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Abstract
Objective  We aim to evaluate 3-year effects of ocrelizumab (humanized anti-CD20 monoclonal antibody for the treatment 
of multiple sclerosis (MS)) on lymphocytes, neutrophils and immunoglobulins: (1) when compared with pre-infusion assess-
ment; (2) over the course of treatment; and (3) possible clinical correlates of the observed immunological modifications.
Methods  This real-world observational cohort study has been conducted on prospectively collected data from 78 MS 
patients (mean age 47.8 ± 10.5 years; females 48.7%) commencing on ocrelizumab from 2018, with mean follow-up of 
36.5 ± 6.8 months. Clinical data and blood samples were collected every three months. Total lymphocyte count and subpopu-
lations were assessed on peripheral blood using flow cytometry. Serum immunoglobulins were evaluated with nephelometry.
Results  When compared with pre-infusion values, we observed reduction of total, CD19 and CD20 lymphocyte counts; 
however, after the first infusion, their levels remained substantially stable. Over time we observed a progressive reduction 
of CD8 lymphocytes, while no changes were observed for CD4, CD27, CD3CD27, and CD19CD27. After the first infusion, 
we observed reduction in IgG, which further decreased during the follow-up. Higher probability of EDSS progression was 
associated with reduced modulation of CD8 lymphocytes.
Interpretation  Ocrelizumab affects both humoral and cellular immune responses. Disability progression over the follow-up 
was associated with lower CD8 cytotoxic T-lymphocyte reduction. Changes in humoral response are immediate and sustained, 
while modulation of cellular immunity occurs progressively through regular re-treatment, and is related to clinical stability.

Keywords  Multiple sclerosis · Ocrelizumab · Lymphocytes · Immunoglobulins

Introduction

Disease-modifying treatments (DMTs) for multiple scle-
rosis (MS) imply the chronic modulation and/or depletion 
of humoral and/or cellular components of immunity. In 
particular, a humanized anti-CD20 monoclonal antibody Authors who completed the statistical analysis: Marcello Moccia 
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(ocrelizumab) is approved for relapsing–remitting MS 
(RRMS), active secondary progressive MS (SPMS) and 
primary progressive MS (PPMS), being effective on both 
relapses and disability progression, as also confirmed in real-
world studies [1–3]. The effect of ocrelizumab is thought 
to be mediated by the depletion of B cells which plays a 
crucial role in the pathogenesis of MS by producing pro-
inflammatory cytokines, interacting with other inflammatory 
cells (i.e., macrophages, natural killer cells, and cytotoxic T 
lymphocytes), and stimulating antibody production [4–8]. 
Further, B cells also act as antigen-presenting cells being 
involved in the activation of T cells in secondary lymphoid 
tissues, and thus contributing to chronic non-resolving 
inflammation [9, 10].

Over six months after the first infusion of ocrelizumab, 
a reduction of B and T cell subpopulations (CD19, CD20, 
CD4, CD8) is already seen [11, 12]. Using 7-year clinical 
trial data, Hauser and colleagues confirmed the action of 
ocrelizumab on both B and T cells, and also showed a reduc-
tion of serum IgM, IgG and IgA, when compared with pre-
ocrelizumab levels [13]. However, authors only investigated 
changes between pre-ocrelizumab immunological status and 
follow-up, while any further changes occurring after the first 
infusion could have implications on risk of infection and 
on vaccine response in patients on chronic treatment with 
ocrelizumab [14–17]. Also, the effect of ocrelizumab on the 
activation of B and T cells (from naïve to active) remained 
unexplored.

In the present 3-years real-world observational cohort 
study, we aim to evaluate: (1) changes in total lympho-
cyte count, lymphocyte subpopulations (CD19 and CD20 
B cells, CD4 T helper cells, CD8 cytotoxic T cells, CD27 
activated T cells, CD3CD27 naïve and central memory T 
cells, CD19CD27 memory B cells), neutrophils and immu-
noglobulins (IgG, IgA and IgM) when compared with pre-
infusion assessment; (2) any further changes after the first 
infusion; and (3) possible clinical correlates of the observed 
immunological changes.

Methods

Study design and population

This real-world observational cohort study was conducted 
at the MS Unit of the Federico II University Hospital of 
Naples, Italy, on prospectively collected data from 2018 to 
2021. The study was approved by the Federico II Ethics 
Committee (355/19). All patients signed informed consent 
authorizing the use of anonymized data in line with data pro-
tection regulation (GDPR EU2016/679). The present study 
was performed in accordance with good clinical practice and 
Declaration of Helsinki.

