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Abstract
The current clinical trial landscape targeting Alzheimer’s disease (AD) is reviewed in the context of studies completed from 
2019 to 2021. This review focuses on available data for observational and phase II/III clinical trial results, which will have the 
most impact on the field. ClinicalTrials.gov, the United States (US) comprehensive federal registry, was queried to identify 
completed trials. There are currently 226 interventional clinical trials and 51 observational studies completed, suspended, 
terminated, or withdrawn within our selected time frame. This review reveals that the role of biomarkers is expanding and 
although many lessons have been learned, many challenges remain when targeting disease modification of AD through 
amyloid and tau. In addition, to halt or slow clinical progression of AD, new clinical and observational trials are focusing 
on prevention as well as the role of more diverse biological processes known to influence AD pathology.
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Introduction

The goal of this paper is to review recent clinical trials, 
which were completed in the last 2 years (2019–2021). Spe-
cial attention will be given to trials with published peer-
reviewed results of phase II–III data. Select terminated tri-
als, trials with unpublished results, and observational studies 
will be mentioned and classified according to intervention. 
We will also discuss ongoing studies with the potential to 
impact the field considerably.

There has been a rapid expansion of Alzheimer’s disease 
(AD) interventional therapeutic trials. Based on clinical trial 
activity as recorded in ClinicalTrials.gov, a comprehensive 
US government database, there were 226 interventional 
clinical trials completed, suspended, terminated, or with-
drawn between 01/01/2019 and 05/01/2021 (Supplemental 
Table 1). Additionally, 51 observational studies were com-
pleted, suspended, terminated, or withdrawn within this 
same period (Supplemental Table 2). At the time of drafting 
this article, there were 783 active, recruiting, or enrolling 
studies related to AD.

The time course of the neuropathological changes (amy-
loid, tau, and neurodegeneration) in AD relative to their 
clinical outcome measures complicates clinical trials in dis-
ease-modifying therapies (DMTs). The build-up of amyloid 
typically occurs 5–20 years prior to the onset of symptoms 
and the tools used to measure clinical outcomes (cognitive 
testing) are not sensitive or specific enough to detect relevant 
early changes within the time frame of current clinical trials. 
In 2018, a biomarker-based biological definition of AD, the 
ATN framework [1], was introduced for research purposes 
to facilitate appropriate antemortem enrollment in AD clini-
cal trials.

Defining AD based on the presence of amyloid and tau 
biomarkers is controversial but allows for intervention at 
preclinical stages of AD (i.e., before symptom onset) and in 
the earliest symptomatic stages. Prediction of symptom pro-
gression within clinical trials at these earlier stages remains 
an area of ongoing research [2, 3]. Given the controversy, 
the clinical diagnosis of AD is still governed by the criteria 
set by the National Institute on Aging in 2011 [4, 5]. In our 
view, the biomarker-based biological definition of AD is not 
at odds with the clinical–biological diagnosis of AD [3]. Ide-
ally, biomarker classification will aid in our understanding of 
disease progression, creation of risk profiles for development 
of symptomatic AD, and proper clinical trial enrollment.
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Alzheimer’s disease biomarkers

AD biomarkers have the potential to impact diagnosis, 
treatment [6], prognosis [7, 8], and clinical trial enrollment 
[3, 9]. In the clinical setting, academic medical centers are 
using structural MRIs, FDG-PET [10, 11], and cerebrospinal 
(CSF) biomarkers [12–14] for amyloid and tau with more 
frequency to improve diagnostic accuracy in atypical cases.

Amyloid and tau PET

Although three amyloid PET tracers [15, 16] and one tau 
PET ligand [17] have been granted clinical approval by the 
US Food and Drug Administration (FDA) and European 
Medicines Agency (EMA), their use has mostly been limited 
to research studies at select academic centers. The limitation 
is secondary to cost and limited coverage by payers. The 
clinical role of neuroimaging biomarkers is likely to expand 
considerably as DMTs become a reality.

