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Abstract
Objective  To explore small fiber somatosensory and sympathetic function in PD and MSA.
Methods  We recruited 20 PD patients (7 women, median age 65.5 years; IQR 54.75–70.0), 10 MSA patients (4 women; 
median age 68 years; IQR 66.25–74.0), and 10 healthy subjects (HC; 4 women, median age 68; IQR 59.0–71.0 years). Auto-
nomic testing included forehead cooling, intradermal microdialysis of norepinephrine (NE; 10–5; 10–6; 10–7; and 10–8), and 
orthostatic hypotension (OH); somatosensory testing included quantitative sensory testing (QST) according to the protocol 
of the German Research Network on Neuropathic Pain (DFNS).
Results  OH occurred more frequently in PD (p = 0.018) and MSA (p = 0.002) compared to HC. Vasoconstriction responses 
were stronger in PD compared to MSA during forehead cooling (p = 0.044) and microdialysis of physiologically concentrated 
NE solutions (10–7; 10–8; p = 0.017). PD and MSA had impaired cold (PD: p < 0.01; MSA: p < 0.05) and warm detection 
thresholds (PD and MSA, both p < 0.05). The mechanical detection threshold was higher in PD (p < 0.01). Conversely, 
mechanical pain thresholds were decreased in PD and MSA (both p < 0.001), indicating mechanical hyperalgesia.
Conclusion  In contrast to MSA, we found evidence of peripheral adrenoreceptor hypersensitivity in PD, probably caused 
by peripheral sympathetic denervation. Sensory testing revealed peripheral neuropathy and central pain sensitization in PD 
and MSA. Jointly, our data demonstrate autonomic and somatosensory dysfunction in PD and MSA.
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Introduction

Parkinson’s disease (PD) and multiple system atrophy 
(MSA) are histologically characterized by phosphorylated 
α-synuclein (P-α-synuclein) deposits in different brain areas 
(PD: [4]; MSA: [46]) and peripheral neurons [14].

In PD, autonomic disturbances can precede motor 
symptoms [41] and progress with disease duration [24]. 
Meta-iodobenzylguanidine (MIBG) scintigraphy indicates 

impaired transmitter uptake in peripheral cardiac sympa-
thetic neurons [15, 49], and skin biopsies find a reduction 
of intraepidermal vegetative fibers with α-synuclein depos-
its around autonomic structures [14], jointly suggesting dis-
turbances and loss of peripheral autonomic neurons. Other 
early non-motor phenomena in PD are pain and somatosen-
sory disturbances [45]. Accordingly, a reduction of small 
sensory nerve fibers in the skin, with preserved large fibers, 
was detected in PD [13].

MSA presents with progressive autonomic failure, 
extrapyramidal and pyramidal motor signs, and cerebellar 
impairment in various combinations [parkinsonian (MSA-P) 
and cerebellar (MSA-C) subtypes] [16]. Many of the MSA 
cases become clinically evident by isolated autonomic dis-
turbances before other neurological symptoms occur [28]. 
It is consensus that the degeneration of central brain stem 
and midbrain autonomic nuclei [3, 16] leads to autonomic 
failure, most often of the cardiovascular system. According 
to the central autonomic failure hypothesis, cardiac MIBG 
SPECT is normal in most [38, 39] but not all cases [37]. 
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Similar to PD, pain is frequent in MSA, affecting approxi-
mately 50–73% of the patients [16, 42] and comprised 
musculoskeletal, neuropathic, and dystonic components 
[50]. Deposits of α-synuclein are also present in the skin of 
MSA-P patients. While peripheral autonomic nerves seem 
to be spared [12], α-synuclein was found in sensory nerves 
of the subepidermal plexus [14].

These findings of α-synuclein deposits in the skin sug-
gest that autonomic and sensory symptoms in PD and MSA 
might be disease related. However, the functional sequels 
of the peripheral α-synuclein deposits have not been com-
pletely evaluated. Therefore, we investigated peripheral 
small fiber function in MSA and PD patients. Hereby, we 
could explore whether sympathetic failure can be attributed 
to peripheral sympathetic nerve dysfunction and whether 
sensory symptoms are related to peripheral sensory nerve 
fiber loss or sensitization.

