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Abstract
A ponto-cerebello-thalamo-cortical network is the pathophysiological correlate of primary orthostatic tremor. Affected 
patients often do not respond satisfactorily to pharmacological treatment. Consequently, the objective of the current study 
was to examine the effects of a non-invasive neuromodulation by theta burst repetitive transcranial magnetic stimulation 
(rTMS) of the left primary motor cortex (M1) and dorsal medial frontal cortex (dMFC) on tremor frequency, intensity, 
sway path and subjective postural stability in primary orthostatic tremor. In a cross-over design, eight patients (mean age 
70.2 ± 5.4 years, 4 female) with a primary orthostatic tremor received either rTMS of the left M1 leg area or the dMFC at 
the first study session, followed by the other condition (dMFC or M1 respectively) at the second study session 30 days later. 
Tremor frequency and intensity were quantified by surface electromyography of lower leg muscles and total sway path by 
posturography (foam rubber with eyes open) before and after each rTMS session. Patients subjectively rated postural stability 
on the posturography platform following each rTMS treatment. We found that tremor frequency did not change significantly 
with M1- or dMFC-stimulation. However, tremor intensity was lower after M1- but not dMFC-stimulation (p = 0.033/ p 
= 0.339). The sway path decreased markedly after M1-stimulation (p = 0.0005) and dMFC-stimulation (p = 0.023) compared 
to baseline. Accordingly, patients indicated a better subjective feeling of postural stability both with M1-rTMS (p = 0.007) 
and dMFC-rTMS (p = 0.01). In conclusion, non-invasive neuromodulation particularly of the M1 area can improve postural 
control and tremor intensity in primary orthostatic tremor by interference with the tremor network.
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Abbreviations
BDI  Beck depression inventory
DBS  Deep brain stimulation
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dMFC  Dorsal medial frontal cortex
EC  Eyes closed

EEG  Electroencephalography
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EO  Eyes open
EOF  Eyes open foam rubber
ET  Essential tremor
M1  Primary motor cortex
OT  Orthostatic tremor
POT  Primary orthostatic tremor
PT  Parkinsonian tremor
RMS  Resting motor threshold
rTMS  Repetitive transcranial magnetic stimulation
VIM  Ventral intermediate (thalamus)
ZI  Zona incerta
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Introduction

Orthostatic tremor (OT) is a rare and frequently unrecog-
nized movement disorder first described in 1970 by Paz-
zaglia and eventually denoted as a distinct tremor syn-
drome in 1984 by Heilman [1, 2]. OT is characterized by 
a synchronous tremor of homologous muscles on both legs 
with a high frequency of 13–18 Hz during standing [3, 4]. 
The diagnostic gold standard is surface electromyogra-
phy (EMG) on homologous muscle pairs of both legs, e.g. 
tibialis anterior and gastrocnemius [3, 5, 6]. Diagnosis is 
delayed up to several years in most patients due to gen-
eral physicians not being aware of the typical complaints, 
i.e., patients being unsteady standing and better walking 
[7–10]. OT can be differentiated into primary OT (POT) 
[8, 9], without underlying aetiology and in the absence 
of structural brain lesions, or secondary OT, which was 
described in patients with pontine brainstem or cerebellar 
lesions or in neurodegenerative disorders with cerebel-
lar atrophy [10–12]. POT is a progressive condition with 
worsening of symptoms and increase in body sway, with 
effects extending to the trunk and arms over time [8, 9, 
13]. In at least half of the cases with POT, treatment with 
different drugs such as clonazpeam, gabapentine, and 
ß-blockers has no satisfactory effect [6, 8]. Deep brain 
stimulation (DBS) of the ventral intermediate nucleus 
(VIM) of the thalamus or zona incerta (ZI) can lead to 
a modest reduction of symptoms in pharmacorefractory 
cases of POT, which diminishes over time [14–17]. How-
ever, data are still limited as compared to other tremor 
disorders.

Recent functional imaging and EEG/EMG coherence 
studies revealed consistently that a ponto-cerebello-
thalamo-cortical tremor network is the pathophysiologi-
cal correlate of POT [18–20]. Cortical activations in POT 
are mainly restricted to the paramedian portions of the 
primary motor cortex (M1), where the legs are represented 
[18, 20].