Cerebrospinal fluid based biomarkers

An important observational trial, the European Prevention 
of Alzheimer's Dementia (EPAD) showed that in a non-
demented population, ATN profiles convey neuropsycho-
logical and structural information that may aid enrollment in 
secondary prevention trials. Data-driven models from EPAD 
confirm that the proposed CSF cut-off values for Aβ42 and 
p-tau181 are valid in a non-demented population [18]. In 
addition, CSF values for Aβ42/Aβ40 ratios predict amyloid 
PET positivity [19] and AD neuropathological diagnosis 
post-mortem [20, 21]. Despite their diagnostic benefit, test-
ing is often expensive, perceived as invasive, and reserved 
for atypical cases. An accessible, less invasive, cost-effective 
method to facilitate treatment selection for DMTs and lower 
the cost of clinical trial screening is needed [22].

Plasma based biomarkers

Plasma biomarkers are one potential answer to these prob-
lems. Using samples from 6 different cohorts, a low plasma 
Aβ42/40 ratio was shown to significantly predict amy-
loid positivity on amyloid PET imaging or CSF testing, 
AUC-ROC (0.90; 95% CI = 0.87–0.93) [23]. The accuracy 
improved further when APOE ε4 copy number and age were 
included in the model [24, 25]. The currently enrolling pro-
spective validation study (SEABIRD) will determine if these 
findings hold up in the general population. A serum-based 
p-tau181 biomarker is also being developed [26, 27] and 
plasma p-tau217 discriminated AD from other neurodegen-
erative diseases with significantly higher accuracy than other 

plasma- and MRI-based biomarkers [28]. This same group 
used the Swedish BioFINDER study and the Alzheimer’s 
Disease Neuroimaging Initiative (ADNI) to develop a 4-year 
prognostic model for conversion to AD utilizing combina-
tions of these biomarkers and cognitive testing [29, 30]. A 
biomarker of neurodegeneration, plasma neurofilament light 
(NfL), has also shown promise in distinguishing psychiatric 
illness from neurodegenerative disease in two multicenter 
cohorts [31].

Amyloid β reduction strategies

Aβ is produced from the type-1 transmembrane glycoprotein, 
amyloid precursor protein (APP). APP undergoes cleavage 
by either α- or β-secretases. When cleaved by α-secretase the 
resultant fragments are an extracellular peptide and an intra-
cellular peptide, which is further processed by γ-secretase 
catalytic subunits, presenilin proteins (PS1 and PS2). When 
cleaved by β-secretase the intracellular peptide is also pro-
cessed by γ-secretase [32, 33]. The resulting peptide is typi-
cally a 40–42 amino acid (AA) in length [33], which is then 
released extracellularly. PS1/2 mutations lead to premature 
release of APP and can lead to longer, aggregation-prone 
Aβ peptides [4, 34]. While Aβ protofibrils and oligomers 
are known to be toxic [35, 36], it is now postulated that Aβ 
is also physiologically produced during neuronal activity 
[37, 38], augments synaptic plasticity [39] and functions 
in memory formation [38]. Amyloid plaques also increase 
with age even in cognitively unimpaired (CU) individuals 
and their pathogenic role is less certain [40–42]. One meta-
analysis on the topic does put forward a rather convincing 
argument that the lack of efficacy of anti-amyloid therapies 
in general, may be a class effect, at least if administered dur-
ing the early symptomatic phase of AD [43].

BACE (β‑secretase) inhibitors

Several small molecules have been synthesized to inhibit the 
β-site APP cleaving enzyme-1 (BACE1) whose action rep-
resents the rate-limiting step in Aβ production. Throughout 
2017–2019 multiple BACE inhibitor trials were terminated 
early and consistent with results from prior negative BACE 
inhibitor trials [44]. Atabecestat, verubecestat, umibecestat, 
lanabecestat, and elenbecestat were all discontinued due to 
cognitive worsening, reduced brain volumes, or side effects 
[45] (Table 1). Atabecestat was associated with dose-related 
cognitive worsening at 3 months and the presence of neu-
ropsychiatric adverse events, although there was evidence 
of reversibility after 6 months off treatment [46]. These trial 
results argue that there is a considerable gap in our knowl-
edge of the normal physiological function of APP, BACE, 
and Aβ.
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Amyloid‑β directed monoclonal antibodies (MAbs)

There have been 7 Aβ-directed MAbs with 14 phase II/
III clinical trials completed or terminated early. Recent 
results from phase II/III clinical trials are summarized in 
Table 2. Biogen’s aducanumab recently received acceler-
ated approval from the US FDA despite lackluster perfor-
mance on clinical measures [47, 48]. Aducanumab had two 
simultaneous phase III trials (ENGAGE and EMERGE), 
which were both terminated early after futility analysis 
revealed that they were failing on their primary endpoint, 
the Clinical Dementia Rating–Sum of Boxes (CDR-SB). 
Aducanumab binds to amyloid plaques and oligomers and 
showed substantial dose- and treatment duration-related 
lowering of amyloid plaques [48–50]. Aducanumab must 
undergo further testing to show that the statistically sig-
nificant benefit on clinical outcomes in one arm of a single 
clinical trial was not a type I error (false-positive).