Materials and methods

We included 20 PD patients (7 women, median age 
65.5 years; IQR 54.75–70.0), 10 MSA patients (4 women; 
median age 68 years; IQR 66.25–74.0), and 10 age- and 
sex-matched healthy subjects (median age 68; IQR 
59.0–71.0 years; 4 women).

Diagnoses of PD were made according to the United 
Kingdom Parkinson’s disease Society Brain Bank criteria 
[27]. Complete neurological examination was performed 
to evaluate the severity of PD and disease staging was 
achieved using the Hoehn and Yahr scale (H&Y) [26]. The 
unified Parkinson’s disease scale part III (URPDS-III) was 
employed to assess motor symptoms [23].

A diagnosis of MSA was made according to diagnos-
tic criteria established at the second consensus conference 
2007, which include clinical and neuroimaging features [22]. 
All patients presented with autonomic failure and motor 
symptoms including poor levodopa-responsive parkinsonism 
or cerebellar ataxia. All MSA patients had urinary inconti-
nence as a sign of autonomic failure.

A detailed medical history was obtained from all patients. 
Medication was not withdrawn for the study. In all HC, 
the medical history and clinical neurological examination 
remained uneventful.

All subjects underwent testing in a quiet, temperature- 
and humidity-controlled laboratory.

Sympathetic nervous system function

Blood pressure and heart rate (HR) were investigated with a 
digital sphygmomanometer (WEPA, Hillscheid, Germany) 
after 15 min resting in a supine position.

Forehead cooling

The detailed procedure has been described [35]. In brief, a 
coated ice pack was placed on the forehead for 20 s, while 
single-point Laser Doppler measurements (Laser Doppler 
Imager; Moor Instruments Limited, London, UK) continu-
ously assessed acral skin blood flow at the tip of the index 
finger (sampling frequency 20 Hz, time constant 0.1 s, and 
distance to skin surface 50 cm). The mean flux value of 
30 s before cooling was used as a baseline. Acral vasocon-
striction was then analyzed for another 20 s during fore-
head cooling. The relative change in perfusion units was 
normalized to the baseline (flux value at baseline = 100).

Orthostatic hypotension (OH)

After lying in a supine position for 15 min, blood pressure 
and heart rate were measured using a digital sphygmoma-
nometer. Then, blood pressure and heart rate were recorded 
immediately after getting up and again after 1, 2, 3, and 
5 min. The test was considered pathologic if the SBP 
decreased ≥ 20 mmHg or the DBP decreased ≥ 10 mmHg 
within 3 min after standing up [17].

Norepinephrine (NE) microdialysis

The exact procedure has been described [30]. In brief, 
four microdialysis fibers (DermalDialysis, Erlangen, Ger-
many) were inserted intradermally at a distance of 3 cm to 
a length of 1.5 cm by a 25-gauge cannula in the right ven-
tral thigh 20 cm above knee level. Each fiber was perfused 
with a different concentration of norepinephrine (NE; 10–5; 
10–6; 10–7; 10–8; flow rate: 4 µl/min) by a microdialysis 
pump (Pump 22; Harvard Apparatus). The high NE con-
centrations (10–5 and 10–6) were analyzed together, as were 
the physiological NE concentrations (10–7 and 10–8). After 
60 min, when insertion-related vasodilation had subsided 
[1], NE perfusion of the microdialysis membranes was 
started.

Superficial blood flow at the microdialysis site was 
quantified using a laser Doppler imager (LDI, Moor, Lon-
don, U.K.). LDI scans (256 × 256 pixels, scan resolution 4 
pixels/s, distance to skin surface: 50 cm; scanned area: 144 
cm2) were recorded at baseline (three baseline pictures in 
total) and at intervals of 5 min after the beginning of the NE 
perfusion. The mean baseline flux value in perfusion units 
was calculated as the mean from the three acquired baseline 
pictures. The intensity of the vasoconstriction was analyzed 
offline (MLDI 3.0; Moor, London, U.K.). Vasoconstriction 
expressed in flux values was normalized to the baseline (flux 
value at baseline = 100).
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Quantitative sensory testing (QST)

QST was performed at the more affected hand in PD and 
MSA and on the dominant hand in healthy controls. Testing 
was conducted according to the standardized test battery 
for QST [43]. A brief description is given below (for a more 
detailed description see [43, 44]).

