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Abstract
Background Uncovering distinct features and trajectories of amyotrophic lateral sclerosis (ALS) associated with SOD1 
mutations (SOD1-ALS) can provide valuable insights for patient’ counseling and stratification for trials, and interventions 
timing. Our study aims to pinpoint distinct clinical characteristics of SOD1-ALS by delving into genotype–phenotype cor-
relations and factors that potentially impact disease progression.
Methods This is a retrospective observational study of a SOD1-ALS cohort from two Italian registers situated in the regions 
of Emilia-Romagna, Piedmont and Valle d’Aosta.
Results Out of 2204 genotyped ALS patients, 2.5% carried SOD1 mutations, with a M:F ratio of 0.83. SOD1-ALS patients 
were younger, and more frequently reported a family history of ALS and/or FTD. SOD1-ALS had a longer survival compared 
to patients without ALS-associated gene mutations. However, here was considerable variability in survival across distinct 
SOD1 mutations, with an average survival of less than a year for the L39V, G42S, G73S, D91N mutations. Among SOD1-
ALS, multivariate analysis showed that, alongside established clinical prognostic factors such as advanced age at onset and 
high progression rate at diagnosis, mutations located in exon 2 or within highly conserved gene positions predicted worse 
survival. Conversely, among comorbidities, cancer history was independently associated with longer survival.
Interpretation Within the context of an overall slower disease, SOD1-ALS exhibits some degree of heterogeneity linked 
to the considerable genetic diversity arising from the multitude of potential mutations sites and specific clinical prognostic 
factors, including cancer history. Revealing the factors that modulate the phenotypic heterogeneity of SOD1-ALS could 
prove advantageous in improving the efficacy of upcoming therapeutic approaches.
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Introduction

SOD1 is the first gene identified in Amyotrophic Lat-
eral Sclerosis (ALS), accounting for 15–20% of familial 
ALS (fALS) and 1–2% of sporadic ALS (sALS) cases 
[1]. Approximately 200 mutations have been described 
(https:// alsod. ac. uk/, accessed on December 2022), mostly 
inherited with an autosomal dominant pattern [2]. ALS 
associated with SOD1 mutations (SOD1-ALS) has been 
described as characterized by a predominantly lower motor 
neuron involvement, with limbs onset [3], and a nearly 
intact cognitive profile [4]. Among SOD1 mutations, cer-
tain variants are associated with distinct disease trajecto-
ries [5], ranging from aggressive forms linked to the A5V 
variant to milder ones due to D91A [4].

According to the multistep hypothesis, starting from 
genetics, the interaction with other individual and external 
factors also affects survival in ALS [6]. For example, a 
noticeable milder disease progression has been observed 
in female SOD1-ALS patients [7]. This epidemiological 
observation is reinforced by a meta-analysis of preclinical 
data showing a female hormone-related protective effect 
in the SOD1 G93A mouse model [8], although this effect 
is not consistent across all SOD1 mutations [9].

On the other hand, an older age of onset has been found 
to be independently linked to a more rapid disease progres-
sion [9], although other possible factors influencing the 
disease trajectory remain unclear. In fact, besides a recent 
large study on ALS Online Database investigating some 
basic factors possibly associated with age at symptom 
onset and survival, to date the majority of genotype–phe-
notype data pertaining to SOD1-ALS is derived from 
small monocentric cohorts or individual case reports [5].

Moreover, despite extensive literature data on experi-
mental paradigms, SOD1 role in ALS pathogenesis is not 
definitively clarified, although most studies favor a toxic 
gain-of-function mechanism involving protein aggregation 
and a prion-like propagation of misfolded molecules [10]. 
Accordingly, an antisense oligonucleotide targeting SOD1 
has been developed [11, 12] and is currently being admin-
istered through an early access program in many countries 
(NCT04972487) and has recently gained FDA approval.

In the present study, we aimed to analyzing clinical fea-
tures and the genotype–phenotype correlates in a cohort 
of Italian SOD1-ALS patients accrued by the Emilia 
Romagna (ERRALS) [13] and Piemonte and Valle D’Aosta 
(PARALS) [14] Registers. Furthermore, by gathering 
medical history from these two regional Italian ALS reg-
istries, our study is meant to unravel which factors, among 
clinical and genetic features and comorbidities, may influ-
ence disease progression and survival in SOD1-ALS.

Patients and methods

Study population

Our study is designed as a retrospective observational study, 
involving ALS adult patients (age ≥ 18 years) residing in 
Emilia Romagna and Piedmont and Valle D’Aosta regions, 
respectively enrolled by ERRALS and PARALS registers 
[13, 14] at the time of diagnosis by caring physicians of the 
ALS centers of the two regions.

Clinical measures

Demographic and clinical variables that were examined for 
this study included sex, age at onset, diagnostic latency, 
family history for ALS and/or fronto-temporal dementia 
(FTD), site of onset (bulbar, upper limb or lower limb, res-
piratory), phenotype (classic, bulbar, upper motor neuron 
predominant, flail arm, flail leg, and respiratory ALS) [15, 
16], and atypical manifestations including extrapyramidal 
symptoms. Anthropometric measures as weight, height, 
and Body Mass Index (BMI) at diagnosis, were registered 
together with “weight loss at diagnosis” defined as the dif-
ference in kilograms between the body weight before symp-
tom onset and body weight at diagnosis. ALS Functional 
Rating Scale revised (ALSFRS-R) total score at diagnosis 
was collected, calculating progression rate [17] as previ-
ously described [18]. Respiratory function as assessed by 
periodic Forced Vital Capacity (FVC) determination, and 
time to noninvasive ventilation (NIV), to invasive ventilation 
(IV), and to percutaneous endoscopic gastrostomy (PEG) 
were analyzed too.