Eisai’s BAN2401 (lecanemab) selectively binds to large, 
soluble Aβ protofibrils [51, 52]. Even though lecanemab did 
not meet its primary outcome in their phase IIb study [52], 
the MAb showed a reduction in amyloid and mild improve-
ment in cognitive measures at 18 months [52]. Lecanemab’s 
phase III study, Clarity AD, is ongoing for early sympto-
matic AD. They are also testing it in pre-clinical stages 
of AD in their AHEAD 3–45 study, which is currently 
enrolling.

Eli Lilly’s donanemab is directed at an N-terminal pyro-
glutamate Aβ epitope in established amyloid plaques. In its 
phase II trial, TRAILBLAZER-ALZ, donanemab showed 
a reduction in amyloid plaques, tau neurofibrillary tangles 
(NFTs), and met its primary clinical endpoint, the Integrated 
Alzheimer’s Disease Rating Scale (iADRS). Enthusiasm 
was tempered by the lack of statistical significance on mul-
tiple standard measures of cognitive decline including the 
CDR-SB, although all the secondary measures appeared 
to be trending towards a positive effect [53]. Based on the 

Table 1  MAb targeting Aβ with completed phase II/III clinical trials or peer reviewed data from 2019 to 2021

a open label extension
b Accelerated approval granted by the US FDA

Drug Sponsor Trial Phase Population Target Outcome

Aducanumab Biogen ENGAGE 3 Early AD Plaques and oligomeric 
Aβ

Terminated due to 
 futilityb

Aducanumab Biogen EMERGE 3 Early AD Plaques and oligomeric 
Aβ

High dose arm positive 
on primary  outcomeb

Crenezumab Genentech/Roche CREAD 1 & 2 3 Early AD Monomeric Aβ and 
oligomeric Aβ

Terminated due to 
futility

Solanezumab Eli Lilly EXPEDITION 3 3 Early AD Monomeric Aβ Terminated due to 
futility

Gantenerumab Roche SCarlet/Marguerite 
RoAD  OLEa

3  OLEa Early AD Plaques and oligomeric 
Aβ

Terminated due to 
futility

Donanumab Eli Lilly TRAILBLAZER-ALZ 2 Early AD Pyroglutamate Aβ Met primary clinical 
outcome

Lecanumab (BAN2401) Eisai BAN2401-G000-201 2 Early AD Plaques and Aβ protofi-
brils

Did not meet primary 
outcome

Secondary outcomes 
positive

Table 2  BACE inhibitors with completed phase II/III clinical trials or peer reviewed data from 2019 to 2021

Drug Sponsor Trial Phase Population Outcome

Atabecestat Janssen EARLY 3 Preclinical AD Terminated due to dose-related atrophy and cognitive worsening
Elenbecestat Eisai/ MISSION AD 1 3 Early AD Terminated due to safety review

Biogen MISSION AD 2 3 Early AD Terminated due to safety review
Lanabecestat Eli Lilly/ DAYBREAK-ALZ 3 Early AD Terminated due to futility analysis

AstraZeneca AMARANTH 2/3 Early AD Terminated due to futility analysis
Umibecestat Eli Lilly/ GENERATION 1 2/3 Preclinical AD Terminated due to dose-related atrophy and cognitive worsening

AstraZeneca GENERATION 2 2/3 Preclinical AD Terminated due to dose-related atrophy and cognitive worsening
Elenbecestat Novartis Study 202 2 Early AD Terminated due to safety review
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accelerated approval of aducanumab and their phase II 
results, both donanemab and lecanemab have obtained the 
FDA's breakthrough therapy designation. They are poised 
for FDA accelerated approval if the precedent set by aduca-
numab is carried forward.

