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Abstract
Parkinson’s disease (PD) is an ageing disorder with deterioration of dopamine neurons which leads to motor complications 
like tremor, stiffness, slow movement and postural disturbances. In PD, both genetics as well as environmental factors both 
play a major role in causing the pathogenesis. Though there are surfeit of risk factors involved in PD occurrence, till now 
there is lack of an exact causative agent as a risk for PD with confirmative findings. The role of heavy metals reported to be 
a significant factor in PD pathogenesis. Heavy metal functions in cell maintenance but growing pieces of evidences reported 
to cause dyshomeostasis with increased PD rate. Metals disturb the molecular processes and results in oxidative stress, DNA 
damage, mitochondrial dysfunction, and apoptosis. The present review elucidates the role of cobalt, nickel, mercury, chro-
mium, thallium metals in α-synuclein aggregation and its involvement in blood brain barrier flux. Also, the review explains 
the plausible role of aforementioned metals with a mechanistic approach and therapeutic recommendations in PD.
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Introduction

Parkinson’s disease (PD) is a second most progressive neu-
rodegenerative condition categorized with motor and non-
motor symptoms such as tremors, stiffness, slow movement, 
sleep disturbances, constipation autonomic dysfunctions, 
cognitive abnormalities and psychiatric symptoms [1, 2]. 
The main pathologic marker of PD is the progressive degen-
eration of dopaminergic (DA) neurons and the presence of 
α-synuclein (αSyn) in the brain [3–5]. The aetiology of PD is 
largely unknown, but studies have revealed that the environ-
mental factors plays a majority role than genetic factor [2, 6, 
7]. Among environmental factors, heavy metals are natural 

constituents which persistently exist and leads as one of the 
risk factor in disease occurrence [8]. They are categorized 
as essential and non-essential types. Metals like manganese 
(Mn), copper (Cu), zinc (Zn), nickel (Ni), and iron (Fe), 
acts as cofactors for many proteins. However, few heavy 
metals do not have a biological function which includes 
cadmium, lead (Pb), and mercury (Hg), but rather results in 
toxic nature if they are consumed [9]. Metals involvement in 
neurodegeneration ends up in oxidative stress, impairment 
in mitochondrial function, stress in endoplasmic reticulum, 
DNA fragmentation, protein misfolding, activation of micro-
glia, and apoptosis [10]. These molecular pathways further 
result in common neurological symptoms like cognitive dys-
function, stress, learning disabilities, motor activities, etc. 
[11]. The core sources of heavy metals exposure are from 
occupations, pollution, adulterated seafood, medications, 
and metal dental restorations [12]. Metal-induced neurotox-
icity in PD is still under research. Metals contribute either 
by producing metallic toxicants or by declining levels of 
essential metals [13]. Here in this review, we address the 
significance of heavy metals in neuronal function and its 
route of exposure focusing on neurotoxic effects of cobalt 
(Co), Ni, Hg, chromium (Cr), and thallium (Tl) in PD, and 
we have described the probable role of each metal in PD 
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advancement along with therapeutic suggestions for treating 
metal toxicity in PD.

