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Abstract
Background and objective Patients with idiopathic normal pressure hydrocephalus (iNPH) have a higher prevalence of 
hypertension and diabetes. However, the causal effects of these vascular risk factors on iNPH remain unclear. This study 
aimed to explore the causal relationship between vascular risk factors (VRFs) and iNPH.
Methods We conducted the Mendelian randomization (MR) analysis of iNPH. We included nineteen vascular risk factors 
related to hypertension, diabetes, lipids, obesity, smoking, alcohol consumption, exercise, sleep, and cardiovascular events as 
exposure factors. We used the inverse-variance weighted method for causal effect estimation and weighted median, maximum 
likelihood, and MR Egger regression methods for sensitivity analyses.
Results We found that genetically predicting essential hypertension (OR = 1.608 (1.330–1.944), p = 0.013) and increased 
sleep duration (OR = 16.395 (5.624–47.799), p = 0.009) were associated with higher odds of iNPH. Type 1 diabetes 
(OR = 0.869 (0.828–0.913), p = 0.004) was associated with lower odds of iNPH. For the other 16 VRFs, there was no evi-
dence that they were significantly associated with iNPH. Sensitivity analyses showed that essential hypertension and type 1 
diabetes were significantly associated with iNPH.
Conclusion In our MR study on VRFs and iNPH, we found essential hypertension to be a causal risk factor for iNPH. This 
suggests that hypertension may be involved in the pathophysiological mechanism of iNPH.
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Abbreviations
NPH  Normal pressure hydrocephalus
iNPH  Idiopathic normal pressure hydrocephalus
VRF  Vascular risk factor
MR  Mendelian randomization
GWAS  Genome-wide association study
SNP  Single nucleotide polymorphisms
IVW  Inverse-variance weighted
T1DM  Type 1 diabetes
T2DM  Type 2 diabetes
RCT   Randomized controlled trial
CSF  Cerebrospinal fluid

ICD  International Classification of Diseases
OR  Odds ratio

Introduction

Normal pressure hydrocephalus (NPH) is a neurological 
disease characterized by gait disturbance, cognitive impair-
ment, and urinary incontinence [1]. As the population ages, 
this disease is gaining attention as reversible dementia. Nor-
mal pressure hydrocephalus can be divided into idiopathic 
and secondary according to etiology. The pathophysiol-
ogy of idiopathic normal pressure hydrocephalus (iNPH) 
is currently unknown. However, the population of iNPH is 
mainly the elderly [2, 3], who often have vascular risk fac-
tors (VRFs).

From previous case–control studies, hypertension [4–10], 
diabetes [4–6, 8–11], hyperlipidemia [4], abdominal obesity 
[4], physical inactivity [4], alcohol use disorder [12], and 
cardiac and cerebrovascular disease [5] are more common 
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in patients with iNPH. Among these VRFs, hypertension 
is considered to be related to the clinical presentation, 
imaging, and prognosis of iNPH patients [10, 13]. And a 
nationwide hospital-based survey found that hyperten-
sion was the most common comorbidity in iNPH (40%), 
followed by diabetes (17.8%) [14]. Therefore, it has been 
speculated in the past that hypertension may be involved 
in the mechanism of iNPH, which can increase cerebro-
spinal fluid (CSF) pressure and pulse pressure, leading to 
ventriculomegaly [7, 15, 16]. And the ventriculomegaly has 
now been shown to result from increased CSF pulsatility 
[17], which is closely regulated by cardiovascular pulsation 
[18]. In addition, increased blood pressure has been found 
in mice to reduce the flow of CSF through the perivascular 
space in the brain, which means a decline in the function of 
the glymphatic system [19]. The function of the glymphatic 
system is to facilitate the removal of excess fluid and waste 
in the central nervous system [20], which has recently been 
considered one of the pathophysiological mechanisms of 
iNPH [21, 22]. Moreover, the glymphatic system is closely 
related to another vascular risk factor: sleep [20]. A previ-
ous prospective cohort study found obstructive sleep apnea 
in 90% (28/31) of patients with iNPH [23]. Sleep apnea is 
considered to cause iNPH by affecting intracranial venous 
circulation and glymphatic circulation [24]. In addition to 
hypertension and sleep apnea, diabetes is also an important 
vascular factor in iNPH patients. According to a systematic 
literature review, it occurs more than twice as frequently in 
iNPH patients as in age-matched controls [11]. And it is con-
sidered a risk factor for the development of iNPH along with 
hypertension and sleep apnea [25]. However, most studies 
on iNPH and vascular risk factors are observational studies, 
which cannot directly link the two to observe the impact of 
vascular risk factors on the occurrence of iNPH. Moreover, 
the randomized controlled trial (RCT) on iNPH is difficult 
to implement.