Inclusion criteria were: (1) patients with MS at first treat-
ment with ocrelizumab from 2018 to 2021; (2) continued 
ocrelizumab treatment for at least 2 years (with < 4 weeks of 
flexibility in 6-month infusion intervals) [18, 19]; (3) avail-
ability of clinical and laboratory data at baseline (before 
first ocrelizumab infusion) and over at least 2 years. Exclu-
sion criteria were: (1) age < 18 years; (2) pregnancy; (3) 
concomitant diseases (i.e., immunodeficiency diseases) or 
treatments (i.e., chemotherapy, immunosuppressive therapy) 
affecting the immune system.

First, ocrelizumab infusion was split into two 300 mg 
infusions (300 mg at week day 0 and 14). The date of the 
first infusion was counted as baseline. Following infusions 
were performed every 6 months, with < 4 weeks of flexibility 
to 6-month infusion intervals, which is deemed to be within 
regular infusion dosing [18, 19]. Clinical evaluations and 
blood sample collection were performed at least every three 
months over the follow-up period.

Laboratory variables

An aliquot (50 μL) of anti-coagulated ethylene-diamine-
tetra-acetic acid (EDTA) whole fresh blood (within 12 h) 
was incubated at 4 °C for 30 min in the presence of appro-
priate amounts of monoclonal antibodies. The mixtures 
were then diluted 1:20 in ammonium chloride lysing solu-
tion, incubated at room temperature for 10 min and finally 
washed prior to flow cytometric analysis with the FACS-
Canto II flow cytometer (Becton Dickinson, San Jose, CA, 
USA). Samples were analyzed on FACSDiva software (BD 
Bioscience, San Jose, CA, USA). The following antigens 
were analyzed: CD4 PE (from BD San Diego, CA, USA), 
CD8 APCcy7 (from Beckman Coulter, Marseille Cedex 
9, France), CD20 FITC (from BD San Diego, CA, USA), 
CD19 APC (from Beckman Coulter, Marseille Cedex 9, 
France), CD45 PerCP (from BD San Diego, CA, USA), 
CD27 HV500 (from BD San Diego, CA, USA), CD3 Pacific 
Blu (from Beckman Coulter, Marseille Cedex 9, France). B 
and T lymphocytes were gated on forward scatter (FSC) and 
side scatter (SSC) parameters, identifying 50,000 events. 
Gating strategy is shown in Fig. 1. The lowest level of detec-
tion was 10–4 (as such, zero corresponds to a level below 
1/10,000 cells). For lymphocyte absolute count, we coupled 
cytometry to complete blood count on hematological counter 
(double platform). Laboratory procedures were performed 
in accordance with UK-NEQAS quality standards (https://​
ukneq​as.​org.​uk/). For quantitative testing of serum immu-
noglobulins, we used nephelometry with a wavelength of 
840 nm (BN™ II System, Siemens Healthcare, Erlangen, 
Germany), in accordance with manufacturer instructions. 
Reference curves were generated by multi-point calibration. 
Serum samples were automatically diluted 1:400 (IgG), 1:20 

https://ukneqas.org.uk/
https://ukneqas.org.uk/
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(IgA) or 1:5 in the low concentration assay (IgAs and IgMs). 
Reference values were derived from Italian population [20].

Demographic and clinical variables

At baseline, age, sex, disease duration (time from symptom 
onset to baseline visit), disease subtype (RRMS, SPMS, 
PPMS), and previous disease-modifying treatments (DMTs) 
were collected as per clinical practice. Disability was scored 
with the Expanded Disability Status Scale (EDSS), by certi-
fied examiners. EDSS progression at last available follow-
up was defined as increase in EDSS by 1 point if baseline 
EDSS was 5.5 or lower, or increase in EDSS by 0.5 point if 
baseline EDSS was above 5.5 [21]. Relapses were recorded 
on the occasion of clinical consultations and infusions. Side 
effects were also collected on the occasion of clinical con-
sultations and infusions; however, considering the retrospec-
tive nature of the study, we only referred to serious adverse 
events, which are less likely to be missed in clinical practice 
(defined as reaction that results in death, is life-threatening, 
requires hospitalization or prolongation of existing hospi-
talization, results in persistent or significant disability or 
incapacity, or is a birth defect).

Power calculation

Considering a normal distribution of variables to be ana-
lyzed in regression models, and a 30% effect size [13], a 

sample of 78 patients would be able to achieve 87% power 
with 5% α error.