Heavy metals and their impact of neuronal function 
and ageing process

Heavy metals reported to be toxic in all organs, but the 
most affected region is the central nervous system (CNS) 
followed by other regions. Inorganic metals such as Pb, Mn, 
Al, Li, Tl, As, and Hg are predominantly reported to show 
detrimental effects on neurological and behavioural aspects 
[14]. It is very common for heavy metals to cause lifelong 
disabilities such as autism, cerebral palsy, PD, multiple scle-
rosis, and Alzheimer’s disease due to their enduring and 
irretrievable effects [15]. According to a study, heavy metal 
exposure is one of the most common causes of neurotoxicity 
in various populations across the globe [16]. Heavy metals 
accumulate in the brain under physiological conditions and 
are integrated into essential metalloproteins that supports 
neuronal health as well as energy homeostasis. The accumu-
lation of essential metals or exposure to toxic non-essential 
metals can cause several severe complications [17, 18]. This 
is common in PD which results in the death of dopaminer-
gic neurons during aging [19]. Although heavy metals are 
reported to be toxic in humans, it is still unclear what fac-
tors are involved in few people to be more vulnerable than 
others. Certain metals like Cd, Pb, As, and Hg are known 
to display their neurotoxic potential through ROS produc-
tion and diminished antioxidative activity [20]. The blood 
brain barrier (BBB) guards the brain cells from organic and 
inorganic toxic substances by complimentary pathways. 
However, toxic metals could circumvent the mechanisms 
and impose destruction to the brain parenchyma [16]. The 
efficiency of BBB may also be conceded either in extreme 
pathogenic conditions or through toxic potential of the met-
als that targets the blood–brain peripheries. Growing evi-
dence has shown that the BBB acts as the protector of CNS 
which are subjected to toxicity of heavy metal association. 
Since the BBB has a distinct role in brain development, it is 
evident that damage in BBB might enhance to metal induced 
neurotoxicity [21]

Alterations to the nervous system are a part of the aging 
process, as they also affect other organ systems. Heavy 
metals have been linked to sensory function loss in adults, 
including vision, smell, and sensation, which is uncommon 
in children [22]. Ageing causes increased level of senescent 
cells which can release immune-related factors that declines 
the likelihood of surrounding cells [23]. Hence, senescence 
process will be more sensitive to heavy metals accumula-
tion in neuronal cells. Ageing induces various cellular and 
molecular alterations which are susceptible to protein aggre-
gation, oxidative stress, dyshomeostasis, reduction in toxin 
clearance, mitochondrial dysfunctions, apoptosis, and DNA 

damage. These alterations end into neuronal death and are 
intensified in particular susceptible neurons [24]. Essential 
metals such as calcium, Cu, Mn, and Co are thought to act 
as neurotoxic especially during ageing when their concentra-
tion changes from optimal level, whereas non-essential met-
als such as Hg, cadmium, and Ni lead to various molecular 
alterations and neurodegenerative disorders during ageing 
dysregulation [25]. During ageing, Hg exposure increases 
as atmospheric Hg levels elevates which induces oxidative 
stress, cell membrane damage, and autoimmunity process 
in PD [26]. However, frequent exposure to heavy metals 
is toxic to the brain which might aggravate brain’s ageing 
process and accelerate the neurodegenerative condition. 
Therefore, more evidences need to be explored for a bet-
ter understanding of heavy metal impact on ageing process 
which might aid in identifying pharmacological target sites 
to alleviate neurodegenerative conditions.

Source and route of heavy metal exposure 
in nervous system

In recent years heavy metals have become a growing source 
of ecological and worldwide public health concern. More-
over, human exposure to metals has increased through 
several metal sources present in the environment, includ-
ing geogenic, industrial, agricultural, pharmaceutical, and 
home effluents [27]. Metal-based industries like mining, 
foundries and smelters are considered to be a prominent 
source of heavy metals [27–29]. Normally, heavy metals 
are found in trace concentrations in soil and plants [30, 31]. 
However, heavy metals are encapsulated in nanoparticles 
(NPs) which has a dimension of < 100 nm [32, 33]. Metallic 
NPs can cross the cell membranes and enter cellular orga-
nelles thereby affecting the physiological functions of the 
cell [34–36]. The metallic NPs in commercial products like 
sunscreens, cosmetics, toothpaste, plastics, paints, etc., are 
revealed to be a possible source of heavy metals to enter 
the body [37–39]. Regardless of where they come from, 
metals can enter the body through many routes, including 
ingestion, inhalation, and injection. They can then enter in 
various parts, after circulating in blood [40, 41]. According 
to a previous study, it was stated that the BBB is incapable 
of protecting against metals translocation [42]. Nerve cells 
are more vulnerable to toxins than other types of cells due 
to their restricted ability to regenerate [43]. Metallic NPs 
adhere to olfactory mucosa or enter bronchi and alveoli in 
the lung due to their tiny size [44–46]. NPs are carried from 
the nasal cavity by the olfactory epithelium and migrate to 
the choroid plexus [33, 45]. The olfactory nerve acts as a 
direct route for metallic NPs to reach the brain [47]. On the 
other hand, inhaled metal NPs can enter alveolar epithelial 
cells and then circulate through the blood and lymph system, 
eventually collecting in the heart, brain, lymph nodes and 
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spleen [48, 49]. The digestive tract is also a significant route 
for metallic NPs where it is absorbed by epithelial cells from 
which they can travel to the bloodstream and other organs. 
Similarly, metallic NPs can enter the cell through interacting 
with membrane components through endocytosis.. Hence, 
additional research is essential on the source and route of 
exposure of heavy metals in order to find and initiate further 
research. Table 1 depicts the list of studies on sources and 
routes of exposure of heavy metals and its effects.