Cognitive and behavioral impairment in the FTD dis-
ease spectrum were evaluated according to Strong criteria 
[19]. Comorbidities were categorized as hypertension and 
cardiovascular diseases, dyslipidemia, chronic obstructive 
pulmonary disease (COPD) and other respiratory diseases, 
diabetes mellitus, neuro-psychiatric disorders, autoimmune 
diseases, thyroid diseases, hematological disorders, oncolog-
ical history, urologic or gastrointestinal disorders, metabolic 
diseases (including dyslipidemia, hyperhomocysteinemia, 
hyperuricemia and gout, and obesity) [20]. Riluzole and 
other treatments were recorded too.

Genetic analyses and SOD1 variants’ analysis

Genetic analysis included at least presence/absence of 
SOD1, FUS, TARDBP mutations and C9ORF72 expansion, 
as described previously [21]. In a subgroup of patients, fur-
ther genes were also explored based on clinicians’ decisions 
(usually guided by the presence of family history of ALS 

https://alsod.ac.uk/
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and/or FTD, young age at onset, or comorbid dementia). We 
classified SOD1 mutations according to the exon localiza-
tion. Then, we analyzed amino acid sequence conservation 
by applying ConSurf (https:// consu rf. tau. ac. il) [22]. Pre-
dictSNP (https:// losch midt. chemi. muni. cz/ predi ctsnp) was 
used in order to interpret the functional impact of mutations 
on the SOD1 protein [23].

Statistics

We assessed differences in characteristics across ALS 
patients by using T test, ANOVA, Chi-square test as appro-
priate. We reported missing data as a separate category in 
the dataset and each variable has been described with fre-
quencies of “unknown” values. Cox regression analysis has 
been used to estimate the hazard ratio (HR) and correspond-
ing 95% confidence interval (95% CI) associating independ-
ent variables and ALS tracheostomy-free survival. Adjusted 
Cox proportional hazard model for time to event outcome 
was used to assess SOD1 mutation effects on survival on the 
entire ALS population (with SOD1 mutations and without 
ALS-related gene mutations). Univariate and multivariate 
Cox survival analysis were performed to examine the inde-
pendent effects of several factors on survival of the SOD1 
ALS cohort. Data analysis was performed using STATA sta-
tistical package 15 (StataCorp. 2017. College Station, TX: 
StataCorp LLC).

Results

SOD1‑ALS patients’ clinical features

Out of 2204 genotyped patients from the two Italian registers 
(ERRALS and PARALS), 55 ALS patients (2.5%) carried 
SOD1 mutations. Patients without known mutations in ALS-
related genes (wm-ALS) were 1936, whereas 213 patients 
carried other gene mutations as previously reported [18]. 
Among this latter group the vast majority was represented 
by C9ORF72 expansion (150 patients, 70.42% of patients 
carrying other gene mutations).

The subgroup of SOD1 carriers consisted of 25 males 
and 30 females, resulting in a male-to-female ratio of 
0.83. Patients with SOD1 mutations were younger than 
other patients (mean age at onset in the SOD1-ALS group 
was 59.91 ± 14.29 years, whereas in the wm-ALS it was 
65.04 ± 11.55 years; p = 0.001) and reported a family his-
tory of ALS or FTD more frequently (45% of patients with 
SOD1 mutation versus 12.85% of wm-ALS, p < 0.001). 
There were no differences among the two patient groups in 
terms of gender, BMI or weight loss at diagnosis, diagnos-
tic delay, presence of FTD or parkinsonism are concerned. 
Patients with SOD1-ALS had more frequently a lower limb 

onset (37 cases, 67.27%) than wm-ALS (686 cases, 35.47%; 
p < 0.001), whereas the opposite was observed for bulbar 
onset (5 cases, 9.09% among SOD1-ALS and 610 cases, 
31.54% among wm-ALS, p < 0.001). As far as phenotypes 
are concerned, the bulbar phenotype was more frequent 
among wm-ALS (9.09% vs 28.08%, p < 0.001), while the 
flail leg phenotype was more frequent among SOD1-ALS 
(38.18% versus 13.81%, p < 0.001). There were no differ-
ences in other phenotype features between the two groups.