The Mendelian randomization (MR) method is an analy-
sis method based on genetic instrumental variables [26], 
which can estimate the causal effect of exposure on the 
outcome. This method directly links exposure to genetic 
variation, and random segregation of alleles mimics random 
grouping in RCTs. Therefore, it can theoretically avoid bias 
from confounding factors between exposures and outcomes.

This study aimed to investigate the causal effect of vas-
cular risk factors on iNPH using Mendelian randomization.

Methods

Study design

In this study, we used the 2-sample MR design to investigate 
the causal relationships between the 19 VRFs and iNPH. We 

made the following assumptions for this MR study evalu-
ation: (1) the instrument is associated with the exposure 
(relevance). (2) There are no confounders of the instrument 
and the outcome (exchangeability). (3) The instrument has 
no direct effect on outcome except through exposure (the 
exclusion restriction).

Instruments

We obtained the GWAS data of the VRFs and used them 
as exposure factors. The ancestry of all the GWAS data 
was European. The included exposure factors were essen-
tial hypertension [27], secondary hypertension [27], type 1 
diabetes (T1DM) [27], type 2 diabetes (T2DM) [27], low-
density lipoprotein cholesterol [28], high-density lipopro-
tein cholesterol [28], triglycerides [28], body mass index 
[29], smoking initiation [30], cigarettes smoked per day 
[30], alcohol intake frequency [29], alcohol dependence 
[27], moderate to vigorous physical activity levels [31], 
myocardial infraction [32], coronary artery disease [33], 
stroke [34], sleep apnea [27], insomnia [29], and sleep 
duration [29]. Among these exposures, diagnostic criteria 
for disease-related exposures are presented in supplemen-
tary table 1. The selected single nucleotide polymorphisms 
(SNPs) should meet the criteria that genome-wide signifi-
cance association with each factor was less than 5 ×  10–8. 
And we clumped the selected SNPs to obtain the SNPs in a 
threshold of linkage disequilibrium (r2 > 0.01) and a distance 
of 10000 kb. Later we extracted the SNPs for each exposure 
factor from the outcome. The effect allele of exposure and 
outcome datasets were harmonized. Finally, we excluded the 
SNPs that exit the palindromic sequence.

Data sources for iNPH

The GWAS data of iNPH were obtained from the European 
cohort: the FinnGen study. The FinnGen study is a global 
research project that combines genome information with 
digital health care data [27]. In the FinnGen study round 
5, 322 cases defined as NPH and 218,043 controls were 
included. The endpoint of NPH was defined by the Interna-
tional Classification of Diseases 10th version (ICD-10). The 
code of NPH in ICD-10 was G91.2.