BBB flux in metal induced neurodegeneration

The BBB is made up of an endothelial membrane that owns 
closed connections and is encased by mural vascular cells 
and perivascular astrocytes. It serves as a crucial barrier 
between the neural cell and circulating blood. By protect-
ing neurons from circulating substances, the BBB maintains 
the highly controlled environment inside the CNS, which is 
vital for normal synaptic and neuronal function [57]. Fail-
ure to maintain any of these components results in special-
ized multicellular structure to cessation, promoting neuro-
degenerative characteristics [57, 58]. An inflammation can 
lead to the disruption of BBB which allows toxins, cells, 
and infections to reach the brain that can results in neu-
rodegeneration [59–61]. It is said that transporters involve 
in metal distribution across the BBB apart from the metals 
that are absorbed mostly through the gastrointestinal sys-
tem, lungs, and skin. Metal accumulation in the CNS affects 
BBB permeability, activates microglia and astrocytes, and 
alters water transport across the cells which can lead to brain 
swelling. Aquaporin-4 (AQP4) is the main water channel 
present in the astrocyte foot proceeding to brain capillar-
ies and to the circumventricular epithelium where it plays 
a key role in preserving brain osmotic condition and excit-
ability by regulating the extracellular space [62]. Few stud-
ies suggests that AQP4 plays as a neuroprotector, where its 
dysfunction leads to oxidative stress following brain metal 
toxicity by disrupting BBB [62, 63]. Deficiencies in metal 
ion homeostasis and toxic quantities of non-essential metals 
cause metabolic alterations and water permeability in the 
brain with increased AQP4 expression in the brain. There-
fore, targeting a balanced modulation of water and solute 
transport using AQP4 leads to new therapeutic interventions 
in various neurodegenerative diseases. Figure 1 represents 
the BBB flux in neurodegeneration due to heavy metals.

Metal triggering protein aggregation 
and abnormalities

The exposure to several heavy metals resulted in significant 
accelerations of αSyn fibril formation in which Cu and Co 
were highly correlated with protein aggregation. Metal ions 
could alter the fibril morphology as well as the aggregation 

speed when they interact with disease-specific proteins. A 
wide range of studies have explored the association between 
heavy metals and αSyn [64–66]. According to the findings, 
low concentrations of some metals can directly encourage 
αSyn formation of fibrils [64]. In an animal model using E. 
Coli the, Co and Ni selectively induces the rapid formation 
of discrete αSyn oligomers in PD [67]. Recently, in a human 
case study, with hip replacement, elevated levels of serum 
Co and Cr metals were reported in atypical Parkinsonism 
[68]. αSyn activity was induced at low  Hg2 levels, while 
higher levels increased stress-response genes. The combi-
nation of mass spectrometry was utilized for characterizing 
αSyn binding with Co and Mn metals [69]. Similarly, in 
an animal model using Caenorhabditis elegans, Hg levels 
were reduced which increased the aggregation of αSyn [70]. 
Table 2 depicts the list of metals involve in αSyn aggre-
gation. Till now, only limited studies have been focused 
on the metals with αSyn aggregation, and it is essential to 
understand the conformational changes of αSyn when spe-
cific metal binding occurs which leads to pathological and 
physiological outcomes.