The prevalence of comorbidities in the analyzed cohort 
was similar between SOD1-ALS and wm-ALS patients, 
relating to hypertension, diabetes, respiratory, cardiac, gas-
trointestinal, autoimmune, thyroid, hematological, metabolic 
disorders. The disease progression rate at diagnosis meas-
ured as ALSFRS-R monthly decline was 1.24 ± 1.94 points/
month in SOD1-ALS patients and 1.47 ± 2.14 points/month 
in the wm-ALS (p = 0.403). Patients with SOD1 muta-
tions underwent PEG placement less frequently (16.27% vs 
40.60%, p = 0.001) and later (62.17 months vs 28.88 months, 
p < 0.001), compared to wm-ALS patients. However, there 
was no significant difference in the utilization of NIV 
(47.27% vs 46.92%, p = 0.533) or IV (12.73% vs 16.45%, 
p = 0.580) between the two groups. The mean tracheostomy 
free-survival from onset was 69.98 months in SOD1-ALS 
patients and 48.29 months in wm-ALS patients (p < 0.001). 
Out of 55 patients with SOD1 mutations, 34 (61.81%) died 
during the study, compared to 1461 out of 1936 wm-ALS 
(75.50%, p = 0.020). Lastly, SOD1-ALS patients showed a 
higher survival probability with respect to wm-ALS patients 
(HR 0.79, 95% CI 0.67–0.94, p = 0.006) (Fig. 1). This differ-
ence persisted even after adjusting for possible confounding 
factors such as region (Piedmont versus Emilia-Romagna: 
HR 0.79, 95% CI 0.67–0.94, p = 0.007), sex (HR 0.79, 95% 
CI 0.67–0.93, p = 0.006), and age at onset (HR 0.75, 95% 
CI 0.59–0.96, p = 0.021). When adjusting for site of onset 
the difference was attenuated (HR 0.85, 95% CI 0.72–1.00, 
p = 0.055).

SOD1‑ALS patients’ clinical features according to sex 
at birth

We observed a more aggressive form of the disease in male 
patients, since they presented a statistically significant 
shorter time from onset to IV (95 ± 11.3 months for women, 
17.8 ± 8.84 months for men, p < 0.001). However, survival 
time (82.23 ± 62.93 months for women, 55.28 ± 52.5 months 
for men, p = 0.094) and progression rate at diagnosis 
(2.03 ± 3.05 points/month for men; 1.07 ± 1.05 points/month 
for women, p = 0.117) did not show significant differences 
between the sexes. Table 1 shows the overall demographic 
and clinical characteristics of SOD1-ALS patients, stratified 
by sex (Table 1).

https://consurf.tau.ac.il
https://loschmidt.chemi.muni.cz/predictsnp
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SOD1‑ALS patients’ features by SOD1 mutation

Figure 2 illustrates the localization of SOD1 mutations 
on the 3D protein structure, while Table 2 represents the 
demographic and clinical features of SOD1-ALS patients by 
SOD1 mutation. Some mutations were more prevalent in our 
cohort, including N66S, D91A, G94D, L145F. While there 
was a balanced distribution of sex among different muta-
tions, the site of onset and phenotype exhibited heteroge-
neous representation within each specific mutation group. 
The site of onset was not only confined to the lower limbs, 
but also involved the upper limbs and bulbar region. The 
phenotypic spectrum ranges from the more common flail 
leg phenotype to the rarer upper motor neuron predominant 
(UMN-p) or bulbar phenotypes, regardless of the specific 
type of mutation. A more aggressive disease course, char-
acterized by a mean survival shorter than 1 year, was found 
in association with L39V (5 months), G42S (6.5 months), 
G73S (12 months), D91N (9 months), even in presence of a 
younger age of onset, namely for the L39V (46 years), and 
G73S (48 years) mutations. None of the patients exhibited 
symptoms of extra-motor neurological involvement, includ-
ing cognitive impairment, tremor, or extrapyramidal symp-
toms (Table 2).

SOD1‑ALS patients’ survival

The factors influencing survival in SOD1-ALS patients, as 
determined through univariate Cox regression analysis, are 
presented in Table 3. Besides clinical factors, among the 

possible prognostic factors related to mutations, the presence 
of mutations with probable deleterious functional effects (as 
predicted by Predict SNP software [23]) tended to be asso-
ciated with shorter survival (HR 1.80, 95% CI 0.99–3.28, 
p = 0.053). A statistically significant association with worse 
survival was finally observed for mutations localized in 
highly conserved gene positions, as defined by ConSurf soft-
ware [22] (HR 3.77, 95% CI 1.74–8.23, p = 0.001), and for 
mutations located in exon 2 (HR 4.03, 95% CI 1.12–14.40, 
p = 0.032) (Table 3).

The multivariate analysis of survival showed that inde-
pendent prognostic factors related to worse tracheostomy-
free-survival were advanced age at onset (years) (HR 1.06, 
95% CI 1.02–1.10, p = 0.001), higher progression rate at 
diagnosis (> 3 points/month) (HR 1.38, 95% CI 1.15–1.67, 
p = 0.001), mutations located in exon 2 (HR 11.56, 95% 
CI 3.95–33.82, p < 0.001), and mutations located in highly 
conserved gene positions, as defined by ConSurf software 
[22] (HR 4.28, 95% CI 1.80–10.19, p = 0.001). On the con-
trary, a history of neoplasms (HR 0.15, 95% CI 0.03–0.69, 
p = 0.015) was associated with a longer survival (Fig. 3).

SOD1‑ALS patients’ features according 
to the presence or absence of neoplastic diseases

Eight patients had a previous oncological history, with 
two cases (breast and ovarian cancer) occurring within 
the same A96T mutation. All the patients with a history 
of cancer, except one with a benign submandibular ade-
noma, carried a mutation located in the exon IV and V of 

Fig. 1  Cox regression analysis 
of time to tracheostomy-free 
survival from symptom onset 
comparing SOD1-ALS and 
wm-ALS
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SOD1, sparing other mutational regions. Among SOD1-
ALS patient group, those who reported previous neoplas-
tic diseases did not differ significantly from those with a 
negative history of neoplasms, except for a longer diag-
nostic delay (22 ± 20.23 months vs 12.02 ± 9.73 months, 
p = 0.030). NIV was more frequently used employed in 
patients without a history of neoplasm (53.19%) compared 
to those with a history of cancer (12.5%) (p = 0.023). The 
patients’ characteristics based on the presence or absence 
of neoplasia are reported in Table 4.