Thermal testing

Thermal detection thresholds (averaged across three 
repeated trials) for the perception of cool (CDT) and warm 
(WDT) were recorded using a TSA 2001-II (MEDOC, 
Ramat Yishai, Israel) with a thermode of Peltier elements 
(contact area 30 × 30 mm; 32 °C baseline temperature; ramp 
rate 1 °C/s; method of limits). The number of paradoxical 
heat sensations (PHS; i.e., reports of hot or burning sen-
sations to innocuous cold stimuli) was determined during 
the thermal sensory limen (TSL; the difference limen for 
alternating warm and cold stimuli) procedure. Thermal pain 
thresholds [cold pain threshold (CPT); heat pain threshold 
(HPT)] were tested with the same device and in the same 
fashion. The mean threshold temperature of the three con-
secutive measurements was calculated.

Mechanical thresholds

The mechanical detection thresholds (MDT) were investi-
gated using a standardized set of modified von Frey hairs 
(Optihair2-Set, Marstock Nervtest, Germany; forces between 
0.25 and 512 mN; 0.5 mm in diameter). Mechanical pain 
thresholds (MPT) were obtained employing suprathreshold 
mechanical pain sensation (seven forces 8, 16, 32, 64, 128, 
256, and 512 mN; flat contact area, 0.25 mm in diameter; 
PinPrick; MRC Systems GmbH, Germany). An adaptive 
method of limits by series of alternating ascending and 
descending stimuli intensities yielding five just suprathresh-
old and five just subthreshold estimates was used. The final 
threshold was the geometric mean of the 10 estimates.

A stimulus–response function for mechanical pain sensi-
tivity (MPS) was determined using the same pinprick stim-
uli. In addition, pain in response to light touch [dynamic 
mechanical allodynia (DMA)] was tested by gentle/light 
stroking with a cotton wisp (3 mN), a cotton wool tip fixed to 
an elastic strip (100 mN), and a brush (200–400 mN). Each 
of the seven pinpricks and the three types of light stroking 
were applied five times in a balanced sequence. The MPS 
was calculated as the geometric mean of all pain ratings for 
pinprick stimuli, and allodynia was quantified as the geomet-
ric mean of all pain ratings after light touch stimuli.

The vibration detection threshold (VDT) was investigated 
at the processus styloideus ulnae on the upper extremity with 
a Rydel–Seiffert tuning fork (64 Hz, 8/8 scale). The final 

vibration detection threshold was the arithmetic mean of 
three consecutive measurements.

The wind-up ratio (WUR) assessed pain summation to 
repetitive pinprick stimuli (i.e., pain after 10 stimuli repeated 
at 1 Hz vs. pain to a single pinprick stimulus at a standard 
force of 256 mN).

The pressure pain threshold (PPT) at the thenar eminence 
(upper extremity) was measured using a hand-held blunt 
pressure gauge device (1 cm2 contact area) with an upper 
load limit of 20 kg (FDN200, Wagner Instruments, USA; 
ramp rate: 50 kPa/s).

Statistics

Data were analyzed using the SPSS Statistics (IBM, Version 
27.0 for Windows) software package. For the analysis of 
skin perfusion, repeated-measures analysis of variances (rm-
ANOVA) was applied using the factors ‘disease’ (PD, MSA, 
and HC), ‘concentration’ (NE concentration: 10–5 and 10–6; 
10–7 and 10–8), and ‘time’. Furthermore, rm-ANOVA was 
calculated for the forehead cooling analysis (factor ‘disease’: 
PD, MSA, and HC). The Greenhouse–Geisser correction 
was applied when the assumption of sphericity was violated. 
One-way ANOVA was calculated to detect differences in 
resting cardiovascular parameters between the groups (fac-
tor: disease: PD, MSA, and HC). Chi-squared tests were 
employed to evaluate differences in the occurrence of OH 
between the groups. Kolmogorov–Smirnov tests of normal-
ity were run for all data sets, and parametric or nonpara-
metric statistics were used accordingly, as described in the 
experiment-specific results.