Statistical analysis

We used the inverse-variance weighted (IVW) method to 
perform the principal analyses, which combined the SNPs 
of exposure and the SNPs of the outcome. The Wald ratio 
(the ratio of genetic association with the outcome to the 
genetic association with the exposure) was used to estimate 
the causal effects between exposure and outcome. To test 
whether the first assumption was satisfied, we calculated 
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the F statistic for all SNPs using the formula. F =  Beta2/SE2. 
F > 10 is considered weak instrument bias is small. And we 
used the maximum likelihood, the weighted median, and 
MR Egger regression methods for sensitivity analysis, con-
sidering that the IVW method might be affected by pleiot-
ropy. Then MR-PRESSO was used to remove the outlier 
SNPs, which cause the horizontal pleiotropy. Finally, we 
searched PhenoScanner (http:// www. pheno scann er. medsc hl. 
cam. ac. uk/) for all SNPs included in the primary outcome 
of the analysis, considering potential confounding factors 
leading to a violation of the second assumption. We included 
recurrent traits of non-exposed factors as covariates. We then 
adjusted for covariates with the main outcome using multi-
variate Mendelian randomization.

All the statistical analyses were performed using R-4.2.1 
with R packages. The R packages for analysis included the 
TwoSampleMR package, MendelianRandomization pack-
age, and MR-PRESSO package. For binary exposure factor 
variables, we used the odds of the exposure factor to esti-
mate its causal effect on the outcome[35]. P value < 0.05 
were considered as potential associations.

Data availability

The sources and information of the GWAS data for all expo-
sures and the outcome involved in this study are presented 
in supplementary table 4. In addition, all the analysis result 
data are presented in the paper. All the GWAS data were 
publicly available through the IEU Open GWAS project 
online [36, 37]. Link: https:// gwas. mrcieu. ac. uk/.

Results

The included exposure factors and IVW estimates of their 
causal effects with iNPH are presented in Table 1. In the 
IVW analysis, we found that genetically predicting T1DM 
(OR = 0.869 (0.828–0.913), p = 0.004), essential hyperten-
sion (OR = 1.608 (1.330–1.944), p = 0.013), and sleep dura-
tion (OR = 16.395 (5.624–47.799), p = 0.009) were associ-
ated with iNPH (Fig. 1). No significant associations were 
observed in the other 16 exposure factors. After combining 
the other three methods, all except the MR Egger method 
showed a significant association with iNPH for both type 1 
diabetes and essential hypertension (supplementary table 5). 
For T1DM and essential hypertension, Fig. 2 shows scat-
terplots of the effect of SNP on exposure and the effect of 
SNP on the outcome. However, for sleep duration, only the 
maximum likelihood method showed that it was associated 
significantly with iNPH (supplementary table 5).

We calculated F statistics for all SNPs used for MR 
analysis in essential hypertension and type 1 diabetes, 
and found that they were all > 10 (supplementary table 2; 

supplementary table 3). In the MR Egger method for the 
pleiotropy test, potential pleiotropy was only found on body 
mass index (p = 0.027) (Table 1). Using MR-PRESSO for 
all exposures, we found no significant difference between 
the results after removing outliers and the original results. 
And significant heterogeneity was only presented in the 
IVW method on sleep apnea (p = 0.049) (Table 1). Then 
we adjusted systolic blood pressure, diastolic blood pres-
sure, and taking blood pressure medication with essen-
tial hypertension. Multivariate MR analysis showed 
that essential hypertension was associated with iNPH 
(OR = 2.195(1.520–3.168), p = 0.032) (Fig. 3). In addition, 
we adjusted for rheumatoid arthritis, autoimmune thyroidi-
tis, and inflammatory bowel disease with type 1 diabetes. 
Multivariate MR analysis did not show that T1DM was 
associated with iNPH (OR = 0.841(0.763–0.927), p = 0.074).

Discussion

In our MR study on VRFs and iNPH, we found that genetic 
instruments predicting essential hypertension, and type 1 
diabetes were thought to be associated with iNPH. This sug-
gests that they may be vascular factors with a causal effect 
on iNPH. Essential hypertension increases the risk of iNPH, 
whereas type 1 diabetes reduces the risk of iNPH. And most 
sensitivity analyses for essential hypertension and T1DM 
were consistent with no violation of the MR assumptions. In 
addition, long sleep duration may be a potential causal risk 
factor for iNPH. After adjusting for covariates, we found that 
the causal relationship between essential hypertension and 
iNPH was attenuated, but still significant. However, after 
covariate adjustment, there was no significant causal rela-
tionship between type 1 diabetes and iNPH. For the other 17 
VRFs, there was insufficient evidence for a causal relation-
ship between them and iNPH.

