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Abstract
Objective Evidence supports that tension-type headache (TTH) involves complex underlying mechanisms. The current 
study aimed to quantify potential multivariate relationships between headache-related, psychophysical, psychological and 
health-related variables in patients with TTH using network analysis.
Methods Demographic (age, height, weight), headache-related (intensity, frequency, duration, and headache-related dis-
ability), psychological and emotional (Hospital Anxiety and Depression Scale, Pittsburgh Sleep Quality Index), psycho-
physical (pressure pain thresholds [PPTs] and myofascial trigger points) and health-related variables (SF-36 questionnaire) 
were collected in 169 TTH patients. Network connectivity analysis was unsupervised conducted to quantify the adjusted 
correlations between the modelled variables and to assess their centrality indices (i.e., the connectivity with other symptoms 
in the network and the importance in the modelled network).
Results The connectivity network showed local associations between psychophysical and headache-related variables. Mul-
tiple significant local positive correlations between PPTs were observed, being the strongest weight between PPTs over the 
cervical spine and temporalis area ( � : 0.41). The node with the highest strength, closeness and betweenness centrality was 
depressive levels. Other nodes with high centrality were vitality and headache intensity.
Discussion This is the first study applying a network analysis to understand the connections between headache-related, 
psychophysical, psychological and health-related variables in TTH. Current findings support a model on how the variables 
are connected, albeit in separate clusters. The role of emotional aspects, such as depression, is supported by the network. 
Clinical implications of the findings, such as developing TTH treatments strategies targeting these most important variables, 
are discussed.
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Introduction

Tension-type headache (TTH) is probably the most prev-
alent headache disorders with an estimated worldwide 
point prevalence of 42% and 1-year prevalence of 21% [1]. 
Despite its prevalence, TTH is the most neglected primary 
headache, which may be partly because its mechanisms are 
not fully understood and not found to be associated with 
specific neurological findings [2].

Current theories support the presence of several com-
plex mechanisms behind potential pathogenesis of TTH 
[3]. Among these mechanisms, pressure pain hyperalgesia 
[4], emotional–psychological factors [5], sleep disorders 
[6], genetics [7], and humoral/immune responses [8] could 
be involved in TTH in a complex matrix. Supporting these 
associations, some previous studies have reported differ-
ent interactions and mediation effects between headache 
features, emotional/psychological, and psychophysical 
variables in people with TTH [9, 10]. However, these 
studies used Pearson’s Product-Moment Correlations or 
linear regressions to determine the associations between 
the outcomes [9, 10]. It should be noted that Pearson’s 
Product-Moment Correlation ignores the potential for 
pairwise associations to arise from their interaction with 
another variable (e.g., a common cause for both variables) 
whereas linear regressions ignore the possibility of bidi-
rectional relationships between the variables [11].

Network analysis techniques permit a better under-
standing of complex relationships addressing the afore-
mentioned limitations [12]. Network analysis can pro-
vide a method to identify the most important variables in 
the associated complex network, which could be used to 
potentially design better therapeutic strategies [13]. From 
a network perspective, TTH can be viewed as a complex 
condition sustained by mutual interactions between clini-
cal, emotional/ psychological, and physiological systems. 
Network analysis has previously been used to better under-
stand the complexity of chronic pain syndromes [14, 
15], but so far, no study has applied network analysis in 
TTH research. As the current TTH framework considers 
the reciprocal interactions between biological and emo-
tional factors, this type of analysis could add precision to 
research on TTH and development of more targeted man-
agement procedures. The main objectives of the present 
study were: (1) to apply a network connectivity analysis 
including demographic, clinical, emotional/psychological 
and psychophysical variables in individuals with TTH; 
and (2) to illustrate the potential of a network analysis for 
understanding underlying features of TTH, generating new 
research questions, and improving options for developing 
more targeted treatment strategies.

Methods

Study design

An observational cross-sectional study following the 
Strengthening the Reporting of Observational studies in 
Epidemiology (STROBE) guidelines [16] was conducted. 
The study design was approved by the Local Human Ethi-
cal Committees (URJC 23/2081, HRJ 07/18). All partici-
pants read and signed a written consent form before being 
included in the study.