The purpose of the present study was to evaluate the 
effects of repetitive transcranial magnetic stimulation 
(rTMS) in POT as an additional non-invasive treatment 
option. We hypothesized that theta burst rTMS of the M1 
leg area could selectively downregulate the entire tremor 
network in POT, which would consequently lead to a 
decrease of tremor intensity and sway path. Therefore, 
theta burst rTMS was applied to eight patients with proven 
POT at two different stimulation sites, i.e., M1 leg area 
and dorsal medial frontal cortex (dMFC) in a cross-over 
design. Effects on tremor frequency and intensity were 
measured by surface EMG on homologuous muscles on 
both lower legs, and analysis of the frequency spectrum 
and sway path by posturography, before and after rTMS 
for both stimulation sites.

Materials and methods

Subjects

Eight patients (four females, mean age 70.2 ± 5.4 years) 
with a definite diagnosis of POT according to the currently 
accepted diagnostic criteria [3] were included in the study. 
Past medical and drug history was documented (for details 
see Table 1). Patients reported a gradual onset of unsteadi-
ness during upright stance, which increased while stand-
ing still and disappeared during walking or sitting down. 
Subjects underwent a standardized neurological examination 
to exclude additional clinical signs indicative of secondary 
orthostatic tremor (i.e., hypokinesia, rigidity, dystonia, fail-
ure of gait initiation, cerebellar ataxia). Brain MRI was per-
formed in each patient to definitely exclude structural lesions 
and/or atrophy, particularly in the brainstem and cerebel-
lum. All subjects completed the Beck Depression Inventory 
II (BDI–II) and the Dizziness Handicap Inventory (DHI) 
(Table 1).

Table 1  Demographic and 
clinical characteristics of 
individual patients with POT

POT primary orthostatic tremor, BDI–II Beck depression inventory II, DHI dizziness handicap inventory

ID Sex Age POT duration 
(years)

Current medication against POT BDI–II-score DHI-score

1 F 57 8 Gabapentin 1800 mg/d 19 45
2 F 71 23 Gabapentin 1200 mg/d 24 73
3 M 77 14 Clonazepam 3 mg/d 29 75
4 F 58 11 Gabapentin 900 mg/d 26 58
5 F 68 18 None 11 64
6 M 76 13 Gabapentin 900 mg/d 13 68
7 M 78 15 Propranolol 120 mg/d 17 58
8 M 59 6 Gabapentin 900 mg/d 7 35
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Surface electromyography

Surface EMG recordings were made with Zebris DAB-Blue-
tooth (Zebris Medical) using bipolar Ag/AgCl electrodes 
(Noraxon Inc.). The band width of the sampling frequency 
was 7–500 Hz. The sampling rate was 250 Hz for each EMG 
electrode. Although the sampling rate was within the pass 
band, the practical consequences are likely to be limited as 
the power content of EMG over 125 Hz is low. The obtained 
data were analysed with MATLAB software (MathWorks 
Inc., Natik, MA). In all patients with POT, surface EMG 
was recorded from the anterior tibial and medial gastrocne-
mius muscles of both legs during lying and upright stance 
to definitely diagnose POT, exclude additional tremor forms 
and concurrent differential diagnoses.

Posturography

Posturographic measurements with increasing difficulty 
were made in subjects while standing on a Kistler platform. 
Conditions included standing on firm ground with eyes 
open (EO), eyes closed (EC), and eyes open on foam rubber 
(EOF) [21]. EO and EC were used as training sessions, while 
EOF was considered the test condition for the data analysis. 
Each session lasted for 30 s. The total sway path was ana-
lysed for x and y directions. Fourier analysis was applied 
to quantify the distribution of frequencies in the frequency 
spectrum of body sway.