Mechanistic insights of heavy metals in PD

Probable effect of Co in PD pathology

According to an animal study using mouse embryonic stem 
cells, the contribution of excessive Co in PD neurotoxic-
ity has not been investigated. It is reported that Co-induced 
neuronal damage results in oxidative stress [71–73]. Here, 
we elucidate a probable mechanism of Co inactivating pep-
tidyl-prolyl cis/trans isomerase or Pin1 which contributes to 
age-related neurodegeneration under certain physiological 
conditions, in this the excessive Co inactivates Pin1 which 
thereby activates glycogen synthase kinase 3 beta (GSK3β), 
an isoform of GSK3 which plays a pivotal role in neurode-
generative diseases [74]. GSK3β activation phosphorylates 
αSyn leading to aggregation which results in inflammation 
and oxidative stress. GSK3β induces microglial activa-
tion which increase the proinflammatory cytokines levels 
that leads to neuroinflammation. Simultaneously, GSK3β 
upregulates BAX level and promotes mitochondrial mem-
brane permeabilization by separating Bcl-2 and releases 
cytochrome c which leads to cell death [75] (Fig. 2). Hence, 
this potential pathway of Co role in PD pathogenesis is yet 
to be investigated by conducting further research on toxic 
effect of Co in neurodegeneration.

Plausible role of Ni in PD

Studies have shown the influence of Ni in neurotoxicity by 
inducing ROS, inflammation, apoptosis, mitochondrial dys-
function, and epigenetic modifications in neuronal cells [76]. 
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The over-exposure of Ni has been demonstrated in several 
in vitro and in vivo studies but the exact mechanistic behav-
iour in PD is not yet understood. It has been reported that Ni 
crosses the BBB through the olfactory tract and primarily 
reaches the cerebral cortex [77]. A study has stated that on 

exposure to higher concentration of Ni disrupts the neuro-
transmitter system which subsequently alters long-term syn-
aptic transmission [78]. However, the dose-dependent con-
centration of Ni suggested to show significant disturbance in 
dopamine, serotonin and noradrenaline function in cerebral 

Fig. 1  BBB flux in metal induced neurodegeneration. Ruptured BBB permits the entry of toxic heavy metals thereby activates astrocytes and 
microglia thereby causing neurodegeneration

Table 2  Heavy metals inducing αSyn aggregation

Co cobalt; Ni nickel; Hg mercury; SNCA alpha synuclein; µM micromolar; nm nanometer; W kg weight kilogram; ECD electron capture disso-
ciation; CAD collisional activated dissociation; αSyn alpha synuclein

S. no Heavy metals Model Gene expression Dose exposure Mode of action References

1 Co in vivo A53T and A30P in SNCA 3.5 µM Fibril formation [64]
2 Ni, Co Escherichia coli BL21 – 45–90 nm Oligomerization [67]
3 Co Human SNCA 10 μM Fibrillation, ECD and 

CAD to identify the 
sites of Co binding to 
αSyn

[69]

4 Hg Caenorhabditis elegans hsp-16.2
mtl-2
sod-4

0.002–0.02 W kg- Hg might promote αSyn 
aggregation only at 
very low concentrations

[70]
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cortex and basal ganglia [79]. Earlier, it has reported that 
Ni alters dopamine and glutamate receptor encoding gene 
expression [80–82]. Though limited studies have been con-
ducted in Ni toxicity, here we report the probable mecha-
nistic approach of Ni influence in PD pathogenesis. Simi-
lar to other metals, Ni enters the BBB thereby causing an 
increase in ROS, neurotoxicity and apoptosis which leads to 
increased levels of αSyn aggregation which in turn hinders 
synaptic transmission and degeneration of dopamine leading 
to PD pathogenesis (Fig. 3). Therefore, the toxicity of Ni in 
neurodegeneration has to be elucidated in order to explore 
the therapeutic platform for pathological conditions in PD.