Participants

Patients with headache attending three different univer-
sity-based hospitals between January 2017 and December 
2019 were screened for eligibility criteria. The diagnosis 
of TTH was made according to the current criteria of the 
International Classification of Headache Disorders, third 
edition (ICHD-3), either the beta version [17] or the final 
version [18], by neurologists with more than 20 years of 
clinical experience. Participants were excluded if any of 
these circumstances were present: 1, any other primary or 
secondary headache; 2, previous cervical or head trauma; 
3, cervical herniated disk on medical records; 4, active 
systemic medical disease; 5, fibromyalgia syndrome; 6, 
change of medications in the previous 6 months; or, 7, 
pregnancy.

Assessments were conducted when patients had no head-
aches or, in those with a high frequency of headaches, when 
headache intensity on the day of assessment was ≤ 3 points 
on the numerical pain rating scale (NPRS). Participants were 
asked to avoid any analgesic or muscle relaxant 24 h before 
their examination.

Headache‑related variables

A 4-week diary was used to obtain the headache features 
[19]. Participants recorded in the diary the number of days 
with headache (days/week), the duration of the headache 
attack (hours/day), and the intensity of pain of each attack 
on an 11-point NPRS (0: no pain; 10: the worst imagina-
ble pain). The headache diary was collected those 4 weeks 
before assessment.

Headache-related disability was assessed with the 
Headache Disability Inventory (HDI)—a questionnaire 
including 25 items about the impact of headache on emo-
tional functioning and daily activities [20] which has 
exhibited good test–retest reliability [21]. Thirteen items 
evaluate the emotional burden (HDI-E, score 0–52), and 
the remaining 12 items evaluate the physical burden 
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(HDI-P, score 0–48) of headache. A higher score indicates 
a greater headache-related burden.

Emotional/psychological variables

The Hospital Anxiety and Depression Scale (HADS) was 
used to determine the presence of anxiety/depressive 
symptoms. Seven items assess anxiety (HADS-A, 0–21 
points) and the other seven assess depressive symptoms 
(HADS-D, 0–21 points) [22]. Each question is scored on 
a 4-point scale ranging from 0 to 3 points (total score of 
each scale 0–21 points) where a higher score indicates 
greater symptoms. The HADS has shown good internal 
consistency in patients with headache [23].

The sleep quality was assessed with the Pittsburgh 
Sleep Quality Index (PSQI) [24]. This 24-item self-
reported questionnaire evaluates the quality of sleep of 
the previous month by asking questions, such as usual bed-
time, usual wake-up time, actual number of hours slept, 
and number of minutes to fall asleep. All questions are 
answered on a Likert-type scale (0–3). The total score 
ranges from 0 to 21 where a higher score indicates worse 
sleep quality [24].

Neurophysiological variables

Since widespread pressure pain hyperalgesia is a known fea-
ture of TTH [4], pressure pain thresholds (PPTs) were bilat-
erally assessed over a trigeminal/symptomatic (temporalis 
muscle belly), an extra-trigeminal (C5–C6 joint), and two 
remote pain-free (second metacarpal, tibialis anterior mus-
cle) points with an electronic pressure algometer  (Somedic® 
Algometer, Sollentuna, Sweden, 1  cm2 probe, set to 30 kPa/
sec pressure increase). The mean of 3 trials on each point, 
with a 30 s resting period for avoiding temporal pain sum-
mation, was calculated. The order of assessment was rand-
omized. As no side-to-side differences were observed (Stu-
dent’s t test), the mean of both sides was used for each point 
in the network.

Another feature of TTH is the finding of myofascial trig-
ger points (TrPs) [25], so the total number of TrPs detected 
in the examination of each subject was also recorded. The 
presence of TrPs was looked for bilaterally in temporalis, 
masseter, suboccipital, upper trapezius, sternocleidomas-
toid, and splenius capitis muscles according to international 
guidelines [26]: 1, painful spot in a palpable taut band in 
the muscle; 2, local twitch response on palpation of the taut 
band, and 3, referred pain on palpation. TrPs were classified 
as active or latent, depending on whether or not the referred 
pain pattern reproduced the patient's usual complaint [25, 
26].