We found that essential hypertension is the only risk fac-
tor with a causal effect on iNPH in this study. This suggests 
that hypertension may be involved in the pathogenesis of 
iNPH pathophysiology. In previous observational studies, 
hypertension was often closely associated with ventriculo-
megaly, which is the primary pathological feature of iNPH. 
Subsequent studies using monitoring of aqueduct stroke 
volume [38] confirmed that ventriculomegaly is caused by 
increased CSF pulsatility, which is regulated by cardiovas-
cular pulsations. This also suggests an association between 
hypertension and ventriculomegaly to some extent. In addi-
tion, we believe that vascular changes caused by hyper-
tension may act to decrease arterial pulsatility, which is a 
critical process. Furthermore, arterial pulsatility drives the 
exchange of cerebrospinal fluid and interstitial fluid [39], 
and decreased exchange indicates impairment of glym-
phatic system function. A previous study also confirmed 

http://www.phenoscanner.medschl.cam.ac.uk/
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that hypertension can induce a decrease in the flow of the 
perivascular space, which may be related to the stiffening 
of the arterial wall caused by high blood pressure [19]. 
We think that this decrease in exchange may result in the 
deposition of toxic substances in the brain that contribute 
to cognitive impairment in patients with iNPH. The deposi-
tion of toxic solutes in the perivascular space may further 
aggravate the decrease of arterial pulsatility and fall into 
a vicious circle. Furthermore, decreased arterial pulsatility 
may be associated with increased aqueduct stroke volume 
[40, 41], which reflects increased CSF pulsatility consistent 
with ventriculomegaly. Previously, it was also believed that 
arterial pulsation restriction, capillary pulsation increase, 

and intracranial compliance decrease were the origin of 
hydrodynamic mechanism of chronic hydrocephalus [42]. 
In addition, increased pulse pressure as a feature of iNPH 
has also been considered as a possible mechanism involved 
[42, 43]. This seems to be supported by our findings that 
diastolic blood pressure also appears to be significantly 
associated with iNPH (Fig. 3). In addition to changes in 
arterial pressure, increased intracranial venous pressure can 
impede CSF absorption through the arachnoid villi and alter 
intracranial compliance [44]. However, prospective studies 
on hypertension and iNPH are still lacking. This article 
provides evidence for a causal effect of hypertension and 
iNPH. If hypertension has a causal effect on iNPH, the role 

Table 1  An overview of the genetic instruments used in the MR study and the causal relationship between vascular risk factors and idiopathic 
normal pressure hydrocephalus estimated by the inverse-variance weighted method

MR Mendelian randomization, SNP single nucleotide polymorphism, IVW inverse-variance weighted, b Beta, se standard error, het heterogene-
ity, MPO MR-PRESSO, MMR multivariable MR, LDL-C low-density lipoprotein cholesterol, HDL-C high-density lipoprotein cholesterol, BMI 
body mass index, MVPA moderate to vigorous physical activity levels, NA not available
a SNPs used in the present MR analysis
b Genome-wide significance of the selected SNPs associated with the factors is less than 5 ×  10–6

* p < 0.05
** p < 0.01

Risk factor SNPs Used  SNPsa Sample IVW (b/se) IVW P IVW het P Intercept P MPO P MMR P

Glucose
 Type 1 diabetes 51 44/51 189,302 − 0.140/0.049 0.004** 0.943 0.567 0.941 NA
 Type 2 diabetes 36 26/36 202,046 − 0.146/0.153 0.339 0.636 0.788 0.654 NA