Previous studies on the role of Ni in mitochondrial 
dysfunction

Ni exposure is predominantly associated with cellular 
energy alterations [83]. Animal study on Wistar rats con-
cluded that the neurotoxic potential of Ni is suggested to 
involve in oxidative stress and mitochondrial impairment 
due to the damage in mitochondrial membrane potential 
and mitochondrial DNA impairment which results in 

ATP decline [84, 85]. Diminished mitochondrial func-
tion delays mitochondrial transport chain function, ROS 
generation and worsens oxidative stress. In a study, cor-
tical neurons and primary neuroblastoma noticed with 
dose-dependent increase in ROS during Ni deposition 
[82]. An animal study shows that Ni-induced neurons was 
reported with ROS production, elevated lipid peroxida-
tion and destructed antioxidant function[80, 86, 87]. This 
lipid peroxidation generates free radicals, which precedes 
to structural alterations in biological membranes with 
impaired membrane fluidity that leads to neurodegenera-
tive condition [80, 88]. In Ni-exposed rat model, superox-
ide dismutase (SOD) and catalase (CAT) activities were 
declined in hippocampal region signifying with an incli-
nation in oxidative stress [80, 89]. Similarly in fish brain, 
CAT expression was suppressed due to Ni exposure [86, 
90]. It is distinguished that SOD and CAT functions as 
defensive mechanism against free radical production [80]. 
Studies have reported with a decrease in brain antioxidant 
enzymes such as glutathione S-transferase (GST), SOD, 
glutathione (GSH), glutathione peroxides (GPx) and CAT 
levels in Ni-induced rats [84, 91]. Similarly, in human 

Fig. 2  Co effects in αSyn aggregation and PD initiation. Co inacti-
vates Pin1 and activates GSK-3β which leads to phosphorylation of 
αSyn leading to aggregation which results in inflammation and oxi-
dative stress. GSK-3β induces microglial activation which increase 
the proinflammatory cytokines levels that leads to neuroinflamma-
tion. Simultaneously, GSK-3β upregulates BAX level and promotes 

mitochondrial membrane permeabilization by separating Bcl-2 and 
releases cytochrome c which leads to cell death. Co cobalt; Pin1 pep-
tidyl-prolyl cis/trans isomerase; GSK‑3β glycogen synthase kinase-3 
beta; αSyn alpha synuclein; BAX  BCl2 associated X protein; Bcl‑2 
B-cell lymphoma 2; MAPK mitogen-activated protein kinase
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studies during hypoxia-induced stress, the hypoxia-induc-
ible factor-1α (HIF-1α) gets distracted from degradation 
process due to Ni. Evidences have shown that Ni exposure 
can induce HIF-1α accumulation in various cells with 
an increase in hypoxia responses [92–94]. Iron–sulphur 
cluster (ISC) proteins plays a role in mitochondrial res-
piration and energy synthesis, where its binding site for 
miR-210 gets inhibited by Ni toxicity thereby causing 
downregulation of ISCU1/2 followed by destruction of 
mitochondrial electron transport mechanism and oxida-
tive phosphorylation [89]. Taken together, these studies 
suggest that Ni-induced neurotoxicity alters the energy 
metabolism through impaired antioxidant defence sys-
tem, interruption to oxidative phosphorylation and pro-
gression of anaerobic glycolysis. Though limited studies 
have been conducted on molecular level in Ni-induced 
neurotoxicity, evidences have shown the prominent role 
of Ni on mitochondrial function in neurotoxicity. Hence, 
additional research is essential to explore the molecular 
mechanism of Ni in mitochondrial dysfunction. Table 3 
shows the list of countries with studies on Ni toxicity 
inducing mitochondrial dysfunction.