QST data were z-transformed into a standard normal dis-
tribution (zero mean, unit variance) for each single param-
eter to allow a comparison of QST parameters independ-
ent of their physical units using the following expression 
(except DMA and PHS): Z = (valuepatient − meancontrols)/
SDcontrols.

Z-scores below zero indicate a loss of function; z-scores 
above zero indicate a gain of function. Thus, elevations of 
thresholds (CDT, WDT, TSL, HPT, CPT, PPT, MPT, MDT, 
and VDT) result in negative z-scores, whereas increased rat-
ings (MPS and WUR) result in positive z-scores. One-way 
ANOVAs with LSD post hoc tests were calculated to iden-
tify differences between the three investigated groups (fac-
tor: disease: PD, MSA, and HC).

Additionally, the three groups (PD, MSA, and HC) were 
compared to the normative data set of the German network 
on neuropathic pain (DFNS), as described by Magerl and 
coworkers [32]. In brief, comparison between records of test 
group data (PD, MSA, and HC) and a matched control group 
created as a fictitious subpopulation of reference group 
data of equal number is performed by t test statistic. The 
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distribution of z-values of the control group is always given 
as mean = 0 and standard deviation (SD) = 1 (see, e.g., [19]).

All values are given as medians and interquartile range 
(IQR) in the case of a non-normal distribution and as 
means ± standard error in the case of a normal distribution. 
Values were considered significant if p < 0.05.

Results

We included 20 patients suffering from idiopathic Parkin-
son’s disease (H&Y 1: n = 2; H&Y 2: n = 14; H&Y 3: n = 4; 
URPDS-III: median 10.0 (IQR 7.0–25.0); disease duration: 
median 4 years (IQR 2–7 years)]. The median of the daily 
L-dopa equivalent dose was 231 mg (IQR 100–578.125) 
[51]. 10 MSA patients all diagnosed with ‘probable MSA’ 
[MSA-P: n = 5; MSA-C: n = 5; disease duration: median 
4 years (IQR 1–6 years)], and 10 age- and sex-matched 
healthy subjects also participated in the study. For details, 
see Table 1.

Sympathetic nervous system function

At rest, DBP (PD 85 ± 2.4 mmHg; MSA 82 ± 2.4 mmHg; 
controls 75 ± 2.3 mmHg), SBP (PD 137 ± 4.6 mmHg; MSA 
150 ± 7.2 mmHg; controls 131 ± 4.3 mmHg), and HR (PD 
66 ± 3.5 beats/minute; MSA 66 ± 2.7 beats/minute; controls 
70 ± 2.6 beats/minute) were not different between groups 
(one-way ANOVA, ns).

Forehead cooling

ANOVA analysis of all three groups together did not reveal 
differences in cold-induced vasoconstriction responses. 

However, if PD and MSA were directly compared in a post 
hoc ANOVA analysis, PD responded with vasoconstriction, 
but MSA patients had an increase of blood flow indicating 
sympathetic vasoconstriction failure (F = 4.106; p = 0.044; 
rm-ANOVA). No difference between healthy controls and 
MSA or PD could be detected (rm-ANOVA, ns). For details, 
see Fig. 1.

Orthostatic hypotension

OH was present in 11 of the 20 PD and in 8 of the 10 MSA 
patients. Formally, 1 of 10 HC also had OH. The presence of 

Table 1   Clinical and 
biographical data of the PD and 
MSA patients as well as the 
healthy controls

PD Parkinson’s disease, MSA multi system atrophy, IQR interquartile range, m men, w women, H & Y 
Hoehn & Yahr scale, MSA-C cerebellar MSA-C subtype, parkinsonian MSA subtype, n. a.: not applicable, 
URPDS unified Parkinson’s disease scale part III

PD patients
(n = 20)

MSA patients
(n = 10)