Statistics

Study variables are presented as mean (standard deviation), 
median (range), or number (percent) as appropriate.

Changes in laboratory variables were explored using 
mixed-effect regression models including each laboratory 
variable, in turn, as dependent variable, and infusion as inde-
pendent variable; covariates were age, sex, previous DMT, 
and follow-up duration. Patients were included in the models 
as random intercept to account for the hierarchical structure 
of the data. As unit of analysis was the infusion, in case of 
multiple outcome records corresponding to the same infu-
sion, the statistical model averaged them. Our statistical ref-
erences were laboratory variables at baseline (first infusion), 
and, then, after first infusion, to assess changes over time 
when compared with before ocrelizumab treatment and fol-
lowing its first infusion, respectively. Clinical correlates of 
immunological modifications (i.e., relapse occurrence, side 
effects and EDSS progression) were explored using logistic 
regression models including each clinical variable (EDSS 
progression, relapse occurrence, serious adverse events), in 
turn, as dependent variable, and each laboratory variable, 
in turn, as independent variable; covariates were age, sex, 
previous DMT, and follow-up duration.

Results are presented as coefficients (Coeff), odds ratio 
(OR), 95% confidence intervals (95%CI), and p-values. Sta-
tistical analyses were performed using Stata 17.0.

Fig. 1   Flow cytometry gating strategy. The dot plots show the sub-
sequent gates that were drawn to analyze the lymphocytes. SSC-
Area and FSC-Area were plotted to exclude debris and to identify 
viable cells, among which the lymphocyte region was defined (a). 

Then, FSC-Area and FSC-Height were used to exclude doublets 
(b). From this region of lymphocyte singlets, plots were constructed 
to define lymphocyte subpopulations based on CD expression (e.g., 
CD3 + CD4 + in c, CD3 + CD8 + in d)
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Results

We included 78 MS patients (age 47.8 ± 10.5 years; sex 
48.7% females), with 36.5 ± 6.8 months of follow-up. 51.3% 
patients had 7 infusions of ocrelizumab (ranging from 5 to 
8 infusions). Demographic, clinical and treatment features 
are reported in Table 1.

When compared with pre-infusion values, white blood 
cell count initially decreased after 2nd to 4th infusion, but 
then increased after 6th to 8th infusion; total lymphocyte 
count decreased after 1st and 2nd infusion; CD19 and CD20 
lymphocytes decreased across all infusions; CD8 lympho-
cytes decreased after 3rd to 8th infusion; CD4/CD8 ratio 
increased after 2nd to 8th infusion; and IgG decreased after 
1st to 8th infusion. No changes were observed for neutro-
phils, CD4 lymphocytes, CD27 lymphocytes, CD3CD27 

lymphocytes, CD19CD27 lymphocytes, IgM and IgA 
(Table 2; Fig. 2).

When compared with values after 1st infusion, white 
blood cell count initially decreased after 2nd to 5th infu-
sion, but then increased after 6th to 8th infusion; neutrophils 
increased after 3rd to 8th infusion; CD19 and CD20 lym-
phocytes decreased after 2nd infusion; CD8 lymphocytes 
decreased after 3rd to 4th infusion; and IgG decreased after 
2nd to 8th infusion. No changes were observed for total lym-
phocyte count, CD4 lymphocytes, CD4/CD8 ratio, CD27 
lymphocytes, CD3CD27 lymphocytes, CD19CD27 lympho-
cytes, IgM and IgA (Table 2).

Over 36 months of follow-up, 26 patients (33.3%) had 
EDSS progression. The probability of EDSS progression 
was associated with higher CD8 (OR = 1.01; 95 CI = 1.00, 
1.05; p = 0.02), and lower CD4/CD8 ratio (OR = 0.67; 
95 CI = 0.46, 0.96; p = 0.03); no significant associations 
were found for WBC, neutrophils, total lymphocytes and 
other subsets (CD19, CD20, CD4, CD27, CD3CD27, and 
CD19CD27) (Table  3). We recorded two relapses, and 
eight cases of serious adverse events in seven patients; in 
particular, serious adverse events were infections (2 pul-
monary infections, 1 herpes zoster infection, and 1 urinary 
tract infection), and malignancies (2 skin cancer, 1 bladder 
cancer, and 1 leukemia). Statistical models for relapses and 
side effects, separately, failed due to multicollinearity.

