostasis between the ER and the cytoplasm. 
Another recent study reported different CLCC1 variants, 
all located at the C-terminus of the protein, which are pre-
dicted to affect protein stability and present with a similar 
ALS phenotype, namely an earlier age at onset with rapid 
progression and cognitive deficits. Thus, CLCC1 exon 10 
might be a potential hotspot for ALS [57]. Interestingly, 
a study conducted in 2021 proposed the association of 
variants in serine palmitoyltransferase, long-chain base 

subunit 1 (SPTLC1) with juvenile ALS (namely ALS4), 
but not with adult-onset ALS, and implicated sphingolipid 
metabolism as a pathway in motor neuron disease [58]. 
This study also presented evidence, supported by other 
studies, that mutations in different genes might influence 
aspects of the ALS phenotype, as well as the disease pro-
gression rate and patient survival. The C9orf72 repeated 
expansion, for example, is associated with a faster pro-
gression rate while SOD1 mutations are associated with 
a slower course [59]. Moreover, the size of the C9orf72 
expansion might represent a modifier of the cognitive phe-
notype. Indeed, a recent paper highlighted that C9-ALS 
patients with larger expansions had a more severe cogni-
tive impairment, thereby supporting the emerging hypoth-
esis that C9orf72 hexanucleotide repeats size might be 
a modifier of phenotype along the FTLD clinical spec-
trum [60]. Another recent study suggested an association 
between the C9orf72 and an accelerated decline in res-
piratory function. In addition, this association seemed to 
be more distinct in spinal-onset male patients [61]. Inter-
estingly, polyglutamine (polyQ) intermediate expansions 
(24–34 CAG repeats) in the neuronal stress protein Ataxin 
1 (ATXN-1) and Ataxin 2 (ATXN-2) genes have been 
recently reported to be independently associated with an 
increased risk for ALS [62, 63]. The risk of ALS increases 
exponentially with allele repeat size until the range known 
to be associated with spinocerebellar ataxia (SCA1 and 
2) risk, even though the age of onset does not seem to 
be affected [63]. In addition, a study based on an Italian 
ALS cohort showed that the ATXN-2 intermediate-length 
polyQ repeat ALS risk correlated with a spinal phenotype 
and is associated with shorter survival [64].

A trend towards a lower male-to-female ratio in SOD1 
ALS carriers has emerged in a recently published meta-
analysis conducted on ALS patients harboring SOD1 
mutations, leading the authors to suggest that differences 
in sex hormones may have less influence on ALS patho-
genesis in the presence of a genetic mutation [13]. Lastly, 
the presence of variants in more than one ALS-related 
gene, with a potential contribution of hereditary periph-
eral neuropathy genes, might also influence the patient's 
phenotype, supporting an oligogenic model of ALS [65]. 
Recent reports also hypothesized that GRN gene variants 
could be ALS phenotypic modifiers [66] and that sena-
taxin (SETX), the genetic cause of ALS type 4 (ALS4), 
could be a modifier of C9orf72 pathology. SETX muta-
tions in ALS4, a rare juvenile-onset familial form of ALS, 
presumably cause a gain-of-function, as loss-of-function 
mutations in the SETX gene are responsible for autosomal 
recessive Ataxia with Oculomotor Apraxia type 2 (AOA2), 
and AOA2 carriers do not develop motor neuron disease 
[67, 68].
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Environmental factors

Various environmental factors have been proposed to 
be associated with ALS, such as smoking, antioxidants 
intake, alcohol consumption, body mass index, physical 
exercise, head trauma, metabolic and inflammatory fac-
tors, cancer, and occupational or environmental exposures 
to electromagnetic fields, metals or pesticides [25, 26, 
69–73]. However, to date the only well-established risk 
factors are represented by age, male gender, and family 
history [1]. Ref. [74] Previous studies have suggested that 
certain groups of athletes (especially soccer or Ameri-
can football players) may have an increased risk of ALS. 
Over the years, several studies tried to associate physical 
activity with the risk of developing ALS, leading to the 
hypothesis that the increased risk of ALS may be linked to 
factors related to sport rather than physical activity alone 
[75–77]. Indeed, recent studies evidenced that head impact 
exposure may increase the risk of neurodegenerative dis-
ease, in line with the observation that sports like soccer 
and football are those more linked to the development of 
ALS [78, 79]. However, other recent studies showed that 
physical activity in general and other sports such as ski-
ing may be associated with the risk of developing ALS 
[80–82]. Several putative mechanism have been hypoth-
esized, ranging from oxidative stress to exercise-induced 
changes in neuron morphology [80]. Nevertheless, most of 
these studies were retrospective, while prospective or pop-
ulation-based studies found no evidence for an association 
with the risk of ALS and on the contrary demonstrated that 
physical activity reduced the risk of ALS mortality [80]. 
Importantly, these controversies may lead one to hypoth-
esize that head trauma and physical activity may represent 
a risk factor only in individuals with a specific genetic 
predisposing background, but to date, there is still a lack 
of studies investigating the interaction between these fac-
tors [83]. Preliminary results in C9orf72 carriers support 
this theory, since physical activity may increase the risk 
of ALS development and may be associated with an ear-
lier age at onset of disease, but more studies are needed 
to confirm this hypothesis [12, 84, 85]. There are weaker 
or conflicting data for other putative environmental risk 
factors [1]. Nevertheless, a recent study on the geographi-
cal distribution of presymptomatic ALS patients revealed 
higher-incidence cluster areas, supporting the idea that 
exogenous factors may be involved in the ALS pathogen-
esis [86]. This hypothesis is in line with the results of 
another recent study focused on ALS incidence among 
immigrants in Sweden, which found that the risk of ALS 
was the same as native Swedish only in second-generation 
individuals, while it was lower in first-generation people 
[87]. Occupational risk factors have also been considered 

and a recent study reinforced the notion that veterans may 
have an increased risk of ALS, especially for Air Force 
personnel [88]. It remains unclear which factors may 
increase this risk, given the difficulties in identifying the 
exact environmental agents, but is supposed that it may be 
related to specific toxins such as pollutants, heavy metals 
or infectious agents [89–92].

ALS phenotype heterogeneity

The ALS clinical spectrum includes extremely heterogene-
ous and complex phenotypes marked by a varying involve-
ment of upper and lower motor neurons, site of onset and 
rate of progression [93, 94]. Recognized MND phenotypes 
include classic, bulbar, flail arm, flail leg, pyramidal and 
respiratory ALS, primary lateral sclerosis (PLS), character-
ized predominantly by pure/predominant UMN degeneration 
and progressive muscular atrophy (PMA), characterized by 
pure/predominant LMN degeneration [95, 96]. The motor 
phenotype is so heterogeneous that it may overlap with other 
diseases of the MND spectrum, such as hereditary spastic 
paraparesis (HSP) or distal motor neuropathy (dSMA). Note-
worthy, recent studies have demonstrated that ALS causative 
genes are not uniquely associated with a single clinical form 
but may be responsible for different phenotypes within the 
MND spectrum, ranging from predominant lower to upper 
motor neuron involvement. For instance, recent reports have 
highlighted how such genes as DCTN1 (dynactin 1) [97–99], 
GDAP1 (ganglioside-induced differentiation-associated pro-
tein 1) [97, 100, 101], DYNC1H1 (Dynein, cytoplasmic 1, 
heavy chain 1) [102, 103], KIF5A (Kinesin Heavy Chain Iso-
form 5A) [102, 104], and NEFH (neurofilament heavy chain 
gene) [105, 106] have been associated with a wide range 
of phenotypes, ranging from ALS to HSP [107], dSMA or 
even classic Charcot–Marie–Tooth disease [97, 102, 103, 
108–110].