Roche’s crenezumab binds Aβ monomers and oligom-
ers. It was designed to minimize amyloid-related imaging 
abnormalities (ARIA) [54]. Both phase III trials of cren-
ezumab (CREAD 1 and 2) were discontinued after futility 
analysis but are currently still in a prevention trial through 
the Dominantly Inherited Alzheimer's Network Trials Unit 
(DIAN-TU) for preclinical dominantly-inherited AD.

Roche’s gantenerumab and Eli Lilly’s solanezumab 
were also a part of DIAN-TU. Neither gantenerumab nor 
the solanezumab arm reached its primary clinical outcome. 
Development of solanezumab has been halted in sympto-
matic patients due to its failure to reduce decline in cognition 
or function in 3 phase III trials (EXPEDITION 1–3) [55, 
56]. The Anti-Amyloid Treatment in Asymptomatic Alzhei-
mer's (A4) study of solanezumab is still ongoing in amyloid 
positive CU individuals.

Roche’s prodromal AD study of gantenerumab, SCar-
let RoAD, initially failed futility analysis, and they con-
verted both gantenerumab phase III trials (SCarlet RoAD 
and Marguerite RoAD) [57] into a combined SCarlet/Mar-
guerite RoAD open-label extension (OLE) cohort to learn 
more about the therapy’s response. Post-hoc analyses sug-
gested there had been a dose-dependent slowing of cognitive 
decline and that higher doses may be needed [58]. This was 
used to improve the design of the ongoing, phase III trials 
(GRADUATE 1 and 2).

Amyloid‑β vaccines

Most MAb therapies activate the immune system to remove 
specific Aβ fragments, so a vaccine targeted to these frag-
ments is a logical target for disease modification. Unfortu-
nately, six percent of vaccinated patients developed aseptic 
meningoencephalitis with the first-generation vaccine and 
the risk was deemed too high to continue development [59]. 
Second-generation vaccines seem to have a better risk pro-
file. Grifols’ ABvac40 vaccine targets the C terminus of 
Aβ40 [60]. An ongoing phase II study in patients with early 
AD is due for completion in 2022. United Neuroscience’s 
UB-311 is a synthetic peptide vaccine against the Aβ1–14 
sequence [61]. Preliminary results reported that patients 
with mild AD declined less than controls on CDR-SB and 
phase III development is underway.

AC Immune’s ACI-24 is a liposomal vaccine, which 
elicits antibody responses to the truncated Aβ1-15 
sequence closer to the C-terminus, thereby avoiding pro-
inflammatory T-cell activation [62]. It showed prom-
ise in a mouse model of Down syndrome (DS) [63]. 

Immunogenicity and safety in the DS population were 
reported as positive but not yet available for review. ACI-
24 is also currently being tested in a phase 2 clinical trial 
in patients with mild AD.

Amyloid‑β aggregation inhibitors

Aβ aggregation inhibitors have not seen success in prior 
phase II/III trials. A phase II study of GV-971 (sodium 
oligomannate) showed a positive trend in the primary out-
come, Alzheimer’s disease assessment scale—Cognitive 
Subscale 12 (ADAS-cog12) but it did not reach statisti-
cal significance [64]. It received conditional marketing 
approval in China to improve cognitive function in mild to 
moderate AD. A phase III trial in China showed a positive 
outcome on ADAS-cog12, but possible bias and confound-
ing issues have been raised. An international phase III trial 
called Green Memory just started enrolling in 2021.

Alzheon’s ALZ-801  is a prodrug of tramiprosate, a 
central GABA partial receptor agonist that helps stabilize 
Aβ42 monomers, reducing oligomeric and fibrillar amy-
loid aggregation [65]. ALZ-801 is thought to increase the 
amount of tramiprosate that reaches the brain. Although 
tramiprosate failed its phase II and III primary endpoints, 
a later subgroup analysis reported slowing of cognitive 
decline in APOE ε4 homozygotes [66, 67]. The US FDA 
granted ALZ-801 fast track designation for a phase III 
trial (APOLLOE4) in homozygous APOE ε4 individuals 
with early AD based on the prior tramiprosate trial data 
[68–70].