Discussion

In our cohort, 55 patients with ALS carried a SOD1 muta-
tion, accounting for 2.5% of the entire genotyped ALS 
population, a finding consistent with previous reports 
in European datasets [9, 25]. As expected, patients with 
SOD1-ALS were younger than other ALS patients and 
exhibited a slower disease progression with longer sur-
vival [26, 27]. This group more frequently presented with 

Table 1  Demographic and clinical features of SOD1-ALS patients according to sex

BMI body mass index, Spinal UL spinal upper limb, Spinal LL spinal lower limb, UMN-p upper motor neuron predominant, FTD frontotemporal 
dementia, FVC forced vital capacity, PEG percutaneous endoscopic gastrostomy, NIV noninvasive ventilation, IV invasive ventilation, SD stand-
ard deviation
a Site of onset and phenotype were available for 54 patients
b Progression rate at diagnosis is calculated as monthly decline of ALSFRS-R score assuming a total score of 48 at onset. It was available on 51 
patients
c FVC at diagnosis was available for 11 patients

Clinical features Women (n = 30)
N (%), mean [SD]

Men (n = 25)
N (%), mean [SD]

Total (n = 55)
N (%), mean [SD]

p value

Mean age at onset, years 61.35 [13.10] 58.20 [15.69] 59.91 [14.29] 0.421
Mean diagnostic delay, months 14.50 [13.54] 12.24 [10.24] 13.47 [12.09] 0.495
Weight loss at diagnosis, kg 3.05 [3.94] 1.71 [2.98] 2.47 [3.58] 0.201
BMI diagnosis, kg/m2 24.13 [3.67] 26.12 [4.71] 24.96 [4.21] 0.099
Site of  onseta 0.622
 Bulbar 2 (6.67) 3 (12.00) 5 (9.09) 0.412
 Spinal, UL 7 (23.33) 5 (20.00) 12 (21.82) 0.514
 Spinal, LL 21 (70.00) 16 (64.00) 37 (67.27) 0.426

Phenotypea 0.698
 Bulbar 2 (6.67) 3 (12.00) 5 (9.09) 0.412
 Classic 13 (43.33) 9 (36.00) 22 (40.00) 0.392
 Flail arm 0 (0.00) 0 (0.00) 0 (0.00)
 Flail leg 11 (36.66) 10 (40.00) 21 (38.18) 0.509
 UMN-p 4 (13.33) 2 (8.00) 6 (10.91) 0.427
 Respiratory 0 (0.00) 0 (0.00) 0 (0.00)

Family history of ALS/FTD 4 (13.33) 5 (20.00) 9 (16.36) 0.380
ALSFRS-R score at diagnosis 39.70 [5.84] 35.95 [12.94] 38.16 [9.50] 0.168
Progression rate at  diagnosisb 1.07 [1.05] 2.03 [3.05] 1.47 [2.14] 0.117
FVC at  diagnosisc 109.17 [27.23] 69.70 [39.08] 91.23 [37.50] 0.080
Riluzole treatment 14 (46.67) 9 (36.00) 23 (41.82) 0.345
PEG 3 (10.00) 4 (16.00) 7 (12.73) 0.415
NIV 11 (36.67) 15 (60.00) 26 (47.27) 0.073
IV 2 (6.67) 5 (20.00) 7 (12.73) 0.142
Death 17 (56.67) 17 (68.00) 34 (61.82) 0.389
Time from ALS onset to PEG, months 70.33 [47.81] 54.00 [48.75] 62.17 [44.11] 0.700
Time from onset to NIV, months 54.82 [61.11] 34.27 [28.20] 42.96 [45.24] 0.261
Time from onset to IV, months 95.00 [11.31] 17.80 [8.84] 39.86 [38.63]  < 0.001
Time from onset to death or tracheostomy or 

last observation, months
82.23 [62.93] 55.28 [52.52] 69.98 [59.47] 0.094
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lower limb onset and flail leg phenotype. Accordingly, 
they underwent PEG less frequently and at a later stage 
compared to patients without mutations in ALS-related 
genes [28].

Among the possible covariates influencing the association 
between SOD1 mutations and longer survival, the onset site 
emerged as a possible confounding factor, as it was more fre-
quently represented in the SOD1-ALS cohort, likely mediat-
ing the effect of the SOD1 mutation itself.

However, recent evidence has blurred the clear-cut dis-
tinction from the more common ALS presentation by dem-
onstrating how each variant may have a significant impact on 
the clinical phenotype [4, 5]. For example, the emblematic 
A5V mutation might be associated with rapidly progressive 
signs of lower motor neuron involvement in the limbs, trunk, 
or bulbar-innervated muscles, as well as early respiratory 
involvement, leading to a limited survival time of 1–2 years 
[29, 30].

According to a recent study, only a few variants of SOD1 
significantly influence survival, with one-third of them 
appearing to be protective, slowing down overall survival 
instead of shortening it [5]. In our cohort, the survival of 
SOD1-ALS patients exhibited wide variability, with an aver-
age duration of 70 months, likely attributed to the diverse 
effects of SOD1 mutations. Previous studies have also dem-
onstrated this heterogeneity in SOD1-ALS survival, as some 
cohorts reported remarkably long survival periods (e.g., 
97.1 months in a Chinese SOD1-ALS cohort) [7], while oth-
ers indicated comparatively shorter disease durations (e.g., 
27.7 and 55.2 months) [5, 30].