Toxic effects of Cr in PD

Hexavalent (Cr(VI)) is rapidly transported to BBB than 
trivalent (Cr(III)) [95]. Many pathogenic mechanisms have 
been proposed but in PD the toxic effects of Cr are not 
investigated clearly. In 2011, an animal study proposed 
on Cr exposure depleted the levels of sulphur that resulted 
in Cr toxicity [96]. The study using human samples states 
that sulphur amino acid cysteine (Cys) and its antioxidant 
GSH are majorly involved in the reduction of Cr(VI) to 
toxic form [97, 98]. This reduction promotes ROS genera-
tion. In PD, chromate  (CrO4

2+) and sulphate  (SO4
2+) enter 

into the cell through  CrO4
2+ and  SO4

2+ transporters which 
readily converts Cr (VI) to Cr (III) with ROS production. 
Simultaneously,  SO4

2+ level gets declined along with sul-
phur compound reduction. As it stated earlier, sulphur 
reduction causes a decline in the level of Cys and methio-
nine (Met) amino acids which leads to mistranslation [96] 
thereby causing αSyn aggregation that leads to neurode-
generation. This possible mechanism shows Cr impacts 
sulphur decline and vice versa which might result in αSyn 

Fig. 3  Ni influence in PD. Ni crosses the blood brain barrier (BBB) 
and it increases ROS, neurotoxicity and apoptosis. This cellular 
pathology leads to increase in αSyn aggregation that hinders the 

synaptic transmission of DA which deteriorates as time exceeds. Ni 
nickel; ROS reactive oxygen species; αSyn alpha synuclein; DA dopa-
mine
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aggregation (Fig. 4). Thus, the Cr toxicity with mechanis-
tic insight should be examined clearly in PD.

Methyl mercury (MeHg) and Tl influence in PD 
pathology

MeHg is an organic form of Hg which passes the BBB 
through amino-acid transporters. It binds with the thiol 
groups of Cys and GSH, where it declines the sulphur com-
pounds that ends up in mistranslation with αSyn aggrega-
tion. Also, demethylation occurs in glial cells which ends up 
in catalysing hydrogen peroxide pathway to inorganic form 
in neuronal cells. MeHg and inorganic form increase the 
levels of free radicals and results in ROS production [99]. 
This increase in ROS and αSyn mistranslation leads to neu-
rodegeneration of DA by intruding in the molecular mecha-
nisms of apoptosis, autophagy, and inflammation. Similar to 
Hg, Tl is also toxic and the primary organelle gets affected 
is mitochondria. Tl interrupts the electron transport chain 
and depletes ATP levels. Till now, studies have reported the 
involvement of Tl in neurotransmission but the exact patho-
genesis is yet to be identified. Tl intoxication is said to cause 
oxidative stress, lipid peroxidation in cell membranes and 
involves in antioxidant mechanisms. The correlation with 

these molecular pathways is widely involved in neurotoxic 
effects [100–102]. The above stated possible mechanisms 
can further be elucidated through in vivo and in vitro stud-
ies in decoding the etiological factor behind MeHg and Tl 
toxicity in PD pathogenesis (Fig. 5).

Metallomic biomarkers in PD

Metabolomics is an emerging field which connects bio-
marker discovery and pathogenicity of a disease. The study 
of metabolomics has provided evidences on neurodegenera-
tive condition with the intention of investigating disease-
specific pattern [103]. Table 4 depicts the study findings 
conducted on heavy metals associated with PD. Earlier stud-
ies resulted with an increase in Ni and Cr with an increase 
and decrease in Co levels in biofluids of PD patients with 
a consequence in oxidative stress and aggregation of αSyn. 
The levels of Cr, Hg and Tl reported with no change in 
PD patients [104–108]. Hg levels were high in CSF of PD 
patients leading to the death of dopaminergic neuronal death 
[109]. Thus, heavy metals are well-known for their effects 
on humans leading to PD pathogenesis. However, more 
studies need to be conducted on biofluids in PD research 

Table 3  List of studies related to Ni influence on mitochondrial dysfunction

ROS reactive oxygen species; SOD superoxide dismutase; CAT  catalase; GST glutathione−S−transferase; GSH glutathione; GPx glutathione 
peroxidase; HIF−1α hypoxia−inducible factor 1−alpha; ISCU1/2 iron−sulphur cluster 1/2