Health‑related quality of life

Health-related quality of life was assessed with the Medical 
Outcomes Study Short Form 36 (SF-36) questionnaire [27]. 
This questionnaire includes the following 8 domains: physi-
cal functioning, physical role, bodily pain, general health, 
vitality, social function, role-emotional, and mental health. 
Each domain has a score ranging from 0 (the lowest quality 
of life) to 100 (the highest quality of life) [28].

Sample size calculation

An adequate sample size for network analyses is based 
on 5–6 individuals per potential node [29]. In the current 
network, a total of 25 nodes were included. Accordingly, a 
minimum of 150 participants were required.

Network analysis

Software and packages

Data were analyzed with R software v.4.1.1 for Windows 
10. The following packages were used: Qgraph (v.1.6.9) and 
Glasso (v.1.11) for network estimation, Igraph (v.1.2.6) for 
community detection, Huge (v.1.3.5) for variable transfor-
mation, MissForest (v.1.4) for missing data imputation, and 
Bootnet (v.1.4.3) for stability analysis [30–32].

Missing value imputation

After conducting an exploratory data analysis on the data-
set, missing values were found in 25 variables divided into 
5 attributes: sociodemographic (sex, age); psychological/
emotional (anxiety, depression, sleep quality, mental health, 
emotional role); headache-related (years with pain, disabil-
ity, and headache intensity, duration and frequency); health-
related quality of life (physical and social function, physical 
role, general health, vitality and bodily pain) and psycho-
physical (active and latents TrPs and PPTs). Removal of 
the missing values resulted in loss of 19.5% of the data (33 
records) involving a reduced sample size which may intro-
duce bias and result on incorrect conclusions [33]. Consider-
ing that missing data did not depend on any other variable, a 
data imputation was performed using missForest.

The missForest tool is a Random Forest-based iterative 
imputation method that can handle mixed continuous or 
categorical data in presence of complex interactions and 
non-linearity without assuming normality or requiring speci-
fication of parametric models unlike standard imputation 
approaches [34]. Therefore, missForest has been found to 
be competitive [33] and able to outperform other imputa-
tion methodologies [31], e.g., k-nearest neighbors (kNN) and 
mice [35], by consistently producing the lowest imputation 
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error [34, 36] when the missing data are missing at random. 
Thus, the summary statistics for each variable subject to 
imputation were checked before and after the operation to 
ensure there were no drastic shifts in the distribution.

Network estimation

Network theory is used to represent and explore complex 
systems. Networks are made up of nodes (vertices) and 
edges. The nodes in the current network were made from 
25 variables, 24 as continuous (age, psycho-physical, psy-
chological, headache and health-related variables) and 1 
included as categorical (sex). Edges constituted the links 
connecting the nodes and interpreted as “the remaining 
association between two nodes after controlling for all other 
information possible [11]”. Edges in the network were rep-
resented by qgraph providing the magnitude (thickness) and 
direction (red color for negative associations and green color 
for positive associations) of the partial correlations with both 
the weights and colors.

After imputation of the missing data, a non-paranormal 
transformation was applied to the entire data set to ensure 
that the 25 variables (y) were multivariate normally distrib-
uted, which is a requirement for the estimation of the Gauss-
ian Graphical Gaussian Model (GGM) [32].

Given that y is distributed as multivariate normal, 
y ∼ N(0,Σ) where Σ is variance–covariance matrix. Follow-
ing, K was defined as the inverse of Σ ( Σ−1) and standardized 
to obtain the partial correlation coefficient between variable 
yi and yj , after conditioning on all other variables y−(i,j) as 
follows [11]:

For the network estimation, the graphical least abso-
lute shrinkage and selection operator (LASSO) was used 
to draw out a sparse model. Given that S represents the 
variance–covariance matrix, LASSO aims to estimate K by 
maximizing the penalized likelihood function [30]:

As LASSO seeks to maximize specificity (aims to include 
as few false positives as possible), estimated network ends 
up to be sparse, i.e., includes fewer edges compared to a 
saturated model [30], which makes the model easier to inter-
pret [11]. LASSO utilizes a tuning parameter λ to control the 
level of sparsity in the network that directly penalizes the 
likelihood function for the sum of absolute parameter values 
[30]. In addition, careful selection of the tuning parameter 
becomes important for “creation of a network structure that 
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minimizes the number of spurious edges while maximizing 
the number of true edges [11]”. Selection of the LASSO tun-
ing parameter was performed by minimization of Extended 
Bayesian Information Criterion (EBIC) since it has been 
shown to perform well in retrieving the true network struc-
ture, featuring high specificity (i.e., not including edges 
that are not in the true network) but a varying sensitivity 
(i.e., estimating edges that are existent in the true network) 
based on the true network structure and sample size [11]. 
The graphical LASSO was run for 100 values of λ logarith-
mically spaced between the maximum value of the tuning 
parameter at which all edges are zero (λmax = 0.824), and 
λmax/1000. The EBIC is computed under different values for 
λ, and the network structure with the lowest EBIC is selected 
(λEBIC = 3591.04 = 0.134). For this practice, EBIC hyperparam-
eter δ was set to 0.5, as suggested by [11] This methodology 
is explained in detail in previous tutorial papers [11, 37].

Node centrality

Not all nodes in a network are equally important for deter-
mining the structure. Centrality indices can be conceived 
as functions measuring a node’s importance based on the 
pattern of connections of the node of interest. In network 
analysis, centrality indices are utilized to model or pre-
dict several network processes, such as the amount of flow 
that traverses a node or the tolerance of the network to the 
removal of selected nodes [38]. In this study, the following 
three centrality indices were calculated:

1. Strength centrality, which is defined as the sum of 
weights of edges (in absolute values) that are directly 
connecting the target node [39, 40]. Clinically, nodes 
with high strength centrality could be potentially good 
therapeutic targets since a change in their value can have 
a strong and direct influence on the other nodes in the 
network without considering the mediating role of other 
nodes [37]. Yet, it should be noted that node strength is 
a blunt measure that takes node’s total level of involve-
ment in the network and not the number of connections 
with other nodes. Thus, utilization of other centrality 
indicators together with strength centrality suitable to 
the study is important to derive accurate conclusions 
[41].

2. Closeness centrality, which is defined as the inverse 
sum of the distances of the shortest paths (inverse of 
the absolute value of the edge’s weight) of the target 
node from all other nodes in the network [37]. This can 
be simply interpreted as the expected speed of arrival 
of something flowing through the network. Clinically, 
a node with high closeness centrality could be easily 
affected by changes in another node’s value directly or 
through changes in other nodes [37]. Additionally, its 
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influence can reach (spread to) other nodes more quickly 
than the nodes that are peripheral thanks to the shortest 
paths connecting itself and other nodes [37] and, thus, 
it can constitute a potentially good therapeutic target.

3. Betweenness centrality, which is defined as the total 
number of shortest paths (between any couple of nodes 
in the graphs) that passes through the target node, mod-
erated by the total number of shortest paths existing 
between any couple of nodes in the graphs. This can be 
considered as the percentage of shortest paths that must 
go through the target node. Clinically, a node with a high 
betweenness centrality would act as an intermediary in 
the transmission of information or resources between 
other nodes or even clusters of nodes in the network 
[38].

Network edge and node centrality variability

The variability of the edge weights and the centrality indices 
was assesed using bootstrapping [38]. This step plays an 
important role since the networks were built with a real-
world clinical data with inherent sources of variation, which 
means the results may not generalize (i.e., yield same results 
with an independent dataset). In the present study, 2000 iter-
ations were used to bootstrap 95% confidence intervals (CIs) 
of edge weights.

The edge weights bootstrapped CIs should not be inter-
preted as tests of a null relationship hypothesis but rather 
as accuracy of the estimated weights since LASSO regu-
larization was used to preserve only the edges with non-
zero weights. Wide confidence intervals would entangle the 
interpretation of the edge strength, yet not the presence since 
model selection is already performed by LASSO. Addition-
ally, the sign of the edge (+ or −) can be interpreted inde-
pendent of the CI width as LASSO rarely retains an edge 
that can be positive or negative in the model.