Regarding this subject, the primary distinction with 
Asian cohorts lies in the higher occurrence of the H47R 
mutation [7, 31], which is not documented in our records, 
along with the rarity of D91A and A5T mutations [7, 31]. 

In our population, the most frequently represented muta-
tions within the spectrum of SOD1 variants were N66S, 
D91A, G94D, and L145F, in alignment with recent find-
ings [5].

Remarkably, in our cohort, we observed a gender differ-
ence, with a predominance of female SOD1 cases, whereas 
other datasets have reported a slight male predominance 
[5, 7, 30, 32–34]. Additionally, SOD1-ALS patients in our 
cohort were, on average, 10 years older than those in other 
studies (60 years versus less than 50 years) [5, 7, 30]. As 
previously reported, the bulbar phenotype was relatively 
infrequent, accounting for only 9% of SOD1 cases [5, 7].

Given the small sample size limiting the number of indi-
viduals with specific mutations, we analyzed the SOD1 
mutations based on exon localization, the protein amino 
acid sequence conservation (by ConSurf [22]), and the 
mutation functional impact (using PredictSNP [23]). Exon 
2 localization emerged as an independent predictive factor 
for worse survival, probably due to two crucial sequences for 
SOD1 function located here: the dimer interface and the zinc 
loop. Furthermore, when the mutational point falls within 
a highly conserved genetic sequence scattered along the 
gene, regardless of exonic spot, it was associated to a more 
aggressive form. This observation reinforces Berdynski’s 
findings regarding the assessment of SOD1 variant severity 
[31]: SOD1 modifications in the highly conserved positions 
were significantly associated with reduced survival times. 
These observations suggest a modulation of pathogenetic 
impact acted by the protein localization, the nature of the 
amino acid substitution, and the consequent effect on SOD1 
dimer stability and the zinc loop. Overall, our data confirm 
that the selected variants act differently on ALS severity in 
terms of survival, prompting to further experimental and in 
silico studies to clarify the intricate relationship between the 

Fig. 2  Genetic variants associ-
ated with disease duration 
plotted onto a wild-type SOD1 
protein 3D model. Codon num-
bers refer to genomic location



6087Journal of Neurology (2023) 270:6081–6092 

1 3

Ta
bl

e 
2 

 D
em

og
ra

ph
ic

 a
nd

 c
lin

ic
al

 fe
at

ur
es

 o
f S

O
D

1-
A

LS
 p

at
ie

nt
s a

cc
or

di
ng

 to
 m

ut
at

io
n

U
K

 u
nk

no
w

n,
 M

 m
al

e,
 F

 fe
m

al
e,

 D
S 

st
an

da
rd

 d
ev

ia
tio

n,
 B

 b
ul

ba
r, 

LL
 lo

w
er

 li
m

b,
 U

L 
up

pe
r l

im
b,

 C
 c

la
ss

ic
, F

L 
fla

il 
le

g,
 U

M
N

 p
re

do
m

in
an

t u
pp

er
 m

ot
or

 n
eu

ro
n

a  Ti
m

e 
to

 d
ea

th
, t

ra
ch

eo
sto

m
y 

or
 la

st 
ob

se
rv

at
io

n
b  U

nk
no

w
n

M
ut

at
io

n
Ex

on
N

o 
of

 p
at

ie
nt

Se
x 

M
/F

M
ea

n 
ag

e 
at

 o
ns

et
 (S

D
)

M
ea

n 
su

rv
iv

al
 (S

D
)a

Si
te

 o
f o

ns
et

Ph
en

ot
yp

e
C

og
ni

tiv
e 

no
Tr

em
or

 n
o

Pa
rk

in
so

n 
no

C
an

ce
r n

o/
to

ta
l (

lo
ca

liz
at

io
n)

Ye
ar

s
M

on
th

s

A
5V

I
2

2 
F

65
.8

8 
(2

3.
86

)
19

.5
0 

(7
.7

8)
2L

L
2F

L
0

0
0

0/
2

V
15

M
I

1
1 

F
78

.8
5 

(0
.0

0)
37

.0
0 

(0
.0

0)
1L

L
1F

L
0

0
0

0/
1

N
20

S
I

2
2 

F
67

.3
3 

(1
4.

50
)

66
.0

0 
(6

6.
47

)
2L

L
1F

L1
U

M
N

0
0

0
0/

2
L3

9V
II

1
1 

F
46

.7
5 

(0
.0

0)
5.

00
 (0

.0
0)

1L
L

1F
L

0
0

0
0/

1
G

42
S

II
2

2 
M

59
.3

4 
(1

9.
21

)
6.

50
 (4

.9
5)

1B
1U

L
1B

1C
0

0
0

0/
2

V
48

F
II

2
2 

M
26

.0
5 

(1
4.

32
)

29
.0

0 
(2

2.
63

)
2U

L
2C

0
0

0
0/

2
G

62
R

II
I

1
1 

M
59

.0
8 

(0
.0

0)
26

.0
0 

(0
.0

0)
1L

L
1U

M
N

0
0

0
0/

1
N

66
S

II
I

6
3 

M
 3

 F
60

.6
5 

(1
3.