Hypertension
 Essential hypertension 43 39/43 205,694 0.475/0.190 0.013* 0.409 0.843 0.403 NA
 Secondary  hypertensionb 8 7/8 164,147 0.056/0.149 0.706 0.946 0.420 0.941 NA

Lipid
 LDL-C 312 247/312 440,546 − 0.239/0.229 0.296 0.152 0.197 0.163 0.706
 HDL-C 677 537/677 403,947 0.184/0.174 0.292 0.841 0.465 0.848 0.411
 Triglycerides 574 461/574 441,016 − 0.124/0.184 0.503 0.500 0.084 0.495 0.457

Fat
 BMI 814 667/814 461,460 − 0.019/0.219 0.930 0.355 0.027 0.374 NA

Smoke
 Smoking initiation 106 86/106 632,802 0.072/0.373 0.847 0.605 0.354 0.606 NA
 Cigarettes smoked per day 29 25/29 249,752 − 0.186/0.409 0.650 0.194 0.837 0.191 NA

Alcohol
 Alcohol intake frequency 117 103/117 462,346 − 0.395/0.398 0.320 0.358 0.533 0.344 NA
 Alcohol  dependenceb 10 9/10 211,535 0.300/0.293 0.306 0.295 0.144 0.318 NA

Exercise
 MVPA 19 18/19 377,234 1.588/1.513 0.294 0.315 0.123 0.317 NA

Cardiovascular events
 Myocardial infarction 34 25/34 395,795 − 0.221/0.183 0.228 0.588 0.066 0.608 NA
 Coronary artery disease 86 70/86 547,261 − 0.161/0.171 0.344 0.303 0.209 0.307 NA
 Stroke 8 6/8 446,696 0.634/0.541 0.241 0.706 0.354 0.720 NA

Sleep
 Sleep apnea 6 6/6 217,955 − 0.411/0.618 0.506 0.049 0.385 0.069 NA
 Sleeplessness / insomnia 49 39/49 462,341 0.201/1.277 0.875 0.856 0.630 0.872 NA
 Sleep duration 77 62/77 460,099 2.797/1.070 0.009** 0.233 0.481 0.245 NA
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of hypertension drugs in patients with iNPH is expected. In 
addition, of course, we also found that some iNPH patients 
do not have clinically diagnosed hypertension. In this regard, 

we believe that hypertension may be a risk factor rather 
than a decisive factor inducing iNPH. Because some of the 
iNPH patients are familial iNPH, they are mainly dominated 

Fig. 1  The association between risk factors and idiopathic normal 
pressure hydrocephalus (iNPH) using the inverse-variance weighted 
method. Odds ratios (ORs) represent the association between iNPH 
and each risk factor. The units of the binary exposure factors are 
odds: type 1 diabetes; type 2 diabetes; essential hypertension; sec-
ondary hypertension; alcohol dependence; myocardial infraction; 
sleep apnea; sleeplessness/insomnia. The units of the binary expo-

sure factors are logOR: coronary artery disease and stroke. The 1-SD 
increase is the unit of low-density lipoprotein cholesterol (LDL-C), 
high-density lipoprotein cholesterol (HDL-C), triglycerides, body 
mass index (BMI), alcohol intake frequency, and moderate to vigor-
ous physical activity levels (MVPA). The unit of smoking initiation 
is ever smoked regularly compared with never smoked. The unit of 
cigarettes smoked per day is cigarettes per day

Fig. 2  The causal effects of essential hypertension and type 1 diabetes on idiopathic normal pressure hydrocephalus (iNPH) in scatter plots. On 
the left is essential hypertension, on the right is type 1 diabetes
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by genetic factors. The link between hypertension and the 
genetic factors of NPH is also worth considering. In addi-
tion, we also considered that the symptoms of iNPH are 
not specific, and it may be misdiagnosed or overlap with 
other neurological diseases. And some diseases may have 
a causal relationship with hypertension, such as vascular 
dementia, which may bias the results. Therefore, we col-
lected the prevalence of related diseases for the cases of 
NPH in this study (supplementary table 6). And we consider 
this bias to be negligible. In addition, secondary hyperten-
sion and iNPH are not considered to be related in this study. 
This may be because secondary hypertension is a secondary 
diagnosis that can be corrected after the etiology is identified 
and treated. Therefore, it cannot continuously affect patients 
like essential hypertension.