Tau reduction strategies

The tau protein is an integral component of neurons, pro-
viding microtubule stability and transport of key pro-
teins across varying axon lengths. The disruption of this 
cytoskeleton and the failure of key protein transport leads 
to impaired neuroplasticity, cellular dysfunction, and cell 
death. Pathological tau can be identified decades before 
the onset of clinical symptoms, in the locus coeruleus [71] 
and the entorhinal cortex [72]. In the amnestic version of 
AD, pathological aggregates of tau follow a stereotypical 
pattern of deposition, termed Braak staging [73]. There is 
accumulating evidence that a cascading network failure [74], 
a prion-like spread [75], or a combination of both through 
synaptic uptake in highly connected brain networks [76] 
is responsible for clinical progression. The location of tau 
pathology correlates with symptoms and disease severity 
[77], even across distinct phenotypical variants of AD [78, 
79]. This makes tau a principal target for DMTs.
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Post‑translational modifications

Post-translational modifications are key to tau protein 
structure and function. Over 100 sites for modifications 
have been identified and the complexity of these events 
is beyond the scope of this paper. Small molecules that 
inhibit kinase activities responsible for abnormal tau phos-
phorylation are suggested therapeutic targets.

Lithium, a GSK-3β kinase inhibitor, showed promise in 
animal models but has had little success in human trials 
[80]. However, results of a clinical trial in 2019 by For-
lenza et al. suggested that amnestic mild cognitive impair-
ment (MCI) participants progressed at a slower rate over 
four years and showed positive effects on CSF Aβ lev-
els [81]. A current phase IV study, LATTICE is actively 
recruiting.

Saracatinib and nilotinib, small molecule inhibitors of 
Fyn and Abl, respectively, are repurposed tyrosine kinase 
inhibitors approved in cancer treatment. Saracatinib’s 
phase II trial in participants with mild AD did not meet 
its primary or secondary outcomes [82]. Nilotinib’s phase 
II trial suggested better tolerability with positive findings 
against relevant AD biomarkers [83]. These potentially 
positive results warrant further investigation by a mul-
ticenter study aiming for a larger enrollment and longer 
duration.

Acetylation of tau residues can prevent intracellular clear-
ance of abnormal tau by ubiquitin and other mechanisms 
[84]. One specific lysine residue, K174, is integral for tau 
homeostasis and is blocked by a non-steroidal anti-inflam-
matory drug, salsalate [85]. The first of two planned phase I/
II trials testing salsalate in mild to moderate AD (SAL-AD) 
are expected to result in 2022.

Stabilization of microtubules

When tau is abnormally hyperphosphorylated, the binding 
of microtubules is impaired, resulting in defective cellular 
trafficking and poor cytoskeleton structure. To rescue this 
loss of function, microtubule-stabilizing agents have been 
proposed as therapeutic targets. Previous trials have been 
discontinued due to tolerability and lack of efficacy. The 
most recent failed trial was published in 2020 where TPI-
287, a taxane derivative, did not reach adequate levels in the 
CSF and likely did not reach the target. Additionally, partici-
pants with AD had more severe side effects and worsening of 
cognition across the tauopathies with escalating doses [86]. 
The idea of tau stabilization therapies has been questioned 
by Qiang et al. in 2018, who suggested tau stabilizers may 
be harmful. Tau does not simply stabilize microtubules but 
helps axonal microtubules remain labile and dynamic, add-
ing and subtracting length as cellular demands fluctuate [87].

Tau aggregation prevention

In addition to the suggested loss of function, increasing lev-
els of abnormal tau in the cytosol, leaves critical microtu-
bule-binding regions that are prone to aggregation exposed. 
This may lead to a gain of function toxicity to the cell as 
NFTs mature in a templating manner. Blocking these criti-
cal binding regions is a proposed target. Methylene Blue 
is a phenothiazine that can disrupt aggregation of tau-tau 
bonds to prevent aggregation. It was modified and rebranded 
by TauRx Therapeutics as LMTM (including LMT-X and 
Trx0237) and multiple phase II and phase III studies have 
provided mostly negative results with various hypotheses 
for the cause [88]. These hypotheses are being further tested 
with a low-dose LMTM monotherapy phase III clinical trial 
set to result in 2023.