Bulbar ALS (bALS) is more homogeneous both in terms 
of progression [111] and neuropathological features [112, 
113] and is characterized by rapid decline with short survival 
times (< 2 years post-diagnosis), and a significantly reduced 
quality of life [114, 115]. Epidemiologically, bALS repre-
sents 30% of all ALS presentation [95], and has recently 
been reported to be more prevalent among German than Chi-
nese patients (35.9 vs. 22.8%) [14]. Pseudobulbar palsy is a 
variant primarily characterized by impairment of the cortico-
bulbar tract that slowly spreads to the limbs: women are 
reported to be more affected than males, survival is longer 
and patients are particularly bothered by pseudobulbar affect 
[116, 117]. Although pseudobulbar palsy may be considered 
as an ALS variant, it is important to note that a varying 
degree of pseudobulbar affect (i.e., pathological crying and 
laughing or emotional lability) may be observed in up to 
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50% of ALS and PLS patients and has been related to cor-
tico–pontine–cerebellar networks. Pseudobulbar affect may 
have a considerable impact on quality of life and should be 
promptly recognized in order to set up appropriate pharma-
cological interventions [118]. On the other hand, progressive 
bulbar palsy (PBP) electively involves lower motor neurons 
of the medulla oblongata nuclei, subsequently spreading to 
limbs [117]. Although disease progression and spreading 
is attended, median survival can be longer compared with 
classic bulbar-onset ALS [119]. Within this context, anti-
IgLON5 disease is a proteoform neuro-immunological dis-
order syndrome, mimicking ALS, characterized by bulbar 
sign and symptoms, cognitive alteration, gait disturbance 
and sleep disorders [120]. Interestingly, four IgLON5 IgG 
seropositive bALS patients with vocal cord paresis at onset 
have recently been reported [121, 122]. Vocal cord pare-
sis is rarely described as a presenting symptom in bALS, 
but if present is often found in association with the D90A 
mutation [123]. Another atypical and rare bALS variant is 
represented by Facial Onset Sensory Motor Neuropathy 
(FOSMN), whose hallmark is sensory trigeminal involve-
ment at presentation [124], followed by weakness of the buc-
cal muscles, swallowing disorders and subsequent spread to 
involve the limbs with cognitive behavioral impairment of a 
frontotemporal type. The balance of evidence suggests that 
FOSMN is most likely to be a TDP-43 proteinopathy [125].

Although accounting for a relatively small proportion al 
ALS patients (3–5%), respiratory onset ALS is a clinical 
phenotype that needs special mentioning since these patients 
may be misdiagnosed and referred to neurological attention 
for a formal diagnosis after the development of respiratory 
failure or even after being intubated [95, 126]. Notably, a 
recent study showed that this phenotype is more frequent in 
older men with predominant lower motor neuron involve-
ment, weight loss, and shorted survival, needing prompt 
non-invasive ventilation (NIV) adaptation [126, 127].

Notably, a recent study have demonstrated how the cogni-
tive profile in PLS resembles ALS–FTD, without prominent 
behavioral disturbances [128], in line with a report of a kin-
dred with an association between hereditary PLS and pro-
gressive non-fluent aphasia [129]. In addition, an advanced 
MRI study showed that in PLS the disease burden in the 
motor cortex is more medial than in ALS, consistent with 
its lower limb predominance, while the extra-motor profile 
includes marked insular, inferior frontal, left pars opercularis 
and cerebellar white and grey matter degeneration, with the 
postcentral gyrus being relatively well preserved compared 
with ALS [130–132]. While suggesting a specific profile, 
these findings still support the notion that PLS lies on the 
ALS–FTD spectrum. However, the mechanisms underly-
ing disease spread and slow disease progression are likely 
to be distinct in PLS [20, 128]. Similarly, a recent paper 
highlighted that in flail arm syndrome, a restricted MND 

phenotype characterized by progressive, predominantly 
proximal weakness and atrophy of the upper limbs, clini-
cally covert involvement of the pyramidal tract is similar to 
classic ALS [18, 133], while another recent paper proposed 
diagnostic criteria for Mills’ syndrome, a rare MND variant 
characterized by a slowly progressive, spastic hemiparesis 
[134].

Cognitive and behavioral changes in ALS

ALS is a heterogeneous neurodegenerative disorder that 
can no longer be considered a disease limited to the motor 
system [25, 26, 135]. While physical deterioration account 
for the primary symptoms, cognitive and/or behavioral 
changes are experienced in up to half of patients with ALS 
and 5–15% of ALS cases meet the criteria for frontotemporal 
dementia (ALS-FTD) [136–138] with the behavioral vari-
ant (bvFTD) mostly represented within ALS-FTD patients 
[139–141]. However, the neuropsychological deficits in 
ALS are extremely heterogeneous [135, 138]. Originally 
construed as a disorder of behavior and executive impair-
ment [142], the neuropsychological profile of ALS is now 
known also to be associated with alterations in language, 
social cognition (Table 1) and memory [143], albeit incon-
sistently [135, 144]. The revised consensus criteria for the 
diagnosis of cognitive and behavioral dysfunction in ALS 
has led to re-conceptualization that neuropsychological 
deficits fall along a spectrum: from no impairment to mild 
cognitive impairment (ALSci), mild behavioral impairment 
(ALSbi), both (ALScbi) or ALS-FTD; thus embracing the 
concept of a frontotemporal spectrum disorder [135]. Spe-
cifically, according to guidelines, ALSci is attributed to fron-
totemporal dysfunction since it is diagnosed when executive 
and/or language deficits and/or impairment of social cogni-
tion occur in non-demented ALS patients, while the ALSbi 
diagnosis requires the identification of apathy or the pres-
ence of at least two non-overlapping, supportive diagnostic 
features for bvFTD [135, 145]. However, most ALS-FTD 
patients present with heterogeneous combinations of deficits 
in behavior, language, or ‘frontal’ cognitive functions [146]. 
Overall, when present, cognitive deficits and behavioral 
changes significantly and adversely impact patient survival 
[147], psychological well-behind [148], consent capacity 
[149] and caregiver-burden [150]. Interestingly, the presence 
of ALSci seems to have limited relevance for the patients' 
and caregivers’ everyday life in comparison to the impact 
of behavioral alterations, namely apathy and disinhibition 
[150–153].

The extent to which cognitive and behavioral impairment 
occurs and whether or not it precedes the onset of motor 
symptoms is still unknown. In ALS-FTD, most patients have 
FTD features before motor onset, but others developed them 
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at the same time or even after (even if less frequently) motor 
impairment. In ALS, a presymptomatic or prodromal period 
of varying duration, during which cognitive and behavioral 
involvement gradually unfolds, has been postulated in ALSci 
and/or ALSbi cases [172]. Studies from presymptomatic 
genetic carriers support this view: for instance, C9orf72 
carriers may manifest dysexecutive and verbal fluency defi-
cits before symptomatic disease onset [173, 174]. Despite 
two large cohort studies showing a higher frequency of cog-
nitive and behavioral impairment in the later ALS stages 
[136, 175], it is still debated whether the frequency of neu-
ropsychological changes is different across disease stages. 

It has been suggested that motor and cognitive components 
might worsen in parallel [136], and that cognitive worsen-
ing is more pronounced in patients with bulbar involvement 
[175]. But additional factors possibly modifying the clinical 
expression have been identified, namely C9orf72 gene muta-
tions [60, 176], cognitive reserve [169] and apolipoproteinE 
genotypes [177].