Country Year of the study Model Cellular alterations Study outcome References

China 2010 Mouse Oxidative damage to mitochondrial func-
tion and damage to mtDNA

↑ ROS [82]

Morocco 2018 Rats Neuronal degeneration and cellular death ↑ Lipid peroxide
↓ Anti-oxidant function

[80]

Turkey 2015 Fish oxidative stress, changes in c-Fos activ-
ity, and histopathological damage

↑ Lipid peroxide
↓ Anti-oxidant function

[86]

India 2009 Cirrhinus mrigala Histopathological damage ↑ Lipid peroxide
↓ Anti-oxidant function

[87]

India 2012 Human Oxidative stress, cell death and neurode-
generative condition in central nervous 
system

↑ SOD, CAT, glutathione and 
non-enzymatic antioxidants

[88]

German 2013 Fish Decrease in oxidative stress protein 
carbonyls and

↓ CAT [90]

Nigeria 2020 Rats Neuronal inflammation and oxidative 
injury

↓ GST, SOD, GSH, GPx and CAT [91]

Nigeria 2018 Rats Oxidative stress and mitochondrial 
apoptosis

↓ GST, SOD, GSH, GPx and CAT [84]

Pennsylvania 2008 Human HIF-1α accumulation ↑ Hypoxia-mimic [92]
USA 2006 Human Metal induced hypoxia or metal-induced 

disruption of Fe homeostasis, HIF-1α 
accumulation

↑ Hypoxia-mimic [93]

Island 2011 Human Activation of HIF-1α accumulation ↑ Hypoxia-mimic [94]
China 2017 Human Destruction in mitochondrial electron 

transport mechanism and oxidative 
phosphorylation

↓ ISCU1/2 [89]
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which would enhance to unravel a detailed mechanism of 
PD behavioural and neurological effects.

Therapeutic recommendations for heavy metals 
treatment

Though therapeutic strategies are progressing in PD, the 
therapeutic implications for metal-induced PD is the chela-
tion therapy which is a common therapeutic approach used 
to treat heavy metals intoxication in many diseases. Metal 
chelation treatment uses a chelating agent (CA), which 
is a chemical that creates stable coordination complexes 
with the target metal ion. When the CA is supplied to 
the patient, it acts as a scavenger, extracting the metal 
from its stores and promoting its decorporation from the 
body [110]. Some common chelating agents are dimer-
caprol, 2,3-Dimercapto-Propanesulphonate (DMPS), 
sodium-calcium EDTA (CaNa2-EDTA), deferoxamine 
(DFO), penicillamine, dimercaptosuccinic acid (DMSA), 
DMSA analog, monoisoamly dimercaptosuccinic acid 
(MiADMSA), mono-cyclohexyl dimercaptosuccinic acid 
(MchDMSA), and monomethyl dimercaptosuccinic acid 
(MmDMSA) [111]. Chelating drugs like DMSA and 

DMPS can be used orally and have lower toxicity than 
dimercaprol. Furthermore, DMSA appears to be more 
effective in removing MeHg, including from the brain. 
DMPS cannot repair MeHg levels in the brain, but it can 
effectively remove it from the kidney [112]. Still many 
clinical studies are in process to examine the Hg chelating 
agents in treating neurological disorders [113]. N-acetyl-
cysteine, CaEDTA, and dimercaprol is known to be effec-
tive in decreasing the circulating Cr levels through urine 
excretion [114]. Ni hyperactivity was treated by disulfi-
ram chelating agent in a case of 49-year-old women [115]. 
Similarly in Tl, the chelating agent diethyldithiocarbamate 
has cleared higher levels of Tl in urine [116]. This was 
suggested to be used for any patient suffering from high 
levels of Tl. For Co toxicity, EDTA was recommended in 
lowering the levels of Co in blood [117]. Hence, Table 5 
suggest the therapeutic ways for treating heavy metals tox-
icity. However, extensive research is required on chelating 
agents of toxic metals in order to understand the mode of 
actions and to inspect the economical and safe therapeutic 
compound to overcome heavy metals toxic effects. There-
fore, heavy metal toxicity treatment in PD should be inves-
tigated since there are no much studies focused till now. 