To get an overview of the variability of the centrality 
indices (CS-coefficient), i.e., whether the order of centrality 
indices remain the same after reestimation of the network 
with fewer records, participant-dropping subset bootstrap 
was utilized [38]. This approach drops a percentage of par-
ticipants, reestimates the network and related three centrality 
indices. The CS-coefficient (correlation stability) reflects the 
maximum proportion of data that can be dropped to retain 
with 95% certainty a correlation of at least 0.7 with the orig-
inal centrality indices [11]. Ideally, it has been suggested that 
this coefficient should be above at least 0.25, and better if 
above 0.5 [11, 38].

Community detection

Some nodes (variables) often form distinct groups where 
there are many relations in between compared to the others 

in the system. In network analysis, community detection 
is the process of identifying these relatively dense cluster 
of nodes [42], which constitutes a data clustering problem. 
There are various approaches for community detection and 
(i) spectral clustering-based techniques, and, (ii) network 
modularity optimization strategies have been widely investi-
gated among them. In this study, Louvain community detec-
tion algorithm was utilized which is one of the most popular 
methods for identifying non-overlapping communities that 
iteratively uses modularity to optimize its partitions [43, 44].

Results

Descriptive statistics of the variables used in the network 
analysis (before and after missing value imputation) can be 
found in Table 1. Figure 1 displays the modelled network in 
the sample of 169 patients with TTH. Up to 99 correlations 
were found between and within the five groups of variables. 
For instance, multiple positive correlations between PPTs 
were observed among the locations (nodes 9 to 12), with cor-
relations ( � ) ranging from 0.08 (hand and C5–C6 locations) 
to 0.41 (C5–C6 and temporalis locations). The strongest 
associations were those between the emotional and physical 
disability burden ( �=0.6), psychological with health-related 
variables ( � up to 0.24 for physical role and emotional role) 
and mental health with depression ( �=− 0.38). The rest of 
correlations ranged from 0.01 to 0.23 (Fig. 1).

The variability associated with the weight of each edge 
is shown graphically in Suppl. Figure. As an illustration of 
the utility of this figure, the non-overlap of the 95% CI of 
the edge between PPTs at the hand and tibialis anterior loca-
tions (nodes 11 and 12) with the 95% CI of the edge between 
headache frequency and emotional burden due to headache 
disability (nodes 6 and 13) indicates that the strength of the 
former is greater than the latter.

The node with the highest strength, closeness and betwee-
ness centrality was depressive levels (Fig. 2). Other nodes 
with higher centrality were vitality (strength centrality) 
or headache intensity (closeness and betweeness central-
ity centralities). The betweenness and closeness measures 
of the network were extremely unstable at  CScor=0.7 = 0.0, 
both. The strength centrality measure was found stable with 
 CScor=0.7 = 0.36 (Fig. 3).

Parallel to the visualization of the network, four clusters 
were found by the Louvain community detection algorithm. 
Most of the nodes from the same variable classification 
ended up in the same cluster, e.g., psychophysical varia-
bles (i.e., PPTs) were grouped within the green cluster, and 
most of the psychological/emotional and headache-related 
variables were grouped within the purple and blue clusters, 
respectively (Fig. 4).
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Table 1  Values 
(mean ± standard deviation) of 
demographic, clinical, sensory-
related, psychological and 
sensitivity variables of the total 
sample (n = 169)

HADS Hospital Anxiety and Depression Scale; HDI Headache Disability Index; TrP Trigger Points; PPT 
Pressure Pain Thresholds; PSQI Pittsburgh Sleep Quality Index

Variable Pre-imputation statistics Missing val-
ues (n; %)