Immunologic clearance

As discussed above, tau phosphorylation sites are plenti-
ful including N-terminal, C-terminal, and inner microtube-
binding regions. The proper site for immunologic targeting 
is crucial but is an ongoing area of research. Intracellular 
targeting of tau remains difficult. However, an extracellular 
tau species termed eTau, often found as a truncated form, is 
considered pathologic and is an easier target. The theory of 
prion-like spreading in communicating neurons and across 
connected neuronal networks has increasing evidence, and 
the eTau form is thought to play a significant pathologic role 
in this process [89].

Anti-tau antibodies targeting C-terminal regions have 
fewer studies and current studies are in phase I at the time of 
this article. Gosuranemab (BIIB092), tilavonemab (ABBV-
8E12), and semorinemab (R07105705) are IgG4 mono-
clonal anti-tau antibodies that target N-terminal tau sites 
(Table 3). In the last 2 years, Biogen and AbbVie posted 
negative results of primary clinical and secondary biomarker 
endpoints in phase II trials for progressive supranuclear 
palsy (PSP) and AD, despite good target engagement. Most 
recently, semorinemab also missed primary clinical end-
points and did not show a reduction in secondary tau-PET 
biomarker endpoints. Roche has another phase II trial of 
R07105705 set to post results by the end of 2021.

Several mid-region anti-tau antibodies are in the pipeline 
in phase I or phase II trials. Lilly’s compound, zagotenemab 
(LY3303560), is a hybrid that binds to mid- and N-termi-
nus regions. It should conclude its phase II trial before the 
end of 2021. Janssen’s JNJ-63733657 mid-region antibody 
reported positive preliminary phase I data showing dose-
dependent reductions in pTau CSF measures with a phase 
II trial starting in 2021. Four additional mid-region anti-tau 
compounds are undergoing phase I trials with the hope that 
the field is zeroing in on the most important region for this 
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key AD protein. Additionally, three anti-tau vaccines are set 
to release data from phase II trials later this year (Table 4).

Other potential disease‑modifying pathways

Other potentially modifiable processes, which may con-
tribute to AD's neuropathology include inflammation [90], 
oxidative stress [91], metabolism, and excitotoxicity [92]. 
They have also been hampered by negative results. Despite 
this, researchers remain resolute, and the lessons learned are 
being utilized to refine trials and identify the correct target 
populations.

Inflammation reduction

Inflammation is recognized as playing multiple important 
roles in neurodegeneration. Individuals with AD pathology 
and high levels of TREM2’s (triggering receptor expressed 
on myeloid cells 2) soluble portion in CSF progress more 
slowly [93]. TREM2 stimulation is thought to reduce micro-
glial activity and inflammatory response to amyloid plaques 
[94]. AL002, Alector and AbbVie’s MAb to microglial lipid 
receptor TREM2, met its phase I (INVOKE) endpoint and is 
recruiting for phase II (INVOKE-2). Alector and AbbVie’s 

other collaboration, the anti-CD33 antibody, AL003 has 
entered phase I [95].

ALZT-OP1 [96], a combination of cromolyn, a mast-cell 
stabilizer that suppresses cytokine release, and ibuprofen 
(NSAID) confirmed safety in a phase I study [97]. We are 
now awaiting the results of a phase III clinical trial (COG-
NITE), completed in 2020.

Cassava Sciences’ sumifilam (PTI-125) reduces inflam-
mation and tau phosphorylation in animal models through 
binding filamin, thereby preventing the binding of Aβ42 to 
α7 nicotinic acetylcholine receptor (α7nAChR) [98]. The 
phase II study did not meet its primary endpoint but had a 
positive effect on biomarkers. The company plans to start 
two phase III trials later this year.

In transgenic mice, granulocyte–macrophage colony-
stimulating factor (GM-CSF) is associated with microglial 
activation and reduction in amyloid [99]. A phase II trial in 
mild AD provided evidence of safety and cognitive benefit 
on Mini-Mental State Exam (MMSE) [100]. In the phase 
II MADE trial minocycline failed to modify cognition in 
early AD [101].

Lenalidomide is a chemotherapy agent for multiple hema-
tological cancers and has known anti-inflammatory immune 
responses in animal models [102, 103]. A phase II study is 
currently underway in patients with amnestic MCI second-
ary to AD (MCLENA-1) [104].