26
)

97
.1

7 
(8

8.
89

)
5L

L1
U

L
3C

3F
L

0
0

0a
1/

6 
(s

ub
m

an
di

bu
la

r 
ad

en
om

a)
G

73
S

II
I

1
1 

M
48

.0
0 

(0
.0

0)
12

.0
0 

(0
.0

0)
1L

L
1F

L
0

0
0

0/
1

D
91

A
IV

5
2 

M
 3

 F
66

.9
0 

(1
8.

99
)

78
.0

0 
(4

6.
81

)
1B

3L
L1

U
L

1B
2C

1F
L1

U
M

N
0

0
0

1/
5 

(1
 b

la
dd

er
)

D
91

N
IV

1
1 

F
70

.7
5 

(0
.0

0)
9.

00
 (0

.0
0)

1U
L

1C
0

0
0

0/
1

G
94

D
IV

6
3 

M
 3

 F
57

.8
3 

(1
4.

70
)

44
.0

0 
(2

7.
85

)
5L

L1
U

L
3C

3F
L

0
0

0
0/

6
A

96
T

IV
2

2 
F

55
.0

8 
(1

3.
79

)
12

1.
00

 (9
4.

75
)

1L
L1

U
L

2C
0

0
0

2/
2 

(1
 b

re
as

t 1
 o

va
ria

n)
I1

05
F

IV
1

1 
M

59
.8

3 
(0

.0
0)

20
6.

00
 (0

.0
0)

1L
L

1F
L

0
0

0
1/

1 
(1

 k
id

ne
y)

D
11

0Y
IV

2
2 

F
57

.0
9 

(0
.5

9)
15

4.
50

 (2
4.

75
)

2L
L

1F
L1

U
M

N
0

0
0

0/
2

E1
22

G
V

1
1 

M
74

.5
0 

(0
.0

0)
11

2.
00

 (0
.0

0)
1L

L
1F

L
0

0
0

1/
1 

(1
 lu

ng
)

E1
34

de
l

V
1

1 
M

53
.1

7 
(0

.0
0)

10
4.

00
 (0

.0
0)

1L
L

1F
L

0
0

0
0/

1
S1

35
N

V
2

1 
M

 1
 F

77
.1

7 
(3

.0
6)

35
.5

0 
(1

6.
26

)
2L

L
1C

1F
L

0
0

0
0/

2
K

13
7X

V
1

1 
M

44
.6

7 
(0

.0
0)

14
.0

0 
(0

.0
0)

1L
L

1C
0

0
0

0/
1

A
14

1A
V

1
1 

F
51

.2
5 

(0
.0

0)
11

5.
00

 (0
.0

0)
1B

1B
0

0
0

1/
1 

(1
 u

te
ru

s)
L1

45
F

V
8

3 
M

 5
 F

55
.8

2 
(7

.0
5)

11
2.

88
 (4

0.
46

)
5L

L3
U

L
4C

2F
L2

U
M

N
0

0
0

1/
8 

(s
ki

n)
G

14
8S

V
2

1 
M

 1
 F

70
.0

7 
(1

.2
4)

29
.0

0 
(2

8.
28

)
1B

11
LL

1B
1F

L
0

0
0

0/
2

U
K

4
2 

M
 2

 F
65

.2
1 

(1
3.

09
)

36
.7

5 
(1

8.
95

)
1B

1L
L1

U
Lb

1B
2C

b
0

0
0b

0/
4



6088 Journal of Neurology (2023) 270:6081–6092

1 3

SOD1 molecular modifications and their functional impact 
on protein structure.

Looking beyond genetics, other clinical variables were 
associated to survival in our SOD1-ALS population. 
Although in our cohort a more aggressive disease course 
in men has been initially observed, similarly to what was 
reported by a Chinese group [7] and reflecting preclinical 
studies on transgenic (tgG93A-SOD1) mice or rats [35–38], 
multivariate analysis of survival did not confirm an inde-
pendent prognostic role for sex in SOD1-ALS. The reasons 
behind these findings could be attributed to the fact that 
mutations with a poorer prognosis (located in exon 2 and 
highly conservative domains) were more frequently detected 

Table 3  Univariate Cox regression analysis of survival in SOD1-ALS

UMN-p upper motor neuron predominant, FTD fronto-temporal 
dementia, BMI body mass index, ALSFRS-R ALS Functional Rating 
Scale-Revised, COPD chronic obstructive pulmonary disease, HR 
hazard ratio, CI confidence interval
P-values with significance set at <0.05 were highlighted in bold char-
acter

Variable HR (95% CI) p value

Exons and mutation 0.74 (0.58–0.94) 0.015
 Exon 1 mutations 1
 Exon 2 mutations 4.03 (1.12–14.40) 0.032
 Exon 3 mutations 0.56 (0.16–1.96) 0.363
 Exon 4 mutations 0.40 (0.13–1.22) 0.109
 Exon 5 mutations 0.44 (0.15–1.31) 0.140

Variant effect  predictora

 Neutral 1
 Deleterious 1.80 (0.99–3.28) 0.053

Nucleic acid evolutionary  conservationb

 Mutation in variable positions 1
 Mutation in highly conserved posi-

tions
3.77 (1.74–8.33) 0.001

Gender, male 1.68 (0.87–3.25) 0.122
Site of onset 0.72 (0.44–1.19) 0.203
 Bulbar 1
 Upper limbs 0.37 (0.12–1.18) 0.094
 Lower limbs 0.32 (0.12–0.85) 0.022