Post-imputation statistics

Gender (male/female, %) 46/123 0; 0 46/123
Age (years) 46.3 ± 14.5 0; 0 46.3 ± 14.5
Pain duration (years) 10.8 ± 11.8 2; 1.2 10.7 ± 11.7
Headache intensity (0–10) 6.1 ± 2.8 0; 0 6.1 ± 2.8
Headache duration (hours/day) 7.1 ± 4.5 8; 4.7 7.2 ± 4.4
Headache frequency (days/month) 16.7 ± 9.2 0; 0 16.7 ± 9.2
Active TrPs (n) 4.9 ± 2.9 3; 1.8 4.8 ± 2.9
Latent TrPs (n) 1.9 ± 2.4 3; 1.8 1.8 ± 2.4
PPT  C5C6 (kPa) 186.8 ± 86.8 0; 0 186.8 ± 86.8
PPT temporalis (kPa) 193.0 ± 83.7 0; 0 193.0 ± 83.7
PPT hand (kPa) 238.5 ± 99.1 0; 0 238.5 ± 99.1
PPT tibialis (kPa) 381.3 ± 182.5 0; 0 381.3 ± 182.5
HDI-E (0–52) 19.1 ± 13.2 0; 0 19.1 ± 13.2
HDI-P (0–48) 22.8 ± 12.3 0; 0 22.8 ± 12.3
Physical function (SF-36, 0–100) 77.9 ± 25.2 0; 0 77.9 ± 25.2
Social function (SF-36, 0–100) 65.2 ± 25.7 0; 0 65.2 ± 25.7
Bodily pain (SF-36, 0–100) 49.4 ± 22.6 0; 0 49.4 ± 22.6
General health (SF-36, 0–100) 55.1 ± 22.7 0; 0 55.1 ± 22.7
Physical role (SF-36, 0–100) 51.6 ± 40.5 0; 0 51.6 ± 40.5
Vitality (SF-36, 0–100) 48.9 ± 22.2 0; 0 48.9 ± 22.2
Emotional role (SF-36, 0–100) 60.8 ± 41.5 0; 0 60.8 ± 41.5
Mental health (SF-36, 0–100) 55.8 ± 22.6 1; 0.6 55.8 ± 22.6
Sleep quality (PSQI, 0–21) 8.2 ± 4.6 19; 11.2 8.0 ± 4.4
HADS-D (0–21) 7.9 ± 4.4 0; 0 7.9 ± 4.4
HADS-A (0–21) 9.9 ± 4.7 0; 0 9.9 ± 4.7

Fig. 1  Network analysis of the 
association between demo-
graphic, headache-related, 
psychological, heatlh-relatedm 
and psycho-physical/neuro-
physiological measures. Edges 
represent connections between 
two nodes and are interpreted as 
the existence of an association 
between two nodes, adjusted 
for all other nodes. Each edge 
in the network represents either 
positive regularized adjusted 
associations (green edges) or 
negative regularized adjusted 
associations (red edges). The 
thickness and color saturation 
of an edge denotes its weight 
(the strength of the association 
between two nodes)
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Discussion

Current understanding supports the presence of several 
linked biopsychosocial mechanisms underlying the patho-
genesis of TTH [45]. This study applied network connec-
tivity analysis to understand the multivariate interaction 
between headache-related, psychological, health-related or 
psycho-physical variables in TTH. Consistent with modern 
theories on TTH features, the identified network supports 
a complex model where headache-related, psychological, 
health-related, and psycho-physical variables interact but 
also grouped in different clusters.

The first identified cluster (Fig. 4, green cluster) grouped 
PPTs and sex. The topic of widespread pressure pain hyper-
algesia in individuals with TTH and more pronounced in 
female sex has been extensively reported in former headache 
literature [4]. In fact, the edge with the strongest weight was 
PPTs at the cervical spine and trigeminal area (temporalis 
muscle) supporting that pressure pain hyperalgesia is greater 
in the trigemo-cervical nucleus caudalis as it has been previ-
ous reported [46]. The network did not identify significant 
association of widespread PPTs with headache-related clini-
cal parameters. This lack of association agrees with previous 
data, suggesting no linear associations between PPTs and 

pain and related disability outcomes in chronic pain [47]. 
Nevertheless, it is important to consider that lower PPTs 
predict future pain and disability in musculoskeletal pain 
conditions [48]. It is postulated that PPTs reflect aspects 
of peripheral or central sensitisation of the central nervous 
system, whereas headache-related variables are the clinical 
manifestation of pain; therefore, a non-linear, rather than 
linear, influence would be expected.