Table 3  MAb targeting tau with completed phase II/III clinical trials or peer reviewed data from 2019 to 2021

Drug Sponsor Trial Population Target Phase Outcome

Gosuranemab (BIIB092) Biogen TANGO Early AD N-terminal epitope 2 Terminated due to lack of 
efficacy

Semorinemab 
(RO7105705)

Roche/AC Immune TAURIEL Early AD N-terminal epitopes 2 Failed phase II

Semorinemab 
(RO7105705)

Roche/AC Immune LAURIET Moderate AD N-terminal epitopes 2 Completes September 
2021

Tilavonemab (ABBV-
8E12)

AbbVie/C2N Diagnostics NCT02880956 Early AD N-terminal epitope 2 Results 2021

Zagotenemab 
(LY3303560)

Eli Lilly NCT03518073 Early AD Mid-region and 
N-terminal 
epitope

2 Completes August 2021

Table 4  Tau-directed therapies with completed phase II/III clinical trials or forthcoming data from 2019 to 2021

Drug Sponsor Trial Population Mechanism of Action Phase Outcome

AADvac1 Axon Neuroscience ADAMANT Early AD Anti-tau vaccine 2 Failed phase II, further 
development planned

ACI-35 AC Immune/ Johnson & 
Johnson

NCT04445831 Early AD Anti-tau vaccine 2 Interim data, further released 
later in 2021

BIIB080/
IONIS-MAPTRx

Biogen/Ionis ISIS 814907 Early AD Tau antisense oligonu-
cleotide

2 Completes May 2022, top-
line data reported

JACI-35.054 AC Immune/ Johnson & 
Johnson

NCT04445831 Early AD Anti-tau vaccine 2 Interim data, further released 
later in 2021
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Masitinib is a selective tyrosine kinase inhibitor that 
inhibits mast-cells. The company claims the phase IIb/III 
study met its primary endpoint (ADAS-Cog), but results 
have yet to be published and the phase III study is ongoing.

A phase IIb/III study of plasma exchange with albumin 
replacement showed that patients with moderate AD had less 
decline than controls but there was no statistically significant 
difference in mild AD [105]. Plasma exchange purportedly 
functions through amyloid reduction and the anti-inflam-
matory effect of albumin, but it is hampered by its invasive 
nature and cost. Other anti-inflammatory medications with 
pleiotropic disease-modifying effects target the “brain-gut” 
axis, such as rifaximin [106], or modifying interactions with 
infectious resident organisms as with atuzaginstat, an irre-
versible inhibitor of gingipain [107, 108] or valacyclovir in 
HSV 1/2 [109].

Metabolism and bioenergetics

Brain metabolism, or bioenergetics, is largely mediated 
through mitochondria. Metabolism declines with aging and 
is accelerated in AD [110–114]. These changes are often 
demonstrated clinically on FDG-PET before neurodegenera-
tion is seen on structural MRI. Declining brain bioenerget-
ics likely contributes to disease-specific neuropathology and 
represents a potential therapeutic target.

Multiple agents attempting to positively impact brain bio-
energetics are currently under investigation [115]. Semaglu-
tide, a glucagon-like peptide 1 (GLP-1) agonist, is enrolling 
two large phase III trials. Liraglutide, another GLP-1 ago-
nist has an ongoing phase II trial (ELAD) [116]. The Met-
formin in Alzheimer’s Dementia Prevention (MAP) study is 
looking into the effects of metformin plus exercise as well 
as diet [117] and the DAPA trial of a sodium-glucose co-
transporter-2 (SGLT-2) inhibitor in non-diabetic patients is 
currently recruiting.

Rasagiline is a monoamine oxidase inhibitor (MAO-I) 
that improves mitochondrial function and reduces amyloid 
accumulation, tau hyperphosphorylation, NFT formation, 
and neuron loss [118–120]. A recent phase II trial showed 
less decline on FDG-PET in participants receiving rasagiline 
but no difference in clinical outcome measures [121]. In a 
phase II trial, riluzole was shown to reduce the decline of 
regional cerebral glucose metabolism in AD as measured 
with FDG-PET [122].

Symptom reducing trials

Mild behavioral impairment is increasingly recognized 
as a change in AD that may precede cognitive symptoms 
by several years [123] and correlates with tau-PET meas-
ures [124]. Escitalopram is a selective serotonin reuptake 

inhibitor (SSRI) with limited off-target binding and is well 
tolerated in older adults. Escitalopram improved CSF Aβ42 
levels in CU individuals relative to placebo [125] although 
the clinical significance of this is unclear. A phase I trial 
with escitalopram was terminated in 2019 due to insufficient 
enrollment. Additionally, it is being tested in a phase III trial 
for behavioral symptoms of dementia.