Fig. 4  Cr toxicity in neurodegeneration. Cr(VI) crosses BBB where 
the ions chromate  (CrO4

2+) and sulphate  (SO4
2+) enter into the cell 

through  CrO4
2+ and  SO4

2+ transporters which readily converts 
Cr (VI) to Cr (III) with ROS production.  SO4

2+ level and S level 
declines. S reduction causes a decline in the level of Cys and Met 

amino acids which leads to mistranslation thereby causing αSyn 
aggregation that leads to neurodegeneration. Cr(VI) hexavalent chro-
mium; BBB: blood brain barrier; CrO4

2+ chromate; SO4
2+ sulphate; 

Cr (VI) tetravalent; Cr (III) trivalent; ROS reactive oxygen species; 
Met methionine; Cys cysteine; αSyn alpha synuclein
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Fig. 5  MeHg and Tl role in PD pathogenesis. MeHg crosses BBB 
and it binds with thiol groups which reduces the levels of Cys and 
GSH; in neuronal cells MeHg with GSH gets activated and causes 
αSyn aggregation. Tl disrupts the mitochondrial function which 

depletes ATP levels thereby results in ROS, lipid peroxidation and 
interrupts antioxidant mechanism. These will lead to neurodegen-
eration. MeHg methylmercury; Tl thallium; Cys cysteine; GSH glu-
tathione; ATP adenosine triphosphate; ROS reactive oxygen species

Table 4  Metallomic biomarkers studies in biofluids of PD subjects

Cr chromium; Ni nickel; Co cobalt; TI thallium; Hg mercury; CSF cerebrospinal fluid; PD Parkinson's disease; ICP−MS inductively coupled 
plasma mass spectrometry; ICP−AES inductively coupled plasma atomic emission spectroscopy; HR−ICP−MS high−resolution inductively 
coupled plasma mass spectrometry; ICP−OES inductively coupled plasma–optical emission spectrometry; (FT−ICR)−FT−ICR Fourier−trans-
form ion cyclotron resonance; DA dopamine

Heavy metals Biofluids Model No. of subjects Analytical methods used Outcome of the study References

Cr CSF and serum Human 28 patients and 43 controls Atomic absorption spec-
trophotometer, Electro 
thermal atomizer, Auto 
sampler

No difference [105]

Cr, Ni, Co, Tl Serum and blood Human 71 patients and 44 controls ICP-MS and ICP-AES ↑ Cr, Ni,
↑ Oxidative stress
↓ Co, Tl
↑ αSyn accumulation

[104]

Cr, Co, Hg CSF and Serum Human 250 patients and 280 
controls

Atomic Absorption Spectro-
photometry

↑ Cr, Co, Hg
↑ Oxidative stress

[106]

Ni Serum Human 33 patients and 99 controls HR-ICP-MS ↑ Ni [107]
Ni CSF Human 33 patients

101 controls
ICP-sf-MS
SEC-ICP-DRCMS
FT-ICR-MS

No significance level of Ni [108]

Hg CSF Human 36 patients and 42 control ICP-OES and ICP-sf-MS ↑ Hg
↑ DA neurons death

[109]
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Conclusion

Heavy metals get accumulated in various organs leading to 
toxicity. There are a number of cellular events that are dis-
rupted by heavy metals and here the current review high-
lights the importance of heavy metals in PD pathogenesis. 
Ageing factor along with exposure to toxic metals need to 
be unravelled in neurodegenerative diseases. Though many 
studies have highlighted the toxicity of metals in PD, there 
are limited research focused on therapeutic aspect. As a 
new focus, the mechanistic behaviour of heavy metals in 
neurodegeneration presented in this review will be a novel 
approach in PD and in other neurodegenerative disorders. 
The mechanistic viewpoint would aid in developing thera-
peutic compounds in altering neurodegenerative condition 
in PD.
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