From an anatomical perspective, the susceptibility to 
ALS is not only confined to motor neurons but it also 
involves extra-motor pathways [26, 178, 179], whose 
extension and severity seems to be related to the pres-
ence and degree of cognitive and behavioral involvement 

Table 1   Neuropsychological key concepts

Definition Neuropsychological assessment and practical implication in ALS

Social cognition (SC) underlies the individuals’ ability to “make sense of oth-
ers’ behaviour” [154]. SC entails a variety of skills, ranging from decoding 
social signs (e.g., faces and emotional expressions) and drawing inferences 
on others’ mental or affective states [155]. This natural disposition to 
interpret others’ mental states and emotions requires the development of a 
“Theory of Mind” (ToM)

Assessment: SC in ALS is typically assessed using paradigms 
such as theory of mind (ToM) and recognition of facial expres-
sions of basic emotions [156, 157]

Implication for ALS: Previous research has highlighted chal-
lenges among ALS patients in interpreting social cues, such 
as eye direction, to discern the mental states of others [158]. 
Recent evidence suggests specific difficulties in recognizing 
negative emotions such as disgust, anger, fear, and sadness 
[158, 159], as well as struggles with tasks assessing both 
affective (emotion, feelings) and cognitive (intention, thoughts) 
components of ToM [160, 161]. In addition, ALS patients may 
encounter challenges in processing social versus non-social 
contexts [162]. Deficits in social cognition are a recognized 
aspect of the cognitive phenotype of ALS [135, 157]. The par-
ticular difficulty in identifying and understanding the feelings 
and thoughts of others from a self-perspective may be related 
to behavioral changes such as apathy and diminished aware-
ness, which some patients may exhibit [160]. These findings 
underscore the need for targeted interventions to address social 
cognitive deficits in ALS patients, potentially improving their 
quality of life and interpersonal interactions

Cognitive reserve (CR) refers to differences in ability to cope with aging 
brain or disease‐related brain changes, facilitating different levels of clinical 
impairment at similar levels of pathology [163]. Essentially, individuals 
with higher CR are better able to withstand these changes without experi-
encing significant cognitive impairment [164]

Assessment: indirect measures of CR include premorbid intelli-
gence, educational attainment, occupational complexity, active 
lifestyle, and bilingualism. They are informative proxies of CR, 
attempting to represent personal experiences that contribute to 
the development of CR [165]

Implication for ALS: recent findings have underscored the 
complex interplay between CR proxies and cognitive outcomes 
in ALS [166]. Cross sectional studies showed that higher edu-
cation correlated with increased pathological burden in medial 
frontal regions, regardless of cognitive impairment level, 
suggesting that CR moderates the effect of brain morphology 
on cognition in ALS [167, 168]. Consistently, lifestyle factors 
were associated with better-preserved executive functions, ver-
bal fluency, and memory performances [169]. However, lon-
gitudinal studies showed that greater educational attainment, 
occupational complexity, and physical activity were linked to 
preserved cognitive functioning only at baseline and did not 
protect cognition over 12 months [170], but only decline in 
verbal fluency (i.e., an ALS-specific cognitive deficit) [171]. 
Interestingly, CR could also have a role in motor functional dis-
ability in patients with bulbar-onset [169], suggesting that CR 
can encompass bot cognitive and motor domains. These results 
motivate future research into CR and practical implications, 
such as strengthening reserve to delay decline
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[180, 181]. Recent studies suggest that ALS pathological 
processes begin in motor neurons and propagate to other 
regions of the brain in a fashion that is predictable, based 
on proximity and connection by a corticofugal axonal 
spread [182–184]. The trajectory of the spreading pattern 
seems to be consistent with the inclusion and dissemina-
tion of phosphorylated 43-kDa transactive response DNA-
binding protein (pTDP-43) [183, 185]. This suggests that 
ALS has a focal onset with subsequent spread along brain 
connections [186] in the prefrontal neocortex eventually 
developing “frontal type” cognitive deficits (i.e., executive 
and social), depending on disease duration and rapidity of 
propagation [183]. However, the timing of the manifesta-
tion of cognitive syndromes does not necessarily follow 
such sequential staging [187, 188]. A specific pathological 
course distinct from that of pure-motor (classic) ALS has 
been found and it is in keeping with the view that cogni-
tive/behavioral involvement might represent a phenotypic 
marker for distinct ALS subtypes [147, 187].

Another central theme is the recognition of neuropsychi-
atric symptoms in ALS [189, 190]. Schizophrenia, depres-
sion, anxiety, dependence disorders, and psychosis have 
all been reported in both ALS and ALS-FTD in the years 
prior to or following diagnosis [191]. A predisposition to 
neuropsychiatric symptoms is more frequently described 
in patients with C9orf72 expansions and presymptomatic 
C9orf72 carriers [189]: ALS patients with this expansion 
exhibit high rates of delusions and hallucinations and may 
experience psychotic symptoms for years before the onset 
of motor or cognitive features. It has also been established 
that ALS patients with a family history of mood disorders or 
premorbid depressive symptoms have high risk of develop-
ing ALSbi, namely apathetic behavior, dysexecutive profile 
or ALS-FTD [189]. However, it is still unclear if neuropsy-
chiatric symptoms contribute to the spectrum of frontotem-
poral disorders in ALS as there is considerable variation 
in the reporting of mood disorders in ALS, ranging from 
moderate depression to an absence of symptoms [192]. Nev-
ertheless, ALS patients may exhibit symptoms of depression 
and anxiety (reported in about 30% of patients) at different 
stages which may reflect a reactions to their condition or 
alternatively an integral part of the disorders, as a result 
of frontotemporal and subcortical involvement [191, 193].

Despite the last decades having witnessed a substantial 
increase in the identification and understanding of fronto-
temporal dysfunction in ALS, measures designed to evalu-
ate the non-motor features of ALS [194–196] have not been 
frequently employed in clinical care, research or trial design 
for ALS [197, 198]. Understanding the diverse clinical pres-
entation of frontotemporal syndromes, their pathological and 
genetic substrates is crucial for improved early diagnosis, 
clinical management and the development of therapies tai-
lored for specific ALS sub-groups.

Extra‑motor involvement

Although ALS was initially regarded as selectively affect-
ing the motor system, increasing evidence highlights extra 
motor involvement, indicating that ALS should be recog-
nized as a multi-system disorder [25, 26, 199]. Ref. [94, 
197, 200] In addition to the cognitive involvement, recent 
studies highlight that ALS may affect other CNS struc-
tures, such as the extrapyramidal system. Indeed, a recent 
prospective study showed that up to 30% of ALS patients 
may have extrapyramidal features meeting the diagnostic 
criteria for parkinsonism [201, 202]. These results are in 
line with another study which found that extrapyramidal 
deficits with impaired gait initiation in a subset of ALS 
patients [203]. Moreover, a recent report evidenced that 
the applause sign, which was initially reported as a spe-
cific sign of progressive supranuclear palsy, may also be 
present in about ~ 10% of ALS/FTLD patients [204]. It is 
unclear if these manifestations are related to basal gan-
glia involvement or affection of other brain circuitries and 
require further investigation [201, 203]. The involvement 
of cerebellar circuits is another finding that has been con-
sistently—though only recently—highlighted in patients 
with ALS, especially in those carrying a C9orf72 gene 
expansion [205–207], although its role is still debated. A 
recent study has indicated focal damage to the anterior cer-
ebellar regions in sporadic ALS patients, in contrast with a 
more posterior damage in C9orf72 expansion carriers, sug-
gesting that cerebellar pathology might modulate differ-
ent motor (i.e., dysarthria, coordination and gait deficits) 
and neurocognitive features (i.e., behavioral dysfunction 
and deficits in social cognition) according to the genetic 
background [208]. Intriguingly, focal cerebellar pathology 
has already been described also in PLS patients, involving 
especially the middle cerebellar peduncle, where it may be 
related to the development of pseudobulbar affect [132, 
209]. The link between ALS and frontotemporal lobar 
degeneration (FTLD) is actually well acknowledged, espe-
cially in C9orf72 carriers [60]. A recent study confirmed 
the early prefrontal involvement in C9orf72 carriers, firstly 
suggesting an executive eye movement dysfunction, even 
in the presymptomatic phase [173]. The increasing inter-
est on retinal involvement in neurodegenerative diseases 
in recent years also includes ALS with evidence that the 
retinal nerve fiber layer (RNFL) may be reduced, with 
an asymmetric involvement and correlating with disease 
progression [210]. However, these results need to be con-
firmed, since other reports while confirming the presence 
of retinal involvement, have not found that they correlate 
with disease duration or severity [211–213]. More recent 
studies have focused also on the autonomic nervous sys-
tem and skin nerve fibers in ALS patients. One such study 
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performed on a small cohort of ALS patients confirmed 
the high frequency of skin biopsy abnormalities [214]. 
These results are in line with previous reports, disclosing 
an association between ALS patients and small-fiber neu-
ropathy, especially among those with spinal-onset or sen-
sory symptoms [200, 215–218]. Moreover, in this study, 
the authors reported the finding of phosphorylated TAR 
DNA-binding protein 43 (pTDP-43) deposition in Meiss-
ner’s corpuscles in ~ 30% ALS patients, highlighting a 
potential value of skin biopsy as an ALS biomarker [214]. 
In addition to small-fiber nerve pathology, recent research 
found that ALS patients may have autonomic dysfunction. 
In this work, performed on 102 patients and 41 healthy 
controls, the authors found an increased rate of autonomic 
symptoms among ALS patients (~ 70%), especially among 
those with a bulbar-onset [219]. These results are in line 
with some reports disclosing a co-occurrence of a rare car-
diomyopathy (i.e., Tako-Tsubo syndrome), whose complex 
pathophysiology may be in part related to sympathetic 
hyperfunction, especially in bulbar-ALS patients [220]. 
Further studies are needed to better characterize the extra-
motor involvement in ALS patients, which may reflect a 
specific disease mechanism [221].