Phenotype 1.01 (0.83–1.23) 0.916
 Classic 1
 Bulbar 3.25 (1.13–9.31) 0.028
 Flail leg 1.36 (0.64–2.89) 0.417
 UMN-p 0.48 (0.11–2.14) 0.334

Weight loss at diagnosis, kg 1.01 (0.90–1.13) 0.853
BMI at diagnosis, kg/m2 0.96 (0.88–1.05) 0.400
ALSFRS-R score at diagnosis 0.95 (0.92–0.98)  < 0.001
Progression rate at diagnosis, points/

month
1.29 (1.10–1.50) 0.001

Age, years 1.03 (1.00–1.06) 0.062
Diagnostic delay, months 0.94 (0.91–0.98) 0.006
Riluzole 0.82 (0.18–3.70) 0.799
Family history of ALS/FTD 0.58 (0.17–2.00) 0.394
Hypertension 1.67 (0.86–3.22) 0.126
COPD 1.40 (0.19–10.36) 0.739
Other respiratory diseases 1.65 (0.38–7.09) 0.501
Heart diseases 1.97 (0.73–5.27) 0.178
Autoimmune disorders 4.92 (0.63–38.44) 0.129
Diabetes 1.19 (0.36–3.89) 0.777
Thyroid diseases 0.71 (0.17–2.95) 0.634
Neuro-psychiatric disorders 0.69 (0.24–1.99) 0.449
Haematological disorders NAc NAc

Neoplastic disease 0.20 (0.05–0.84) 0.027
Urologic diseases  < 0.01 (0)d 1.000d

Gastrointestinal diseases 0.88 (0.31–2.08) 0.654
Metabolic disorders 1.60 (0.56–4.57) 0.378

a Classification based on PredictSNP software, which classifies the 
effects of SOD1 mutations as neutral for N20S, D91A, D91N, A96T, 
D110Y, E122G, and as deleterious for A5V, V15M, L39V, G42S, 
V48F, G62R, N66S, G73S, G94D, I105F, S135N, L145F, G148S
b Classification based on ConSurf software, which classifies the SOD1 
mutations based on the evolutionary conservation of the position of 
the nucleic acid involved by mutation, in a range from 1 to 9, where 5 
is average conservation, 1–4 is variable, and 6–9 is highly conserved. 
Here we considered mutations in highly conserved positions (6 to 9) 
including A5 (8), L39 (8), G42 (7), V48 (6), G62 (9), N66 (9), G73 
(8), G94 (9), A96 (7), S135 (8), K137 (7), A141 (8), G148 (7) versus 
mutations in variable positions (1 to 5) including V15 (5), N20 (2), 
D91 (5), I105 (5), D110 (2), E122 (5), E134 (5), L145 (5)
c There were not SOD1-ALS patients reporting hemotological disor-
ders
d Only 1 subject reported urologic disease

Table 3  (continued)

Fig. 3  Forest plots of factors associated with tracheostomy-free sur-
vival. The center of the Forest plot represents the hazard ratio of the 
Cox proportional hazards model, the error bars are two-sided 95% 
confidence intervals (Cox regression multivariate analysis)
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in male patients, along with a faster disease progression. It is 
interesting to note that previous studies also suggest a differ-
ential prognosis based on the underlying mutation, consider-
ing the limitation arising from different mutational distribu-
tions (i.e., the D91A was not present in Chinese case series 
in ref.7; G38R was absent in our subgroup). In a multicenter 
Spanish study, female sex was independently associated with 
faster disease progression in patients carrying the G38R 
mutation [39]. Conversely, Tang et al. demonstrated worse 
survival in male patients with SOD1 mutations when com-
paring Chinese and German populations [40]. Furthermore, 
it is noteworthy that disease progression can vary among 
patients carrying the same SOD1 mutation but with differ-
ent haplotypes [41], and co-mutations have been described 
in SOD1 mutation carriers [42]. These findings suggest that 
epigenetic factors, interaction with other mutated genes, 
racial background, and environmental factors may also play 

a role in the progression of SOD1-ALS [39]. In addition 
to other well-established clinical features associated with 
SOD1-ALS survival, such as advanced age at onset and pro-
gression rate at diagnosis, the history of neoplasm emerged 
as associated with a slower disease progression, and with 
a location in the exon IV and V of SOD1, sparing other 
mutational regions. Nevertheless, multivariable analyses 
confirmed an independent role both of neoplasm history and 
of location of SOD1 mutation on ALS survival. A selective 
involvement of exon 5 in patients with history of neoplasms 
could derive from the crucial role of exon 5 in dismutase 
activity [43, 44]. Indeed, as a key-player in oxidative stress, 
previous studies have suggested SOD1 may play a role in 
tumor development and growth [45]. Beside toxic gain of 
function characterizing ALS pathogenesis, in the condition 
of nutrients starvation that characterize cancer cells, SOD1 
dephosphorylation and activation enables cancer cells to be 

Table 4  Demographic and 
clinical features of SOD1-ALS 
patients according to presence 
or absence of neoplastic disease

Spinal UL spinal upper limb, Spinal LL spinal lower limb, UMN-p upper motor neuron predominant, FTD 
frontotemporal dementia, FVC forced vital capacity, PEG percutaneous endoscopic gastrostomy, NIV non-
invasive ventilation, IV invasive ventilation, SD standard deviation
P-values with significance set at <0.05 were highlighted in bold character
a Site of onset and phenotype were available for 54 patients
b Progression rate at diagnosis is calculated as monthly decline of ALSFRS-R score assuming a total score 
of 48 at onset. It was available on 51 patients
c FVC at diagnosis was available for 11 patients