Acadia’s pimavanserin (Nuplazid) met its primary out-
come in a phase II trial of AD with psychosis [126]. The fol-
low-up HARMONY trial, which included multiple dementia 
subtypes, also met its primary outcome, and pimavanserin 
was submitted to the FDA for approval as a treatment for 
dementia-related psychosis [127]. The US FDA rejected the 
initial application, and they are in further discussions with 
Acadia.

Primary prevention and lifestyle 
modifications

The 2020 Lancet Commission report added three new risk 
factors for dementia including air pollution, traumatic brain 
injury, and excess alcohol consumption. The report sug-
gests 40% of dementia may involve 12 modifiable risk fac-
tors starting with increased education in early life, reducing 
vascular risk factors in midlife, and treating depression and 
social isolation in later life [128]. Social isolation, compared 
to high engagement in social activities, in later life is asso-
ciated with cognitive trajectory in a recent meta-analysis 
review [129]. A randomized controlled trial on blood pres-
sure modification, SPRINT-MIND, had an overall reduced 
occurrence of MCI [130]. The higher intensity target (sys-
tolic < 120 mmHg) had a lower incidence compared to the 
systolic < 140 mmHg group, but this did not reach statistical 
significance due to low power with limited incident MCI 
cases [130].

In 2021 the Alzheimer’s Prevention through Exercise 
(APEX) trial published their aerobic exercise intervention 
in CU individuals with elevated amyloid [131]. There was 
no appreciable difference in amyloid load after one year, but 
there was improved hippocampal blood flow in the APOE 
ε4 individuals [132]. This finding parallels a recent pathol-
ogy paper indicating that higher levels of physical activity 
correlated with better cognition, not because of reduced AD 
pathology [133] but due to preserved white matter integrity 
and brain tissue microstructure in the hippocampus [134].

Secondary analysis data from the Age-Well trial were 
published in 2020 lending further evidence to untreated 
sleep apnea’s association with higher brain amyloid burden 
and as a risk factor for AD [135]. Similarly, a retrospective 
study looking at Medicare data suggested positive airway 
pressure (PAP) adherence was associated with lower odds 
of incident AD diagnosis (OR 0.65) [136].
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DNA/RNA‑based primary prevention

APOE ε4 is the most common genetic risk factor in AD 
and is present in up to 65% of patients with late-onset AD. 
A 5000-person neuropathological study has confirmed that 
there is a low likelihood of Alzheimer's dementia in APOE 
ε2 homozygotes and being an APOE ε2 carrier has a pro-
tective effect [137]. A gene therapy approach to AD may 
also be on the horizon for those who are APOE ε4 carriers. 
A phase I trial delivering an adeno-associated virus car-
rying the gene for APOE ε2 (AAVrh.10hAPOE2) directly 
into the subarachnoid cisternae of 15 patients with early 
to late-stage AD, who inherited two copies of APOE ε4, is 
ongoing. A phase II trial of a tau anti-sense oligonucleo-
tide (BIIB080) is also set to complete in 2022 (Table 4).

Future outlook

One thing is clear from recent clinical trials, AD pathol-
ogy is complex and many fundamental questions remain 
unanswered. Judging by the lack of success in clinical trial 
outcomes, a greater understanding of the underlying biol-
ogy contributing to normal aging and neurodegeneration 
is sorely needed. In addition, the field needs to address 
the heterogeneity of AD, both in clinical presentation and 
disease progression. Models and biomarkers that acknowl-
edge the heterogeneity of disease progression are vital for 
interpreting complex clinical trial results. Despite the 
abundance of failed trials, Aβ and tau continue to be the 
dominant target in AD therapeutics research. However, the 
field must consider sporadic AD as a multifactorial pathol-
ogy that requires a multi-faceted approach to therapy. 
Increased attention to the genetic and environmental risk 
factors for AD will improve our primary and secondary 
prevention strategies. With our aging population, a focus 
on prevention will be essential in the path forward while 
we wait for a much-needed pharmacological breakthrough.
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