Prognosis

ALS phenotypic heterogeneity is reflected in the variability 
of ALS prognosis: although approx. one-half of patients die 
within 30 months of symptom onset, approx. 20% of patients 
survive between 5 and 10 years [2, 3, 25, 26, 222, 223].

A major determinant of ALS prognosis is disease pro-
gression, which is in clinical practice monitored by using the 
multidomain ALS functional rating score-revised (ALSFRS-
R), whose limits have extensively been previously high-
lighted, but still remains the gold standard for primary effi-
cacy outcomes in clinical trials [25, 224–227]. To overcome 
these limitations, staging paradigms have been recently pro-
posed such as the King’s [228], and ALS Milano-Torino 
Staging (ALS-MiToS) [229]. The King’s, based on El Esco-
rial criteria, is more sensitive early in the disease course, 
while the ALS-MiToS, is based on loss-of-functionality in 
ALSFRS-R domains and so is better for more advanced dis-
ease states [230, 231].

Given the broad distribution of survival, the identifica-
tion of the key prognostic factors is, therefore, important for 
appropriate timing of medical interventions and stratification 
in clinical trials.

Of note, a recent paper pointed out that prognostic fac-
tors, which are known to modify the course of disease in 
Caucasians, apply to Chinese patients as well, despite the 
apparent differences regarding genotype and clinical pheno-
type. Specifically, younger age of onset, spinal onset, high 

BMI and low progression rate were positive prognostic fac-
tors in China as well as in Germany [232]. Conversely, long 
survival has been linked to younger age at onset, increased 
prevalence of PLS and longer diagnostic delay, absence 
of the C9orf72 repeat expansion and increase frequencies 
of gene variants in FIG4, hnRNPA2B1, SETX, SQSTM1, 
TAF15, VAPB and the SOD1 p.(Ile114Thr) [233].

Recent data have confirmed the relevance of BMI, metab-
olism and nutritional status as independent predictors on 
survival in ALS [234–238]. Within this context, a recent 
paper has pointed out that body weight changes after diag-
nosis strongly predicts survival in ALS, and weight gain 
after diagnosis may improve survival prognosis [239]. In 
line with this, a hypometabolic or hypermetabolic state have 
been, respectively, associated with better or worse prognosis 
[240, 241].

Given that respiratory failure is the main cause of mor-
tality in ALS, measurements of respiratory functionality 
are integrated not only in clinical practice, but also in ALS 
prognostic models [12, 242]. However, more recent studies 
have highlighted that not only slow (SVC) or forced vital 
capacity (FCV) [243] may be a useful prognostic marker but 
that other parameters such as arterial blood gas parameters 
and base excess may independently predict shorter survival 
in ALS [244, 245]. Within this context, a recent neurophysi-
ological study pointed out that Diaphragmatic CMAP ampli-
tude from phrenic nerve stimulation may also be able to 
predict functional decline in ALS [246].

In the last few years, in order to overcome the limita-
tions linked to ALS complexity, several prognostic models 
have been proposed, combining multiple predictors [222, 
247–255]. Most models present, however, different method-
ological limitations, as recently pointed out in a systematic 
review focused on this topic [247]. More recently, artificial 
intelligence (AI) and machine learning methods have been 
adopted in order to develop reliable prediction models, even 
if their translation into clinical practice is currently still lim-
ited [256, 257].

Diagnostic challenges

Clinical examination remains the cornerstone of ALS diag-
nosis [258]. The diagnosis of ALS has been traditionally 
categorized by the El Escorial criteria into various levels of 
certainty depending on the presence and progressive spread 
of UMN and LMN signs [259]. Subsequently, the Awaji 
criteria proposed fasciculations as a clinical and electro-
physiologic sign of LMN involvement, aiming at increasing 
overall diagnostic sensitivity [260, 261]. However, El Esco-
rial and Awaji criteria are hampered by ALS heterogeneity 
and do not capture the full disease spectrum [261, 262]. In 
addition, a significant proportion of ALS patients may never 
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attain the criteria for clinically definite ALS [263]. In order 
to overcome these limitations, the Gold Coast criteria have 
been recently proposed classifying patients as having or not 
having ALS, streamlining diagnostic certainty and elimi-
nating confusion from the El Escorial terminology [264]. 
However, cognitive and behavioral impairment [265] are not 
included in these criteria [261, 262, 264].

Although an ALS diagnosis is generally fairly simple 
[261], the false-positive rate has been estimated to be as 
high as eight to 10% [266], while the false-negative rate 
approaches 45% [267, 268]. Several disorders, often referred 
to as ALS mimics, may primarily affect the motor system, 
simulating ALS. These include Sandhoff disease, adult 
polyglucosan body disease, Hirayama disease, spinal dural 
defects associated with CSF leaks and neurogenic calf 
amyotrophy with CK elevation by entrapment radiculopa-
thy [269–273]. In selected cases, motor nerve biopsy may 
be useful for an early differential diagnosis of patients pre-
senting with an atypical LMN syndrome [274–276], while 
motor‑evoked potentials may prove essential in order to 
detect subclinical UMN involvement in LMN phenotype 
[277]. Most importantly, differentiation between MND, in 
particular progressive muscular atrophy (PMA), and mul-
tifocal motor neuropathy (MMN) may be extremely chal-
lenging. Although MMN has distinctive neurophysiological 
features and is often associated with anti-GM1 antibodies 
[278, 279], a recent large case–control study showed that 
both PMA and MMN, but not ALS and PLS, are associated 
with an IgM monoclonal gammopathy (8% and 7%, respec-
tively), suggesting that a subset of patients presenting with 
PMA share pathogenic mechanisms with MMN.[280]

Biomarkers

The lack of specific biomarkers is recognized as a major 
limitation in ALS management and clinical research includ-
ing diagnosis, prognosis and patient stratification in clinical 
trials. In addition, biomarkers may play a crucial role in 
assessing the efficacy of potential new treatments and so 
extensive efforts have been recently made in order to develop 
potential biomarkers with the aim that they will be specific, 
repeatable over time and minimally invasive for patients.