Theta burst repetitive transcranial magnetic 
stimulation (rTMS)

Transcranial magnetic stimulation (TMS) was provided 
using a MagPro R30 machine with a MC-B70 Butterfly Coil 
(Medtronic). Biphasic pulses were applied either over the 
left primary motor cortex (M1) or over the dorsal medial 
frontal cortex (dMFC). M1 was determined individually as 
the site where TMS elicited a selective twitch in the con-
tralateral lower leg. dMFC was defined as the location on the 
midline 5 cm anterior to the vertex, which is the midpoint 
between nasion and inion. In addition, we localised the hand 
area of M1 as the area providing the most selective contralat-
eral finger twitch. The resting motor threshold (RMT) was 
taken from the M1 hand area, defined as the minimum TMS 
intensity required to achieve a visible contraction of the con-
tralateral hand in 5 out of 10 consecutive pulses [22]. The 
rTMS intensity for the stimulation protocol was set at 80% of 
the RMT from the hand M1 representation. The foot area is 
deeper within primary motor cortex than the hand area mak-
ing the motor threshold for the foot far higher. Safety guide-
lines for theta burst TMS however tend to assume the hand 
area is stimulated: to unambiguously satisfy these guidelines 
we concordantly took the conservative option of using the 

hand area motor threshold for stimulating both areas in the 
main experiment (i.e., the M1 representation of the lower 
limb and the dMFC). The rTMS protocol consisted of 40 s 
of continuous theta burst stimulation (50 Hz triplets in bursts 
applied at 5 Hz) [23].

Procedures

Stimulation of either the left M1 area or dMFC was con-
ducted on two separate sessions with an interval of at least 
one month in a cross-over design, i.e., half of the patient 
group received rTMS of M1 at the first session and rTMS 
of dMFC at the second session, the other half vice versa 
(for illustration see Fig. 1). All previous medications were 
continued during the study period.

Each patient underwent surface EMG from both lower 
legs and posturography (EO, EC, ECF) at each session 
before rTMS (pre-stim), and 20 min after rTMS (post-stim). 
Individual patients rated changes in their subjective feel-
ing of postural stability during M1-rTMS and dMFC-rTMS 
by a scoring system from −3 to + 3 (−3: marked worsen-
ing; −2: moderate worsening; −1: slight worsening; 0: no 
change; + 1: slight improvement; + 2: moderate improve-
ment; + 3: marked improvement).

Data analysis

The obtained surface EMG recordings were analyzed for 
tremor frequency (Hz) and cumulative tremor intensity 
(micro-Volt*second, uv.s) calculated as area under the curve 
in each individual patient pre-stim and post-stim during EOF 
at both sessions (M1-rTMS and dMFC-rTMS). The pos-
turography measurements (EOF condition) were analyzed 
for overall sway path (m/min) in x and y directions at session 
1 and 2 (pre- and post-stim).

Statistical analysis

Data are reported as mean ± standard deviation (SD). Shap-
iro–Wilk test indicated normal distribution of data. A mixed-
design two-way repeated measurement analysis of variance 
(rmANOVA) was conducted to determine the effect of rTMS 
stimulation site to changes (pre- vs. post-stim) in tremor 
intensity, frequency and postural stability/sway path. The 
presence of a significant pre-vs. post-stim main effect was 
further evaluated using paired sample one-tailed t-tests for 
each stimulation site (M1 and dMFC).

Wilcoxon signed-rank test was applied to evaluate rela-
tionships between subjective patient ratings and objective 
changes in sway path (pre- vs. post-stim) for each stimula-
tion site. Results were considered significant for p < 0.05. 
Data processing and statistical analysis was performed 



2941Journal of Neurology (2024) 271:2938–2947 

using MATLAB® 2012a (Mathworks, Natick, MA, USA) 
software.

Ethical standard

All subjects gave their informed, written consent to par-
ticipate in the study. The study protocol was approved by 
the local ethics committee of the Ludwig-Maximilians-
University of Munich and the study was in accordance 
with the Declaration of Helsinki.

Results

Mean duration of POT in the study cohort was 
13.5 ± 5.4 years, the median BDI-II score was 18 (range 
7–29), and the median DHI-score was 61 (range 35–75). 
Seven of the eight POT patients were under treatment with 
either gabapentin (n = 5), clonazepam (n = 1) or propranolol 
(n = 1) (Table 1).