Diabetes was discussed separately in this study as T1DM 
and T2DM. We found that genetically predicting T1DM was 
associated with iNPH, whereas T2DM was not. Moreover, 
T1DM appeared to be a causal protective factor for iNPH 
in this study. We have two explanations for this. First, we 
concluded that T1DM and iNPH were statistically associated 
due to survival bias. In the previous studies, most of the stud-
ies were on T2DM and iNPH, and there were almost no stud-
ies on T1DM and iNPH. The reason is because of the large 
difference in the age of onset of T1DM and iNPH. The prev-
alence of iNPH is mainly in the elderly, and in the elderly 
population, the prevalence of T2DM is remarkably higher 

than that of T1DM [45]. In the population sample data of our 
study, the age of onset of T1DM was much younger than that 
of iNPH (mean age at the first event: 69.76 years old) (sup-
plementary Fig. 1). Compared with the age of iNPH patients, 
the life expectancy of patients with T1DM is poorer, and 
they have a high exposure liability to T1DM. In other words, 
when we select those SNPs that are significantly related 
to T1DM, the population with higher expression of these 
SNPs means that they are more susceptible to T1DM. And 
having T1DM may shorten lifespan, which makes it harder 
for these populations to reach the age of onset of iNPH. 
For the protective effect of T1DM, we think that it may be 
because it is difficult for people with T1DM to reach the 
age of onset of iNPH. And the causal relationship between 
T1DM and iNPH dropped dramatically after accounting for 
other confounding factors. Thus, T1DM presents a pseudo-
protective factor effect. Second, we have another conjec-
ture. T1DM is an autoimmune disease, whether there is an 
association between genetic factors between it and iNPH 
to present such a result. However, none of the currently 
known mutated genes that may cause iNPH are associated 
with susceptibility genes for T1DM. For T2DM, the results 
of this study showed no causal relationship between it and 
iNPH. The glymphatic system seems to be considered as 
the pathway through which T2DM affects iNPH. T2DM 
has been shown in mice to impair the function of the glym-
phatic system in the hippocampus and hypothalamus [46], 

Fig. 3  The figure shows a mul-
tivariate Mendelian randomiza-
tion analysis for essential hyper-
tension and type 1 diabetes. 
The 1-SD increase is the unit of 
systolic blood pressure, diastolic 
blood pressure, and blood 
pressure medication. The odds 
of the binary exposure factor is 
the unit of rheumatoid arthritis, 
autoimmune thyroiditis, and 
inflammatory bowel disease
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and impairment of the glymphatic system has also been 
observed in patients with iNPH [21]. However, impairment 
of the glymphatic system do not appear to be disease spe-
cific in iNPH. The impairment can also be seen in aging 
and Alzheimer's disease states [47, 48]. The performance 
of impairment of glymphatic system function is considered 
to be learning and memory impairment, the reason is that 
the deposition of amyloid-β and tau protein may be closely 
related [49, 50]. However, the most prominent symptoms 
in iNPH patients are abnormal gait and ventriculomegaly 
rather than cognitive impairment, which are the symptoms 
mainly improved by shunt therapy. In addition, impairment 
of glymphatic function may not necessarily be the cause of 
memory impairment. Therefore, we believe that the relation-
ship between type 2 diabetes, the impairment of glymphatic 
system, and iNPH may be more manifested in the dementia 
symptoms of iNPH, rather than directly affecting the patho-
genesis of iNPH. Although observational studies have found 
a high prevalence of type 2 diabetes in iNPH patients, this 
may be because the elderly with iNPH are already at higher 
risk of type 2 diabetes. Aging is a non-negligible factor in 
iNPH. In addition, a previous study suggested that diabetes 
in iNPH patients may be caused by ventriculomegaly and 
pituitary dysfunction [11]. In this study, we prefer to believe 
that T1DM does not play a role in the occurrence of iNPH. 
However, the risk of diabetes in iNPH patients deserves fur-
ther study.