The data showed that TrPs and PPTs were grouped into 
different clusters (Fig. 4; red and green clusters, respec-
tively), despite the fact that pressure pain hyperalgesia has 
been observed to be associated with a higher number of 
TrPs [25]. It has been postulated that prolonged nocicep-
tion generated in peripheral tissues, specifically in muscles, 
could trigger sensitisation mechanisms and thus promoting 
the evolution of episodic to chronic TTH [49]. However, the 
clinical relevance of the musculoskeletal disorders found in 
TTH patients, including the presence of muscle TrPs, has 
not been fully elucidated [50]. Recently, it has been hypoth-
esised that TrPs may be more relevant in certain subgroups 
of TTH patients [51].

The network identified that depressive levels showed 
the highest strength, closeness and betweeness centrality. 
In this scenario, mood disorders seem to play a key role 

Fig. 2  Centrality measures of Strength, Closeness, and Betweenness of each node in the network. Centrality value of 1 indicates maximal impor-
tance, and 0 indicates no importance



4532 Journal of Neurology (2022) 269:4525–4534

1 3

in TTH, so if clinicians want to influence other variables, 
e.g., those related to headache or quality of life, the best 
variable to focus treatment on would be depressive levels. 
Previous studies observed that depression, but not anxiety, 
is an important mediating factor of headache frequency and 
headache-related burden in people with TTH [10, 52]. This 
hypothesis would support why interventions, such as educa-
tion or cognitive behaviour therapy, have been found to be 
effective for the management of TTH [53, 54]. The relevance 
of depressive levels is in line with the finding that the vital-
ity domain also showed a high centrality of strength, since 
depression tends to decrease self-reported vitality. Another 
node that showed high closeness centrality and betweeness 
centrality was headache intensity, a variable that showed 
a small association with depressive levels in our network.

Overall, the results further reinforce theories suggesting 
that management of patients with TTH should include mul-
timodal therapeutic approaches targeting headache-related 
pain and function (i.e., physical therapy approaches), psy-
chological aspects (i.e., cognitive behavior, relaxation inter-
ventions), health-related (i.e., exercise programs) and also 
psychophysical pain mechanisms (i.e., pain neuroscience 
education programs) [55].

Although this is the first study using network analysis 
in TTH, and despite the positive aspects of its use, some 

Fig. 3  Average correlations between centrality indices of networks sampled with persons dropped and networks built on the entire input dataset, 
at all follow-up time points. Lines indicate the means and areas indicate the range from the 2.5th quantile to the 97.5th quantile

Fig. 4  Clusters identified found by the Louvain community detection 
algorithm. Blue cluster: headache-related variables; Green cluster: 
neurophysiological (PPTs) variables; Red cluster: trigger points and 
headache pain features; Purple cluster: Health-related as well as psy-
chological/emotional variables
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limitations should be recognized. First, conditional inde-
pendence relationships as encoded by the edge weights in 
the network cannot be a source of confirmatory causal infer-
ence, but may provide indicative potential causal pathways 
[11]. In other words, biological plausibility between the con-
nected variables is needed from a clinical point of view to 
determine the viability of the analysis. This assumption is 
supported in those relationships identified in the network. 
Second, the sample of patients with TTH was recruited from 
different university-based headache centers; therefore, it may 
be not representative of general population of headache 
sufferers. In fact, patients attending specialized headache 
centers are usually those who have a poor control of their 
headache. Similarly, quality of life of these patients may be 
lower than the headache general population and they may 
have more comorbidities, especially depressive levels.

Conclusion

The application of network connectivity analysis in a sample 
of patients with TTH revealed a model where headache-
related, psychological, health-related, and psycho-physical 
variables interact but grouped in different clusters, with 
small associations between them. The network showed that 
depressive levels were the node with the highest central-
ity measures, supporting a relevant role of mood disorders 
in the model. These findings support that management of 
patients with TTH should include multimodal therapeutic 
approaches targeting all the aspects identified in the clusters.
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