M1‑stimulation effects on tremor frequency, tremor 
intensity, and sway path

Theta burst rTMS of the left M1 leg area did not change 
tremor frequency of POT at a group level (pre-stim: 

Fig. 1  Experimental setup and study design. Each of the eight POT 
patients underwent theta burst rTMS (1 Hz, 600 s) of the leg area of 
the left primary motor cortex (M1) and dorsal medial frontal cortex 
(dMFC). The stimulus intensity was 80% of the M1 hand area motor 
threshold in each patient. Before stimulation, i.e. at baseline (pre-
stim), and 20 min after stimulation (post-stim) tremor frequency (Hz) 
and intensity (uv.s) was recorded by surface EMG of both Mm. tibi-
alis anterior and gastrocnemius. In addition, the cumulative sway path 

on a foam rubber when eyes open (EOF) was recorded in each patient 
pre-stim and post-stim on a Kistler posturography platform for 30 s, 
respectively. Change in subjectively perceived postural stability was 
scored by patients post-stim. To minimize the bias of a training effect, 
in a cross-over like design half of the POT patients (n = 4) received 
M1-stimulation at day 1 and dMFC-stimulation at day 30, while 
the other half received M1- and dMFC-stimulation vice versa (i.e., 
M1-stimulation at day 30 and dMFC-stimulation at day 1)

Table 2  Tremor frequency, intensity, sway path pre- vs. post-stim for M1-/dMFC-rTMS

M1 primary motor cortex (leg area), dMFC dorsal medial frontal cortex, *p<0.05, **p<0.01

Stimulation site and applied statistics Tremor frequency (Hz) Tremor intensity (uv.s) Sway path (m/min)

M1
 Pre-stim 14.75 ± 1.38 48.60 ± 15.60 5.23 ± 2.18
 Post-stim 14.73 ± 1.43 36.84 ± 7.37 3.95 ± 1.63

dMFC
 Pre-stim 14.72 ± 1.35 44.03 ± 12.71 4.55 ± 1.30
 Post-stim 14.73 ± 1.44 42.24 ± 12.07 4.16 ± 1.41

rmANOVA; Stimulation site x Time (F, p) 0.154, 0.700 2.137, 0.166 9.606, 0.008**
M1 paired t-test (T, p) 0.296, 0.388 2.175, 0.033 5.321, 0.0005**
dMFC paired t-test (T, p) 0.259, 0.401 0.433, 0.339 2.420, 0.023*
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14.75 ± 1.38 Hz vs. post-stim: 14.73 ± 1.43 Hz; T = 0.296, 
p = 0.388) (Table 2, Fig. 2A) nor in individual patients 
(Fig. 3A). There was a decrease in tremor intensity, i.e. 
the cumulative area under the curve of all the registered 
tremor bursts (pre-stim: 48.60 ± 15.60 vs. post-stim: 
36.84 ± 7.37 uv.s; T = 2.175, p = 0.033) for M1-stimula-
tion across the entire patient group (Fig. 2B). Accordingly, 
seven of eight patients showed a reduced tremor intensity 
comparing pre-/post-stim (Fig. 3B). The sway path on the 
posturography platform was significantly reduced after 
M1-stimulation on a group-level (pre-stim: 5.23 ± 2.18 
vs. post-stim: 3.95 ± 1.63 m/min; T = 4.11, p = 0.0005) 

(Fig. 2C). Individually, seven of eight patients exhibited 
a significant decrease in sway path after M1-stimulation 
with only one patient showing neither improvement nor 
worsening (Fig. 3C).

All but one patient subjectively perceived an improve-
ment of postural stability with M1-stimulation (slight 
improvement, i.e., rating + 1 in two patients, moderate 
improvement, i.e., rating + 2 in five patients) (supple-
mentary data). Subjective patient rating of change in pos-
tural stability correlated with decrease in sway path after 
M1-rTMS (Z = −2.46, p = 0.014).