In the last years, neurofilament light chain (NfL) and 
phosphorylated neurofilament heavy chain (pNFH) have 
exhibited promising diagnostic and prognostic capabili-
ties, making them well suited for integration into clinical 
workup [281–286]. Moreover, the development of ultrasen-
sitive digital immunoassays (e.g., Simoa™ and ELLA™) 
able to measure accurately picogram levels have enabled 
the identification of cutoff values for serum NfL in clinical 
settings, thus encouraging their routine clinical use as bio-
markers [287]. A recent genetic trial involving the antisense 

oligonucleotide tofersen in SOD1-related ALS further con-
firms the role of NfL as a prognostic biomarker since early 
reductions of NfL were able to predict the subsequent slow-
ing of ALSFRS-R decline after Tofersen treatment [288]. 
Other studies have importantly demonstrated that NfL blood 
levels increase prior to the clinical manifestation of ALS 
[289–291], suggesting that NfL are valuable biomarkers 
especially in the earliest phases of the disease and to moni-
tor phenoconversion. All these studies have positioned NfL 
and pNFH as the most promising biomarkers for ALS, plac-
ing them at the forefront of potential integration into clinical 
practice.

Consistent with the involvement of inflammatory pro-
cesses in ALS, many studies have explored the role of 
inflammatory biomarkers in cerebrospinal fluid (CSF) 
revealing alterations in the concentrations of cytokines, 
chemokines, and complement proteins (CIT). In particular, 
recent studies have revealed that chitotriosidase (CHIT1), 
chitinase-3-like protein 1 (YKL-40, or CHI3L1), and chi-
tinase-3-like protein 2 (YKL-39, or CHI3L2) demonstrate 
a significant increase in their concentrations in the CSF of 
ALS patients compared with mimicking conditions [292, 
293]. The levels of urinary neopterin, a marker of cell-
mediated inflammation, have been found to be higher in 
ALS patients compared with both patients with other neu-
rodegenerative diseases and ALS-mimics, supporting a role 
for neopterin as a diagnostic biomarker [294, 295]. Urinary 
neopterin concentration reflects the severity of ALS, under-
scoring neopterin’s potential as a prognostic biomarker in 
ALS.207.

Given the recent advances in our understandings of the 
impact of metabolism in ALS disease progression [296, 
297], recent studies have explored the potential role of meta-
bolic biomarkers. A recent case–control study suggested that 
high triglycerides may be associated with longer survival, 
whereas higher levels of cholesterol were associated with 
a higher mortality [298], while another study explored the 
role of irisin, a peptide hormone released by muscle and 
involved in metabolism, showing higher levels of irisin in 
ALS patients with impaired metabolic status compared to 
normo-metabolic ALS patients and healthy subjects [299].

Recently, circular RNAs (circRNAs) are emerging as 
a novel candidate biomarkers in ALS patients. In a recent 
study exploring a microarray expression profile of circRNAs 
in leukocyte, samples from ALS patients have suggested that 
specific circRNAs candidates have value as potential novel 
blood-based biomarkers for ALS, displaying AUC values 
exceeding 0.95 in ROC curve analysis [300]. Further studies 
regarding circRNAs and their association with ALS should 
be done in order to validate these results.

Despite numerous studies aimed at validating different 
potential markers in ALS disease, none is currently adopted 
in the clinical settings. In a future perspective, a panel of 
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different biomarkers reflecting various aspects of the dis-
ease, would be more suitable for routine clinical practice and 
would allow one to glean more information on the different 
mechanisms involved in ALS.

Advances in neuroimaging

Over the last decade, neuroimaging techniques have seen 
dramatic improvements, opening up exciting opportunities 
to investigate new aspects of CNS structure and function in 
ALS patients [117, 301, 302]. In fact, neuroimaging provides 
an ideal tool to explore quantitative, reproducible measures 
of UMN impairment and is sensitive to extra-motor brain 
involvement that frequently accompanies the development of 
the cognitive and behavioral impairments seen in ALS [303]. 
These techniques have proven their utility for phenotypic 
characterization, disease monitoring and patient stratifica-
tion in relation to clinical outcomes, as well as providing 
new insights into pathogenesis.

Conventional brain MRI protocols provide only limited 
accuracy for supporting an MND diagnosis by the dem-
onstration of T2-weighted hyperintensity within the corti-
cospinal tract (CST) [304]. A large consecutive series of 
ALS patients reported that susceptibility-weighted imaging 
showed the presence of a hypointense signal in the cortical 
band along the precentral gyrus (i.e., the “motor band sign”) 
in approximately 80% of ALS patients [305], although the 
specificity of this radiological sign is still to be determined. 
Advanced computational neuroimaging approaches have 
been used to describe in greater detail patterns of grey (GM) 
and white matter (WM) structural damage characterizing 
specific groups of ALS patients. For example, CST metrics 
have been used to discriminate aggressive forms of ALS 
from more slowly progressing cases [306–308]. Patients 
with faster clinical progression showed more severe corti-
cal thinning of the left precentral gyrus and fractional ani-
sotropy reduction of the CST relative to those with slower 
rate of progression [307]. Recently, cluster analysis based on 
both GM and WM measures was used to identify, through 
a data-driven approach, two ALS subtypes, characterized 
by different clinical profiles and degree of frontotemporal 
cortical involvement, with clear prognostic implications 
[205]. Another recent study evaluating morphometric modi-
fications and diffusion tensor (DT) MRI alterations showed 
distinctive patterns of GM and WM involvement in ALS 
and PLS, with greater damage to extra-motor cortical and 
cerebellar structures in PLS patients [130]. In MND patients 
with predominant LMN involvement, DT MRI metrics were 
also able to distinguish fast- from slow progressors, based 
on the greater involvement of the CST and extra-motor WM 
tracts in patients with a more rapid disease progression 
[309–311]. On the other hand, another study has suggested 

that the flail arm syndrome, a phenotypical variant of ALS, 
may show a similar degree of CST involvement as to that 
seem in patients with a ‘classical’ ALS presentation [133]. 
Subtle structural brain alterations have been shown to occur 
even in the earliest phases of the disease, as presymptomatic 
carriers of a C9orf72 expansion demonstrated significant, 
selective thalamic and focal hippocampal volume reductions 
[207, 312].

Structural neuroimaging has also shown its utility to track 
ALS progression. A study investigating cortical thickness 
changes over time in different ALS phenotypes found a sig-
nificant decline of cortical thickness in frontal, temporal, and 
parietal regions over time [313]. Effects were independent 
of the clinical subtype, with the exception of the precen-
tral gyrus: the LMN ALS variants demonstrated the highest 
rates of cortical thinning in the precentral gyrus, the UMN-
dominant subjects exhibited intermediate rates of atrophy, 
and the classical ALS patients exhibited no real change as 
the atrophy of the precentral gyrus seen in classical ALS is 
at floor on the first assessment, resulting in a lack of further 
atrophy over time [313]. A probabilistic fiber tractography 
study estimated structural connectivity changes after three 
months in patients with ALS [314]. While CST damage did 
not worsen over time, DT MRI changes were observed in 
the occipito-temporal pathways, again suggesting an early 
involvement of motor networks with subsequent extra-motor 
damage [314]. Recently, a tract-based staging scheme has 
been proposed to assess cerebral progression of ALS pathol-
ogy in vivo, supported by the fact that the progression of 
WM alterations across tracts using DT MRI was associated 
with clinical disease severity in patients with ALS [315].