Regarding the relationship between sleep and iNPH, we 
included three exposure factors of sleep apnea, insomnia, 
and sleep duration in this study. Among these three factors, 
we only found increased sleep duration as a causal risk factor 
for iNPH confirmed by the IVW method. Although sleep-
disordered breathing was found to be more common in iNPH 
patients in previous studies, comparisons with age-matched 
older adults were lacking. The sleep-disordered breathing 
was considered a risk factor for iNPH more because of the 
observed impairment of glymphatic function [21], which is 
responsible for clearing the brain of metabolic waste dur-
ing sleep. However, the impaired glymphatic function is not 
only seen in patients with iNPH but also in patients with 
Alzheimer's disease [48]. A previous MR study on obstruc-
tive sleep apnea and Alzheimer's disease also showed no 
apparent causal relationship between obstructive sleep apnea 
and Alzheimer's disease [51]. Therefore, we think that there 
is no causal relationship between sleep apnea and iNPH. 
And impaired glymphatic function may affect the sleep of 
iNPH patients. A previous study showed that accumulation 
of β-amyloid in the brain worsens the sleep–wake cycle [52]. 
Moreover, Alzheimer's disease had a causal effect on sleep 
patterns in one MR study [53]. Therefore, we think it may 
be that patients with iNPH have a higher risk of sleep apnea, 
both of which are affected by the impaired glymphatic func-
tion. Interestingly, however, sleep duration was shown to 

be associated with iNPH in our study. And in a previous 
MR study on sleep duration and cognition, sleep duration 
was considered to have a causal relationship with cognition 
[54]. Moreover, increased sleep duration was found to be 
associated with increased perivascular space, suggesting that 
increased sleep duration may be related to the function of the 
glymphatic system [55, 56]. However, the causal relationship 
between sleep duration and impairment of glymphatic sys-
tem function is unclear. The increase of perivascular spaces 
may result from increased sleep duration and poor sleep 
quality, while it is also possible that increased sleep duration 
is a compensatory mechanism for impaired glymphatic sys-
tem function. However, the sensitivity analysis of this study 
did not further support the relationship between increased 
sleep duration and iNPH, which may be related to the vio-
lation of the assumptions caused by confounding factors. 
Therefore, the causal relationship between increased sleep 
duration and iNPH may require further study to explore.

This study also has limitations. There are few GWAS data 
on the outcome of this study. The reason is that there are few 
current GWAS for NPH available. Moreover, we could not 
exclude the presence of secondary NPH in the NPH cases 
studied in the present study. Secondary NPH and idiopathic 
NPH may differ in the application of conclusions. Therefore, 
this result may be biased when we emphasize iNPH. The 
main causes of secondary NPH are subarachnoid hemor-
rhage, traumatic brain injury, and brain malignancy [57]. We 
collect the prevalence of related diseases in the cases of NPH 
in supplementary table 6. In addition, causal relationships 
explained using genetic instruments have limited precision. 
We could not avoid bias from all confounding factors. And 
people need to live to a certain age to be included, which can 
lead to survivor bias. This bias may have affected the results.

In conclusion, we found hypertension to be a causal risk 
factor for iNPH in this MR study. This suggests that hyper-
tension may be involved in the pathophysiological mech-
anism of iNPH. How vascular mechanisms play a role in 
the pathophysiology of iNPH is worth discussing in future 
studies. For other VRFs, there was no evidence of a causal 
relationship between them and iNPH.

Supplementary Information The online version contains supplemen-
tary material available at https:// doi. org/ 10. 1007/ s00415- 023- 11604-6.
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