Fig. 2  Statistical comparison of tremor frequency, intensity and sway 
path before and after M1- and dMFC-stimulation for the whole POT 
group. A Tremor frequency (Hz), B tremor intensity (uv.s), and C 
sway path (m/min) while standing on foam rubber with eyes closed 

(EOF), respectively depicted as whisker blots (mean, 25%/75% inter-
quartils and standard deviation) before and after M1- and dMFC-
stimulation
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dMFC‑stimulation effects on tremor frequency, 
tremor intensity, and sway path

dMFC-rTMS did not result in a change of tremor frequency 
(pre-stim: 14.72 ± 1.35 vs. post-stim: 14.73 ± 1.44  Hz; 
T = 0.259, p = 0.401) nor in tremor intensity in the entire 
POT group (pre-stim: 44.03 ± 12.71 vs. post-stim: 
42.24 ± 12.07 uv.s; T = 0.433, p = 0.339) (Table 2, Fig. 2A). 
On an individual patient level, tremor frequency remained 
stable (Fig. 3D). Tremor intensity decreased in four patients, 
remained unchanged in two patients, and increased in two 
patients post-stim vs. pre-stim (Fig. 3E). In the entire group, 
sway path decreased significantly due to dMFC-rTMS (pre-
stim: 4.55 ± 1.30 vs. post-stim: 4.16 ± 1.41 m/min; T = 2.42; 
p = 0.023). Four patients showed a decrease in sway path, 
while three patients had no effect and one patient had a 
higher sway path after dMFC-stimulation (Fig. 3F). Sub-
jective rating of postural stability revealed an improvement 
in six patients (slight improvement in five patients, moderate 
improvement in one patient) upon dMFC-stimulation (sup-
plementary data), which correlated with decrease of sway 
path (Z = −2.330, p = 0.02).

Discussion

The present study examined the effects of theta burst rTMS 
in the left primary motor cortex and dorsal medial frontal 
cortex on tremor characteristics, sway path, and subjective 
feeling of postural stability in a well characterized cohort 
of patients with primary orthostatic tremor. The key result 
was that tremor intensity improved with M1- but not dMFC-
rTMS. M1-stimulation and to a lesser extent dMFC-stimu-
lation decreased sway path signficantly. Consistently with 
this, the patients reported subjective improvement of stance 
stability. The underlying mechanisms and practical relevance 
of these findings will be discussed in the following sections.

Influence of theta burst M1‑/dMFC‑rTMS on tremor 
characteristics in POT

In this study, rTMS of M1 and dMFC had differential 
effects on POT characteristics. Tremor frequency remained 
unchanged for both conditions, while intensity decreased 
on the group level after M1-rTMS only (corresponding to 
six of eight individual patients). Generally, it is conceivable 

that M1-stimulation had more pronounced effects on tremor 
compared to dMFC-stimulation, as it more directly inter-
ferred with the known cortical represenations of the tremor 
network underlying POT [18]. Thereby, presumably inhibi-
tory M1-rTMS may attenuate the oscillatory activity in the 
tremor network, but may not change its inherent frequency. 
This view is in accordance with previous reports in single 
patients with POT that described no effect of suprathresh-
old TMS of the primary motor cortex on tremor frequency, 
but an immediate diminution of tremor intensity [12]. Simi-
larly, DBS in the ventral intermediate thalamus (VIM) or 
zona incerta (ZI) decreased tremor intensity significantly 
in 20 patients with POT, despite having no impact on 
tremor frequency [14–17, 24–27]. Compared to the current 
study, suprathreshold TMS and VIM-/ZI-DBS effects on 
tremor intensity in the aforementioned studies seemed to be 
stronger. For TMS, this may be explained by differences in 
stimulation conditions and timescales of protocols. While 
we applied subthresthold rTMS with a stimulus intensity of 
80% of the RMT for M1, in the previous studies the stimulus 
intensities were respectively 10% and 20% above the RMT. 
In addition, rTMS in the current study was administered only 
unilaterally for methodological reasons, while the tremor 
network in POT is represented bihemispherically. Further-
more, we analyzed treatment effects not directly, but 20 min 
after theta burst rTMS application. It therefore can be pre-
sumed that the effects of theta burst rTMS in our study may 
have been underestimated and tremor during or immediately 
after M1-rTMS was partially or completely suppressed. As 
far as VIM-/ZI-DBS is concerned, we speculate that a per-
sistent, invasive and direct modulation of a hub in the ponto-
cerebello-thalamo-cortical tremor network in POT [18, 19, 
28] unfolds more pronounced effects on the tremor intensity 
than one train of theta burst rTMS for 40 s in our study.