In addition to brain alterations, spinal MRI has also been 
shown to have role in the prognostic stratification of ALS 
patients. A recent multicenter study demonstrated that mul-
tiple stepwise linear regression models based on clinical 
variables and a combination of cervical spinal cord cross-
sectional areas, diameters and DT MRI parameters can pro-
vide an accurate prediction of motor capacity as early as at 3 
months from diagnosis [316]. Another recent study exploited 
the combined acquisition of both brain and spinal cord MRI 
sets to test the competing hypotheses of anterograde (i.e., 
dying-forward) vs retrograde (i.e., dying-back) neurode-
generation in ALS [317]. The analysis of volumetric and 
diffusion data in a common domain identified step-changes 
in tissue damage measures between the cranial descending 
corticospinal tract and C1 spinal cord level, and between C5 
and C6 cord levels, with an apparent cranio-caudal gradient 
[317], although further validation of these data is needed to 
draw definitive conclusions about this issue.

In addition to MRI, positron emission tomography (PET) 
imaging has also drawn interest as a tool to visualize dis-
ease-related metabolic and molecular changes occurring 
in the brain of individuals with ALS with different clinical 
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phenotypes. For example, 18F-FDG PET has demonstrated 
a pattern of increasingly severe frontal hypometabolism 
associated with the degree of cognitive and behavioral 
impairment in a large cohort of patients with ALS, with 
additional cerebellar damage in those with comorbid FTD 
[318], whereas a metabolic signature of relative damage to 
the lateral areas of the precentral gyri was found in patients 
with a pure bulbar involvement, relative to those with a pure 
spinal involvement [319]. The severity of frontotemporal 
hypometabolic patterns also showed a prognostic signifi-
cance, being associated with greater functional impairment 
and shorter survival in patients with ALS and PLS [320]. 
Moreover, genetic background was found to influence 18F-
FDG PET findings in ALS, as hypometabolism in fron-
totemporal regions, basal ganglia, and thalami could be 
detected in patients carrying a C9orf72 gene expansion 
since the presymptomatic stages [321]. By utilizing radi-
otracers targeting various molecular pathways implicated in 
ALS pathology, PET imaging also enables the non-invasive 
assessment of disease-related alterations in vivo. Among the 
most intensively studied molecular targets in the last years, 
the translocator protein (TSPO) of the outer mitochondrial 
membrane has been mostly considered a marker of activated 
microglia. Increased local uptake of TSPO tracers (such as 
11C-PK11195 and 11C-PBR28) was consistently detected 
in the motor cortex, prefrontal cortex, pons, and thalami 
of sALS patients, colocalizing with structural abnormali-
ties of both grey and white matter and showing significant 
correlations with clinical measures of UMN burden [322, 
323].Similar findings were shown in ALS patients with 
pathogenic genetic variations in the SOD1 gene, even in the 
presymptomatic phases [324].

All these findings suggest that an advanced multiparamet-
ric neuroimaging approach has the potential to improve our 
understanding of the neural substrates underlying the clinical 
impairment seen during the ALS disease course.

Advances in pharmacological treatments

Despite considerable efforts and numerous well-designed 
clinical trials, Riluzole remains the only drug with any evi-
dence for a demonstrated ability to increase survival in ALS 
patients, even if the mechanisms of action are not yet fully 
understood [325–327]. Recent studies also confirmed that 
Riluzole is well tolerated with a suggestion that a prolonged 
duration of riluzole intake correlates with longer median 
survival [328, 329].

Intravenous edaravone, a free radical scavenger, is another 
approved drug in Japan, U.S., Canada, South Korea and 
Switzerland, as it showed a positive effect on disability pro-
gression in a subgroup of patients [330]. However, a pro-
spective evaluation conducted by the Italian EDARAVALS 

study group showed that in the Italian cohort, Edaravone, 
although overall well tolerated, had no significant effect in 
slowing disease progression or respiratory function decline 
[331]. These data are in line with a longitudinal MRI study 
showing no significant changes in fractional anisotropy (FA) 
values of corticospinal tracts and cerebral cortex thickness 
(CT) in ALS patients treated with Edaravone [332].

Different disease mechanisms have been targeted dur-
ing these years, often adopting the strategy of repurposing 
compounds already used in clinical practice for the manage-
ment of other conditions, based on data from ALS preclini-
cal models [333–335]. Acetyl‑l‑carnitine has recently been 
restudied in a retrospective cohort after a previous phase 
2 trial showing efficacy on self-sufficiency, ALSFRS-R 
total score and forced vital capacity (FVC) [336]. Com-
pared with the non-treated patients, the group receiving the 
1.5 mg dose had a higher number of subjects still alive at 
24 months after baseline, while no differences were detected 
with the 3 mg dose group. A confirmatory phase 2/3 trial is 
planned in 2024 (NCT06126315). Tauro-urso-deoxycholic 
acid (TUDCA), a small molecule with preclinical evidence 
of anti-apoptotic effects, was shown in two independent 
phase 2 trials, alone and in combination with sodium phe-
nylbutyrate (PB), to be able to modify disease course in ALS 
patients, as further confirmed by a retrospective analysis of 
real-life patients [337, 338]. Based on the results of these 
phase 2 trials, the FDA has already approved Relyvrio® 
(PB and taurursodiol), event if preliminary announcement 
of topline results has reported that both the Phoenix trial 
and the TUDCA-ALS study did not meet the prespecified 
primary endpoints, even if the data from these two independ-
ent phase 3 trials on the effects of TUDCA and PB in ALS 
are sill pending [339, 340].

A phase two trial evaluated the effect of Perampanel (an 
anti-epileptic drug) in reducing disability and increasing sur-
vival. However, this study showed no effect of the treatment 
on the different endpoints, with a high number of adverse 
events and a more rapid decline of ALSFRS-R in the treat-
ment group [341].

Several trials have targeted neuroinflammation. A pilot 
trial on 7 patients treated with leukapheresis followed by 
intravenously Treg infusions and IL-2 injections or placebo 
provided insights on a possible efficacy of this well tolerated 
treatment, especially on ALS patients with a neuroinflam-
matory profile [342]. Another therapeutic attempt in this 
field has been recently done with a small cohort of ALS 
patients who underwent autologous hematopoietic stem cell 
transplantation, but further studies should be carefully evalu-
ated based on the low benefit/risk balance [343]. Rapamycin 
has been investigated in a multicenter, randomized, double-
blind trial, in 63 ALS patients at the dose of 2 mg/m2/day, 
1 mg/m2/day and placebo (EUDRACT 2016–002399-28; 
NCT03359538). Despite the primary outcome not been 
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achieved, rapamycin was able to decrease mRNA relative 
expression and plasmatic protein levels of the pro-inflamma-
tory cytokine IL-18, increasing the percentage of classical 
monocytes and memory switched B cells [344].

Two phase 3 trials testing drugs that increase muscle con-
traction, Levosimendan [345] and Reldesemtiv [346], failed 
to demonstrate efficacy on disease outcomes, despite a good 
safety profile.

One of the most promising therapeutic innovations in the 
fields of neuromuscular disorders and ALS is represented 
by the use of antisense oligonucleotides (ASOs) [334]: a 
phase 3 trial of Tofersen, an ASO targeting SOD1 muta-
tions, showed important effects on disease biomarkers 
(SOD1 and neurofilaments), despite mild clinical efficacy 
[288]. The open-label extension is still ongoing, even if the 
FDA has already approved its use. Other phase I/III stud-
ies are evaluating the efficacy of the ASO Jacifusen (also 
known as ION363), directed at patients with mutations in 
the FUS (fused in sarcoma) gene, which is responsible for 
certain forms of very rapid, early-onset disease [347]. Also 
within the target therapy represented by ASO technology, 
it is worth mentioning the currently ongoing phase I study 
aimed at evaluating the efficacy of ASO BIIB105 in silenc-
ing the Ataxin 2 (ATXN-2) gene, a known disease modulator 
associated with an accelerated phenotype, in patients with 
mutations in both ATXN-2 and sALS [348]. Despite these 
encouraging results, an attempt to exploit the ASO tech-
nology (Tadnersen) in patients with the pathogenic repeat 
expansions in the C9orf72 gene did not show the hoped-for 
efficacy in a preliminary phase I trial [349].