Discussion

Our study confirmed that ocrelizumab has wide range effects 
on both humoral and cellular immune response from its first 
infusion, and showed that most changes occurred from the 
first to the fourth infusions, thus pointing toward relative 
stability of the immunological profile afterward. Of note, 
cellular, but not humoral, immune effects of ocrelizumab 
were associated with disability progression, and occurred 
throughout the follow-up, suggesting that continuous treat-
ment with ocrelizumab is needed to modulate the neurode-
generative aspects of MS.

In our study, we confirmed previous clinical trial exten-
sion results on white blood cells, which progressively 
decreased following the first infusion, but then came back 
to previous levels after year 2, and on neutrophils, which 
remained stable throughout the study, in the absence of 
cases of late-onset neutropenia [13, 22, 23]. Looking at B 
lymphocytes, CD19 and CD20 B lymphocytes were the 
first subpopulation hit by ocrelizumab, decreasing imme-
diately after the first infusion and then remaining substan-
tially stable. B lymphocytes play an important role in MS 
pathology in the context of both relapsing and progressive 
MS [24–26], promoting injury through direct activation of 
lymphocytes (CD8 cytotoxic T lymphocytes) [26–29], and 

Table 1   Demographic, clinical and treatment features

N = 78

Baseline
Age, years 47.8 ± 10.5
Sex, females (%) 38 (48.7%)
Disease duration, years 13.2 ± 8.6
EDSS at baseline, median (range) 3.5 (1.5–7.0)
Disease subtype
RR 38 (48.7%)
SP 9 (11.5%)
PP 31 (39.8%)
Previous DMT
Alemtuzumab 2 (2.6%)
Dimethyl fumarate 13 (16.7%)
Fingolimod 15 (19.2%)
Glatiramer acetate 8 (10.2%)
Interferon beta 5 (6.4%)
Natalizumab 6 (7.7%)
Teriflunomide 9 (11.6%)
Treatment naïve 20 (25.6%)
Follow-up
Follow-up duration, months 36.5 ± 6.8
Number of ocrelizumab infusions
5 14 (17.9%)
6 6 (7.7%)
7 40 (51.3%)
8 18 (23.1%)
EDSS at follow-up, median (range) 4.0 (1.5–8.0)
EDSS progression, n (%) 26 (33.3%)
Relapses, n (%) 2 (2.6%)
Serious adverse events
Infections 4 (5.1%)
Malignancy 4 (5.1%)
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other neuro-inflammatory cells (e.g., macrophages, micro-
glia, astrocytes) [30, 31] or the production of pro-inflam-
matory cytokines [32]. In the central nervous system of MS 
patients, B cells are primarily located in the meninges and 
in the perivascular spaces, where they contribute to chronic 
aberrant compartmentalized inflammation [28, 33]. In ani-
mal models, treatment with anti-CD20 monoclonal anti-
bodies eliminates CD20 B lymphocytes and disrupts B cell 
aggregates [34].

Antibody production is strictly dependent on B-medi-
ated humoral response, and can directly contribute to MS 
inflammatory changes [35–37]. Accordingly, our results 
showed a reduction of IgG from the first infusion, alongside 
B lymphocytes, with progressive decrease over infusions, 
as already shown by clinical trial extension [13]. While the 
low levels of IgG have raised concerns on infectious risk 
and vaccine response in MS [15–17, 38], our study showed 
stable IgM levels and CD19CD27 B lymphocytes. In par-
ticular, CD19CD27 B lymphocytes in the peripheral blood 
are active B cells, but share the same antigens with plasma 
cells, located within lymphoid tissues and hereby produc-
ing immunoglobulins [39]. Taken together, these observa-
tions indirectly suggest that, while CD20 B lymphocytes 
are depleted, plasma cells remain unaffected, with normal 
possibility to mount humoral immune response against new 
antigens (IgM) [25], as preliminary shown in some cases 
[38].