Clinical features Presence of neo-
plastic disease
N (%), mean [SD]

Absence of neo-
plastic disease
N (%), mean [SD]

Total
N (%), mean [SD]

p value

Sex, male 4 (50.00) 21 (44.68) 25 (45.45) 0.780
Mean age at onset, years 59.97 [10.80] 59.21 [14.90] 59.91 [14.29] 0.991
Mean diagnostic delay, months 22.00 [20.23] 12.02 [9.73] 13.47 [12.09] 0.030
Weight loss at diagnosis, kg 1.83 [4.53] 2.56 [3.48] 2.47 [3.58] 0.647
BMI diagnosis, kg/m2 25.55 [3.21] 24.85 [4.40] 24.96 [4.21] 0.670
Site of  onseta 0.947
 Bulbar 1 (12.50) 4 (8.51) 5 (9.09) 0.559
 Spinal, UL 2 (25.00) 10 (21.27) 12 (21.81) 0.563
 Spinal, LL 5 (62.5) 32 (68.08) 37 (67.27) 0.524

Phenotypea 0.796
 Bulbar 1 (12.50) 4 (8.51) 5 (9.09) 0.559
 Classic 3 (37.50) 19 (40.42) 22 (40.00) 0.599
 Flail leg 4 (50.00) 17 (36.17) 21 (38.18) 0.256
 UMN-p 0 (0.00) 6 (12.76) 6 (10.91) 0.370

Family history of ALS/FTD 2 (25.00) 7 (14.89) 9 (16.36) 0.795
ALSFRS-R score at diagnosis 42.12 [3.48] 37.42 [10.09] 38.16 [9.50] 0.201
Progression rate at  diagnosisb 1.00 [1.84] 1.56 [2.20] 1.47 [2.14] 0.503
FVC at  diagnosisc 97.17 [25.93] 89.00 [42.38] 91.23 [37.50] 0.766
Riluzole treatment 4 (50.00) 19 (40.42) 23 (41.82) 0.718
PEG 4 (50.00) 3 (6.38) 7 (12.73) 0.223
NIV 1 (12.50) 25 (53.19) 26 (47.27) 0.023
IV 0 (0.00) 7 (14.89) 7 (12.72) 0.298
Total 8 (14.54) 47 (85.45) 55 (100)
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more resistant to oxidative stress and to survive [45]. We 
could speculate about the presence of variants more eloquent 
in tumorigenesis pathway and less impactful on ALS pro-
gression or a different regulation of mutated SOD1 activity 
in distinguished tissues/cells. The picture is even more intri-
cate when considering that some SOD1 mutations exhibit 
incomplete penetrance [46], without a clear association with 
a specific codon [26], likely arising from alternative splic-
ing [47]. Solving this question was beyond the scope of this 
study, but we hope that our data will facilitate the design of 
further experimental and in silico studies aimed at unrave-
ling these complex correlations.

Several limitations should be acknowledged for this study, 
including its retrospective nature, the small sample size, with 
some SOD1 variants very under-represented, and its confine-
ment to Italy, which restricts the applicability to broader 
populations. Additional studies are required to thoroughly 
characterize the SOD1-ALS variability at both molecular 
and clinical levels. However, as a cohort study based on 
disease registers, clinical details were extensively explored 
within this project, and the results may better reflect the 
characteristics of the Italian ALS population compared to 
large studies based on less detailed databases.

Given the lack of prior reports on the impact of concur-
rent tumor presence on SOD1 ALS survival, it is important 
to conduct further investigations, utilizing larger prospective 
cohorts. This approach will help mitigate data instability 
stemming from our limited sample size. The recent FDA 
approval of Tofersen, which can be accessed through early 
access programs (EAPs) in European countries for SOD1-
ALS treatment, underscores the significance of systemati-
cally offering SOD1 genetic testing. This initiative would 
not only aid in examining the epidemiological distribution 
of SOD1-ALS across Western regions but also in gaining a 
deeper understanding of the diverse phenotypic variations 
associated with each mutation.

Furthermore, various factors, such as reduced penetrance 
[48], the occurrence of de novo mutations, or an incom-
plete family history, should also advocate for a comparable 
approach in patients with an ostensibly sporadic manifesta-
tion of the disease during its early stages. This considera-
tion arises with the hypothesis that early intervention might 
yield heightened effectiveness, as being investigated in the 
ATLAS study (NCT04856982) [49]. The comprehension 
of how each mutation influences the trajectory of SOD1-
ALS is of paramount importance for accurately assessing 
the therapeutic efficacy and potential side effects of gene 
therapy. Notably, SOD1 antisense oligonucleotides have 
demonstrated greater effectiveness against rapid disease pro-
gression [11]; however, their impact on SOD1-ALS patients 
with slower progression remains unestablished. Addressing 
this gap, an open-label trial (NCT03070119) is currently 
underway.

Lastly, comprehending the extent to which individual and 
environmental factors contribute to clinical presentation will 
enhance genetic counseling and the precise interpretation 
of clinical trial outcomes. The comprehensive analysis of 
biologically and phenotypically diverse subgroups in clini-
cal studies holds the promise of deeper insights into the 
survival-related benefits of therapies.
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