Among the non-pharmacological interventions that have 
been tried, a trial of high calorie therapy showed efficacy 
in increasing weight and BMI, though other disease out-
comes were not reached [350], while another study assessed 
the impact of physical therapy on ALS, comparing aerobic, 
flexibility and muscle-strengthening exercises vs muscle-
strengthening exercises alone [351].

Clinical management

In the absence of a cure, the cornerstones of the management 
of patients with ALS focuses on symptoms control [352]. 
These treatments may not only alleviate symptoms but also 
maintain quality of life and improve survival, with greater 
benefit for patients managed in specialized ALS clinics by 
a multidisciplinary team, able to provide integrated pallia-
tive care strategies [242, 353–357]. Symptomatic care in 
ALS includes a wide range of patient-tailored interventions 
addressing pain, emotional lability, anxiety and depression, 
sleep disturbances, constipation and including physiotherapy 
and adaptive aids. Prevalence of muscle cramps has been 
estimated to be as high as 44–55% in ALS patients. As 

recently reviewed, therapeutic options include quinine sul-
fate, tetrahydrocannabinol, vitamin B-complex, diltiazem, 
natridrofuryl oxalate, mexiletine, carbamazepine and lev-
eteracitam as well as non-prescription approaches such as 
muscle stretching [358, 359]. Interestingly, a small case 
series recently demonstrated that radiotherapy treatment of 
sialorrhea, which affects up to 25% of patients [360], may 
be feasible, efficient and safe, even in patients requiring non-
invasive ventilation (NIV) [361].

Dysphagia and respiratory failure, which is the main 
cause of mortality for ALS patient, represent two crucial 
areas of symptomatic interventions for ALS patients [352]. 
Malnutrition is a negative prognostic factor [362] and aspira-
tion pneumonia one of most feared causes of morbidity and 
mortality in ALS, and so current practice guidelines recom-
mend gastrostomy feeding for patients with severe dysphagia 
[242, 363]. The two main methods of gastrostomy insertion 
are percutaneous endoscopic gastrostomy (PEG) and radio-
logically inserted gastrostomy (RIG), even when per-oral 
image-guided gastrostomy may be possible. Even though it 
has been suggested that RIG may be safer than PEG, in par-
ticular in patients with respiratory failure [364, 365], there 
is to date little evidence to indicate which is better and what 
is the optimum timing for the procedure. Indeed, a recent 
prospective observational study showed that PEG was a safe 
procedure even in patients with low FVC [366], an observa-
tion that was confirmed by another study proposing a modi-
fied approach in order to carefully select high-risk patients 
[367]. These results were further confirmed by another large 
prospective cohort study showing that the three methods 
seemed to be equally safe in relation to survival and proce-
dural complications [368]. However, both studies agree that 
PEG might be less beneficial when delayed. Further studies, 
and preferably randomized controlled trials are needed in 
order to gain better evidence for the nutritional management 
and use of gastrostomy in ALS patients.

Respiratory failure is not only the main mortality cause 
in ALS, but may also be the presenting feature, in this 
instance requiring careful differential diagnosis to exclude 
other neuromuscular and non-neuromuscular disorders is 
needed.[369] Recommended pulmonary tests are spirom-
etry (including Supine FVC), polysomnography, arterial gas 
analysis and sniff nasal inspiratory pressure (SNIP), which 
has recently been shown to be a potential prognostic factor 
of tracheostomy or death during the early phase of disease 
[370]. While a recent open-label, randomized controlled 
trial has shown that addition of diaphragm pacing to stand-
ard care was associated with decreased survival in patients 
with ALS [371], NIV has been shown to improve quality of 
life and survival in patients with ALS [372], even if there 
is still no consensus on the exact timing of NIV initiation 
or cough augmentation techniques [373, 374]. In patients 
with substantial bulbar impairment, the efficacy of NIV 
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may be more limited; however, a recent study has demon-
strated objective sleep and nocturnal respiratory outcomes 
in both non-bulbar and bulbar patients [375]. Moreover, NIV 
has also been reported to significantly increase survival by 
19 months in patients with ALS-bulbar onset [376]. In more 
advanced disease states, invasive ventilation via tracheos-
tomy is an option for prolongment of survival [377]. In the 
more advanced stages, palliative strategies, including respite 
care, have been demonstrated not only to provide a positive 
effect not only to meet the needs of people with ALS but also 
for their care partners [378].

Emerging assistive technologies 
for the management of amyotrophic lateral 
sclerosis

People with ALS face numerous challenges due to the pro-
gressive nature of the disease, leading to a rapid physical 
decline, which restricts mobility and impairs all activities of 
daily living. This includes speaking, eating, dressing, walk-
ing, and writing [379]. The relentless decline in these func-
tions can lead to feelings of sadness, hopelessness, worth-
lessness, anxiety, and guilt. Despite the physical limitations, 
patients are aware of their limitations. This disease of losses 
raises a deep concern among caregivers and patients them-
selves in preserving autonomy, self-control, and decision-
making for as long as possible. Emerging technologies for 
the management of ALS patients range from multidiscipli-
nary teleconsults (for monitoring the dysphagia, respiratory 
function, and nutritional status), to robotics. The COVID-19 
pandemic created a need to accelerate the development and 
implementation of such technologies in clinical practice, to 
improve the daily lives of both ALS patients and caregivers 
[380–382].

Assistive technologies (ATs) can support patients in pre-
serving autonomy and control along with slowing disease 
progression. They are of great value to ALS patients, since 
their use may help to overcome severe functional limitations 
[383]. Autonomy and self-determination play a crucial role 
in the lives of ALS patients and can partly be maintained 
by the implementation of ATs and devices. There are many 
technology options available to support persons with neu-
rodegenerative conditions, either mainstream or specifically 
designed products [384].

One of the key areas where ATs provide support is com-
munication, also known as Augmentative and Alternative 
Communication (AAC). As speech intelligibility declines, 
support in communication becomes important in ALS man-
agement. Everyday digital technologies of the last decade, 
such as smartphones, tablet devices, and the Internet, may 
be used to assist persons with neurodegenerative conditions 
allowing them to perform daily tasks; such approaches 

include using voice-activated commands to control the envi-
ronment and text-to-speech to communicate verbally [385]. 
AAC ATs also include brain–computer interfaces and eye 
tracking systems. For people with ALS, having access to 
an ecosystem that integrates multi-professional assistance 
and ATs, particularly AAC resources, has been shown to be 
essential in preserving communication and interaction skills 
and enhancing quality of life and survival as the disease 
advances [386]. ATs and devices can support ALS patients 
in their mobility, such as through powered wheelchairs and 
helping them control their domestic environment, and thus 
foster social participation and autonomy [383, 384].

Telehealth ATs may have a significant role in managing 
ALS. Potential applications include:

1. Telehealth technologies for remote monitoring of dys-
phagia, respiratory function, and nutritional status, which 
can increase the effectiveness of ALS management [380, 
383, 387, 388].

2. Tele-rehabilitation for delivering physical therapy and 
other rehabilitative services to patients in their own homes. 
Therapy sessions can be conducted virtually via video calls, 
allowing patients to receive therapy from the comfort of 
their own homes [389].

3. Digital personal assistants that can be used to assist 
persons with neurodegenerative conditions in performing 
daily tasks, such as using voice-activated commands to con-
trol the environment [383, 384].