Looking at T lymphocyte subpopulations, CD4 T lym-
phocytes remained substantially stable as previously showed 
in our feeder study [12], and also in clinical trial extension 
results [17]. On the contrary, CD8 T lymphocytes progres-
sively decreased over infusions, as shown by regression 
coefficients and also confirmed by a concomitant drop of 
the CD4/CD8 ratio. However, we did not observe changes 
in CD27 activated T lymphocytes and CD3CD27 naïve 
cells (CD45RO−) and central memory T lymphocytes 
(CD45RO +), suggesting that ocrelizumab leaves unaffected 
the possibility to mount a cellular immune response while 
specifically targeting the aberrant immune response medi-
ated by CD8 cytotoxic T lymphocytes. In keep with this, 
we found an association between increased probability of 
EDSS progression and reduced ocrelizumab-mediated mod-
ulation (i.e., higher levels) of CD8 T lymphocytes. While 
we need to acknowledge small effect size in this statistical 
model, this association is underlined by strong biological 
plausibility. Indeed, CD8 T lymphocytes directly contribute 
to non-resolving inflammation within the central nervous 
system, ultimately leading to demyelination and axon loss 
in both relapsing and progressive MS [30]. In particular, in 
progressive MS, inflammatory activity and demyelination 
is associated with infiltrates of tissue-resident CD8 cyto-
toxic T cells [40]. As such, the effect of ocrelizumab does 
not only depend on depletion of B lymphocytes, which is Ta
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early event and substantially stable after the second infu-
sion (using 6-months interval dosing), but also of CD8 
cytotoxic T lymphocytes, which, on the contrary, occurs 
progressively during the course of treatments. Thus, while 
extending ocrelizumab dosing interval following B lympho-
cyte counts could be effective on the inflammatory aspects 
of MS (i.e., relapses, MRI lesions) [19], CD8 cytotoxic T 
lymphocytes progressively decrease during treatment and 
would very likely require regular infusions to be constantly 
modulated, with subsequent effect on disability progression 
[18]. In line with this, in a murine model, single administra-
tion of anti-CD20 monoclonal antibody was immediately 
effective on B cell aggregates in the absence of changes in 
other inflammatory cells [41].

Unfortunately, we were unable to provide more thought-
ful insights on other clinical variables. We recorded relapses, 
which were too few to be analyzed statistically and corre-
lated to laboratory variables. The low rate of relapses could 
be due to the strong and immediate anti-inflammatory effect 
of ocrelizumab [42], but also to the inclusion of progressive 
patients, representing about 50% of the population. We only 

Fig. 2   Laboratory changes over time. Profile plots show changes in total lymphocyte count (a), CD19 lymphocytes (b), CD20 lymphocytes (c), 
CD4 lymphocytes (d), CD8 lymphocytes (e), CD27 lymphocytes (f), IgG (g), IgM (h) and IgA (i)

Table 3   EDSS progression and laboratory variables

Table shows odds ratio (OR), 95% confidence intervals (95% CI), and 
p values from logistic regression models including EDSS progression 
as dependent variable, and laboratory variables, in turn, as independ-
ent variables; covariates were age, sex, previous DMT, and follow-up 
duration. Significant results (p < 0.05) are reported in bold

OR 95% CI p value

WBC 1.00 0.99 1.01 0.91
Neutrophils 0.99 0.98 1.01 0.58
Lymphocytes 1.00 0.99 1.01 0.76
CD19 0.98 0.95 1.02 0.42
CD20 0.99 0.99 1.01 0.49
CD4 0.99 0.97 1.01 0.19
CD8 1.01 1.00 1.05 0.02
CD27 0.99 0.99 1.00 0.35
CD3CD27 0.99 0.99 1.00 0.21
CD19CD27 0.99 0.99 1.01 0.96
CD4/CD8 ratio 0.67 0.46 0.96 0.03
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had eight cases of serious adverse events (four infections, 
and four malignancies), whom statistical models failed due 
to the small number of observations. This could be due to the 
inclusion of serious adverse events only, the retrospective 
nature of the study, and/or the implementation of a program 
for infection screening and prophylaxis, which proved effec-
tive in reducing infections in patients receiving anti-CD20 
agents for MS [43].

Additional limitations include the lack of more detailed 
clinical (e.g., walking and hand dexterity tests), and MRI 
(e.g., lesion load, atrophy) outcome measures, which would 
have been helpful for improved population characterization 
and treatment effect estimation [44, 45], but unfortunately 
not routinely collected across the follow-up. Finally, we did 
not include CD45RO in the panel, and thus were unable 
to differentiate CD3 + CD27 + cells into naïve and central 
memory T lymphocytes.

In conclusion, we provided real-world evidence on the 
mechanisms of action of ocrelizumab, and confirmed its 
effect on both cellular and humoral immunity. While the 
effect on B lymphocytes and, subsequently, on immuno-
globulins is well known and expected, the mechanisms by 
which ocrelizumab reduces CD8 cytotoxic T lymphocytes 
deserves to be further explored also in light of its association 
with disability progression.
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