Healthy participants
(n = 10)

Age (median) 65.5 years
[IQR 54.75–70.0]

68.0 years
[IQR 66.25–74.0]

68.0 years
[IQR 59.0–71]

Sex (w/m) 7/13 4/6 4/6
Disease stage H & Y 1: n = 2 Probable MSA: n = 10 n. a

H & Y 2: n = 14 MSA-C: n = 5
H & Y 3: n = 4 MSA-P: n = 5

Disease duration (median) 4 years
[IQR 2–7]

4 years
[IQR 1–6]

n. a

L-dopa equivalent daily dose 231 mg
[IQR 100–578.125]

n. a n. a

URPDS-III (median) 10.0
[IQR 7.0–25.0]

n. a n. a

Fig. 1   Shows the cold-induced acral vasoconstriction over time dur-
ing forehead cooling in healthy controls (open triangles), PD patients 
(filled squares), and MSA patients (open circles). The cold-induced 
vasoconstriction response is stronger in PD compared to MSA 
(F = 4.106; p = 0.044; rm-ANOVA). *p < 0.05
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OH differed between the three groups (Chi-square test 10.2; 
p = 0.006). OH occurred more frequently in PD (Chi-square 
test 5.625; p = 0.018) and MSA (Chi-square test 9.899; 
p = 0.002) compared to HC. The occurrence of OH did not 
differ between PD and MSA patients (Chi-squared test; ns).

Norepinephrine microdialysis

Baseline skin perfusion at the thigh did not differ between 
the three different groups (PD 143.40 ± 8.29 PU; MSA 
127.79 ± 9.37 PU; HC 125.87 ± 5.63 PU; one-way ANOVA, 
ns).

As expected, norepinephrine (NE) leads to dose-depend-
ent vasoconstriction (F = 37.595; p < 0.001; rm-ANOVA) in 
all three groups. While pharmacologically high concentra-
tions of NE (10–5 and 10–6) led to identical vasoconstriction 
in all groups, vasoconstriction induced by physiological NE 
concentrations (10–7 and 10–8) significantly differed between 
the three groups (F = 4.308; p = 0.017): vasoconstriction in 
PD was more effective than in MSA which showed no vaso-
constriction at all (p = 0.006; LSD post hoc test). HC results 
were in the middle between both patient groups. This result 
indicates different arteriolar NE-receptor sensitivity between 
patient groups. For details, see Fig. 2.

Somatosensory profiles (QST)

None of the PD or MSA patients reported sensory symptoms 
or any clinical signs of small fiber neuropathies, such as 
neuropathic pain [11].

Comparison of QST parameters to the DFNS normative data 
set

QST parameters of healthy controls (HC) were not different 
from the normative data set of the DFNS (for details, see 
Fig. 3).

PD and MSA presented with impaired cold (CDT-z-
scores: PD − 1.03 ± 0.06, p < 0.01; MSA − 1.38 ± 0.12; 
p < 0.05) and warm detection thresholds (WDT-z-scores: 
PD − 0.86 ± 0.08; MSA − 1.19 ± 0.1; both p < 0.05). Con-
secutively, the thermal sensory limen (TSL) as a compound 
measure was also impaired (z-scores: PD − 1.09 ± 0.06; 
MSA − 1.21 ± 0.06, both p < 0.01).

The mechanical detection threshold was higher in PD 
only (MDT-z-score − 1.53 ± 0.9, p < 0.01), indicating loss of 
function (tactile hypoesthesia). However, decreased z-scores 
for mechanical pain thresholds were seen in both groups 
(PD, MSA; z-score: PD 1.43 ± 0.07; MSA 1.77 ± 0.12; both 
p < 0.001) as a sign of mechanical hyperalgesia. Addition-
ally, mechanical pain sensitivity (MPS) was significantly 
increased in PD (z-score: 1.67 ± 0.08; p < 0.001) but not in 
MSA (z-score 1.04 ± 0.15, n.s.; for details, see Fig. 3).

Further signs of central (WUR and DMA) or peripheral 
sensitization (PPT) were not found in MSA and PD.