3D printing, also known as additive manufacturing, 
is a technology that also has the potential to significantly 
improve the management of ALS, addressing the chal-
lenges associated with the disease. 3D printing can be 
used to create customized assistive devices tailored to the 
specific needs of each ALS patient, ranging from modi-
fied utensils for eating to custom-fit braces and mobility 
aids. It can be used to create prosthetics and orthotics that 
are lightweight, comfortable, and tailored to fit the patient 
perfectly. This can help improve mobility and independ-
ence for ALS patients. Finally, 3D printing can also be 
used to create specialized medical equipment that can help 
in the management of ALS, such as modified respiratory 
equipment or specialized seating systems that improve 
comfort and mobility [390]. Despite its potential, there 
are several challenges associated with the use of 3D print-
ing in ALS management: 1. limited material selection; 2. 
cost of pre- and post-processing; 3. cost of system equip-
ment; 4. acceptance of technology among patients and 
carers that depends on various factors such as perceived 
skills and competencies in using the device, expectations, 
trust, and reliability; 5. regulation and standardization as 
3D-printed medical devices must meet the same safety and 
efficacy standards as traditionally manufactured devices 
[391]. However, these challenges are not insurmount-
able. With continued research and development, as well 
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as collaboration between healthcare providers, engineers, 
and patients, 3D printing has the potential to play a pivotal 
role in transforming the management of ALS.

Wearable devices, such as smart-tracker or smartwatch, 
and smartphone can track ALS disease progression and may 
serve as novel clinical trial outcome measures [392–394]. 
Several wearable devices collecting data daily on physical 
activity measures have demonstrated statistically significant 
changes over time with correlations to the ALS functional 
rating scale-revised (ALSFRS-RSE) and the Rasch Over-
all ALS Disability Scale (ROADS) [395]. Interestingly, 
an international survey on patient perspectives on digital 
healthcare technology in care and clinical trials for ALS 
showed that most patients had a positive attitude toward the 
use of digital technology in both care and clinical trial set-
tings [396].

Assistive robotics can help ALS patients to perform 
daily tasks, thereby enhancing their autonomy and quality 
of life [380]. For instance, a soft robotic wearable developed 
by researchers from the Harvard John A. Paulson School 
of Engineering and Applied Sciences (SEAS) and Mas-
sachusetts General Hospital (MGH) was able to provide 
significant upper arm and shoulder support and improved 
mobility for those with ALS [397]. Some assistive robots are 
equipped with communication aids and can be customized to 
fit the specific needs of each ALS patient, which can make 
them more effective and comfortable to use [379].

Neural interfaces are being explored for their potential 
to restore lost functions in ALS patients. Brain–computer 
interfaces (BCIs) use neural signals for computer control and 
may allow people with late-stage ALS to communicate even 
when conventional technology falls short. BCIs are designed 
to restore voluntary motor control to paralyzed people by 
converting intent-to-move nerve impulses from the motor 
cortex into a digital signal. These technologies commonly 
use machine learning to interpret the nerve impulses, col-
lected from tiny electrodes implanted in the brain, and trans-
form them into specific digital actions [398].

In recent years, we have seen great progress in the devel-
opment and validation of implanted BCIs, which place neu-
ral signal recording electrodes in or on the cortex [379]. The 
Wyss Center for Bio and Neuroengineering is planning to 
launch a trial of its wireless brain–computer interface (BCI), 
called ABILITY, in people to enable them to communicate 
using only their thoughts [399]. In a case study, a NeuroKey-
based BCI is being tested in a man with a fast-progressing 
form of ALS, who advanced to a locked-in state and could 
no longer use assistive devices to communicate [400].

ATs can, therefore, help ALS patients overcome severe 
functional limitations, allowing patients to retain autonomy 
and control as their disease progresses1.[379] However, 
despite these benefits, there are challenges and limitations 
associated with the use of ATs.

1. Physical and environmental barriers: ALS patients may 
face physical and environmental barriers that limit the effec-
tiveness of ATs.

2. Financial and resource constraints: the cost of ATs 
can be prohibitive for some patients, limiting their access 
to these technologies.

3. Poor policy implementation: in some cases, policies 
related to the provision and use of ATs may not be effec-
tively implemented.

4. Societal ignorance: lack of awareness and under-
standing about ATs among society at large can also pose 
challenges.

5. Technical challenges: acceptance of technology among 
patients and carers depends on various factors such as per-
ceived skills and competencies in using the device, expecta-
tions, trust, and reliability.

While ATs have a significant positive impact on ALS 
management, it is important to address these challenges to 
make these technologies more accessible and effective for 
all patients. Moreover, there is a pressing need for further 
research in this field to address the remaining challenges 
and so allow us to continue advancing these promising 
technologies.

Ethical issues in motor neuron disease

Being a relentlessly fatal disease with no curative therapy 
currently available, there are many ethical issues in ALS 
care, from the diagnosis, disease course to the latest stages 
of disease, as recently reviewed [401]. Despite the fact 
that many healthcare providers and physicians may find 
it difficult and stressful [402, 403], ALS patients gener-
ally welcome the opportunity to discuss end-of-life issues 
with their physician [404, 405]. PEG and NIV decision-
making processes are complex and individual, comprising 
patient-centric factors and external factors, including the 
roles played by healthcare professionals, family informa-
tion provided and concepts of timing of interventions [406]. 
Although there is no consensus on timing, it is suggested 
that options for respiratory support and end-of-life issues be 
discussed when the patient displays symptoms of hypoven-
tilation [407]. However, end-of-life discussions, including 
gastrostomy, NIV and tracheostomy invasive mechanical 
ventilation (TIV) are often delayed for a number but not 
necessarily justifiable reasons, potentially leading to poor 
patient management and unplanned crisis interventions 
[408]. Recent studies demonstrated that caregivers and the 
general public significantly underestimate the QoL of ALS 
patients and overestimate the patients’ rate of depression, 
while the desire to shorten life was significantly lower in 
ALS patients compared to what healthy subjects thought 
the patient would wish. Moreover, of those with undecided 
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or negative attitudes, 10% changed their attitude towards 
life-sustaining treatments during the following year, empha-
sizing the need for unbiased patient perspectives in order to 
secure patient-centered decision-making [409, 410], even if 
the potential executive and behavioral impairments linked 
to ALS raises further inevitable questions [411].

Many socio-cultural, ethical, legal and financial issues 
may influence the use of TIV in ALS patients, as reflected 
by the varied percentage of use between countries, rang-
ing from 0% of patients from the UK, 1–14% in the USA, 
11% in northern Italy, to 27–45% in Japan [412, 413]. The 
ethical implications of TIV have recently been analyzed 
accordingly to the four core principles of healthcare ethics: 
beneficence, nonmaleficence, respect for patient autonomy, 
and justice [414]. However, there are many specific and 
challenging aspects to be considered within the context 
of ALS. The choice of TIV is indeed a critical milestones 
as it may imply survival in a locked-in state [414, 415]. 
Hence, TIV in ALS affects not only the patient but also 
the next of kin and the professional caregivers, rendering 
highly relevant to discuss potential positive and negative 
consequences also for these other stakeholders [414, 415]. 
Respect for the patient’s right to accept or refuse medi-
cal interventions is the mainstays of modern healthcare. 
Prerequisites are competence and being informed [149]. 
However, cognitive and behavioral impairments seen in 
ALS make it questionable whether these requirements are 
in place in all circumstances, which is highly relevant to 
patient autonomy and decision-making [265, 414, 416]. 
Indeed, the recent awareness of potential executive and 
behavioral impairment in ALS patients represents a fur-
ther ethical question, emphasizing the need to develop new 
methods of neuropsychological assessment suitable to the 
more advanced stages of disease [149, 409, 417].

Conclusions

ALS remains a relentlessly progressive and fatal disease 
and the only approved disease-modifying drug has a mod-
est effect in slowing disease progression. Symptomatic and 
palliative care, provided in a multidisciplinary context, 
still remains the cornerstone of ALS management [326]. 
However, significant progress has been accomplished in 
the identification of new genetic factors and pathomecha-
nisms underlying this disease, giving new hope for the 
development of gene therapy and novel mechanistic thera-
peutic approaches.
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