Putative mechanism of theta burst M1/dMFC‑rTMS 
on postural stability in POT

Subjectively perceived and objectively measured postural 
stability significantly improved following M1-rTMS. dMFC-
stimulation also resulted in a decrease of the overall sway 
path and increase in subjective postural stability, but to a 
lesser extent than M1-stimulation.

The putative mechanism behind the positive effect of 
M1-stimulation on balance control might be desynchroni-
zation of the entire ponto-cerebello-thalamo-cortical oscil-
latory network underlying POT by inhibition of activity in 
its motor cortical core hub [18, 19, 28] [18, 25, 29, 30]. 
Positive effects of transcranial neuromodulation have also 
been described for other common tremor disorders, such 
as essential tremor (ET) and Parkinsonian tremor (PT), 
which share an oscillating loop involving sensorimotor 
cortical areas [31–35]. Since M1-rTMS in POT decreased 

Fig. 3  Illustration of the changes of tremor frequency, intensity and 
sway path in each individual POT patient after M1- and dMFC-
stimulation. A Tremor frequency (Hz), B tremor intensity (uv.s), and 
C sway path (m/min) while patients were standing on foam rubber 
with eyes open (EOF) before and after M1-stimulation. D Tremor fre-
quency, E tremor intensity, and F sway path (m/min) with EOF stand-
ing condition before and after dMFC-stimulation

◂
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the tremor intensity, the pronounced improvement of pos-
tural stability could be seen as an immediate consequence 
of tremor attenuation. However, in POT the correlation of 
tremor intensity and postural instability is not that une-
quivocal. Previous studies have either reported a dispro-
portional increase of postural unsteadiness when compared 
to tremor severity [20, 36], or a marked improvement of 
postural control despite no relevant change in tremor 
intensity [37]. These observations point towards somewhat 
distinct albeit partially overlapping circuits for tremor gen-
eration and postural control in POT. On a cortical level, 
deactivation of mesio- and prefrontal areas correlates more 
intensely than primary motor areas with the extent of pos-
tural sway in POT [18]. In line with this, functional imag-
ing studies in healthy subjects have indicated activations 
of both primary motor and premotor/supplementary motor 
cortical regions during stance [38–42]. Interestingly, more 
complex balance tasks seem to trigger the activation of 
premotor and supplementary motor areas more extensively 
than the primary motor area [43]. In patients with stroke 
lesions, involvement of the dMFC is critically relevant for 
postural balance control and anticipatory postural adjust-
ments [39, 44, 45].

This functional topography could explain why dMFC-
rTMS resulted in an obvious dissociation between a signifi-
cant decrease of sway path and perceived postural instability 
on the one side and an unaffected tremor intensity on the 
other. The dMFC seems not directly involved in the oscillat-
ing tremor network of POT and ET, but rather a modulating 
brain region for the cortico-thalamo-cerebellar core network 
[18, 31]. dMFC shows significant structural and functional 
changes in POT [18–20] with an increase in grey matter 
volume and functional coupling to cerebellar brain regions. 
Theta burst rTMS of cerebellar areas (particularly lobule 
VI) led to a decoupling of cerebellar-dMFC intrinsic activi-
ties as a possible underlying correlate of a decrease in POT 
severity [19]. Based on these observations, there is enough 
pathophysiological evidence that the dMFC might be a pos-
sible target for non-invasive neuromodulation in POT as well 
as postural balance control deficits generally.

In conclusion, the present study gives evidence that 
non-invasive transcranial stimulation of the leg area of the 
primary motor cortex might improve both tremor intensity 
and postural control in POT and could be a potential neu-
romodulatory add-on therapy for this rather hard to treat 
rare disorder. Effects of M1-rTMS on postural stability 
surpassed the benefit of dMFC-rTMS. Targeting postural 
instability addresses the need that affected patients often 
perceive imbalance as the most disabling chief complaint. 
However, additional studies with further control conditions, 
a longer treatment duration, or a bilateral stimulation proto-
col are urgently needed to make a final statement on rTMS 
effectiveness, especially compared to previously described 

methods such as peripheral somatosensory stimulation, spi-
nal cord stimulation, or DBS [46–48].
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