Comparison between HC, PD, and MSA

Thermal detection thresholds were different between the 
three groups [F(4.66) = 2.55, p < 0.048]. Post hoc analysis 
revealed that cold detection (CDT) was impaired in PD and 
MSA compared to HC (both p < 0.05). Moreover, we found 

Fig. 2   Represents the time course analysis of the degree of vaso-
constriction induced by the applied NE concentrations [Fig.  2.1 
high NE concentrations (10–5 and 10–6); Fig.  2.2 physiological NE 
concentrations (10–7 and 10–8)] in healthy controls (open triangles), 
PD patients (filled squares), and MSA patients (open circles). The 
degree of vasoconstriction is represented in flux intensity normalized 
to baseline in arbitrary perfusion units. 2.1 High NE concentrations 

override differences in vasoconstrictive capacities (rm-ANOVA, ns). 
2.2 NE-induced vasoconstriction significantly differed between the 
three groups (F = 4.308; p = 0.017). Post hoc tests revealed that vaso-
constriction in PD is stronger than in MSA (p = 0.006; LSD), indi-
cating supersensitivity of NE receptors possibly due to denervation. 
*p < 0.05
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elevated warm detection thresholds (WDT) in MSA com-
pared to HC (p < 0.05); in PD, there was a non-significant 
trend (p = 0.07). Consecutively, thermal sensory limen [TSL; 
F(2.34) = 3.298; p = 0.049] was different in PD and MSA 
compared to HC (both p < 0.05). Please see Fig. 3 for details.

Thermal pain thresholds (CPT and HPT), mechanical 
detection thresholds (MDT and VDT), and mechanical pain 
thresholds (MPT, PPT, and ALL) were not different between 
groups. The same holds true for the response to suprath-
reshold stimuli (MPS and WUR). Paradoxical heat sensa-
tions (PHS) were reported by one HC, five patients with PD, 
and three patients with MSA (Fisher’s exact test, n.s.). For 
details, see Fig. 3.

Discussion

The present study provides evidence of autonomic and 
somatosensory dysfunction in PD and MSA. In both patient 
groups, we found evidence for sympathetic impairment. This 
impairment seems to be of peripheral origin in PD, but not 
in MSA. Moreover, we found evidence for small fiber neu-
ropathy in both patient groups, including mechanical hyper-
algesia. These findings support pathophysiological concepts 
of MSA and PD.

The investigation toolbox

OH can occur in patients with central or peripheral auto-
nomic nervous system disorders (neurogenic orthostatic 
hypotension), adrenal insufficiency [25], or hypovolemia 
(non-neurogenic orthostatic hypotension) [29]. OH testing 
assesses noradrenergic and adrenergic function. Forehead 
cooling activates facial receptors that relay to the trigemi-
nal sensory nucleus and via interneurons to the vasomotor 
and cardiac centers in the medulla [8]. It induces peripheral 
reflex vasoconstriction, which is a function of peripheral NE 
release [35]. The cutaneous application of NE via micro-
dialysis exclusively assesses the sensitivity of peripheral 
NE receptors on cutaneous arterioles. With high concentra-
tions of NE, the system is saturated and vasoconstriction is 
maximal; with physiological NE concentrations, a sensitiv-
ity change of NE receptors on arterioles can be assessed. 
Cannon’s law of denervation describes a supersensitivity of 
receptors if peripheral sympathetic neurons degenerate [6].

Quantitative sensory testing (QST; DFNS protocol) is an 
established and reliable method to detect sensory abnormali-
ties over all nerve fiber classes, including central pathways 
[20, 43]. QST assesses sensory loss, but in contrast to, e.g., 
nerve conduction, it could also assess gain of function signs 
like hyperalgesia as a result of peripheral and central nocic-
eptive sensitization [33].

Fig. 3   Presents somatosensory profiles of healthy controls (open 
triangles), PD patients (filled squares), and MSA patients (open cir-
cles). CDT cold detection threshold, WDT warm detection thresh-
old, TSL thermal sensory limen, CPT cold pain threshold, HPT heat 
pain threshold, PPT pressure pain threshold, MPT mechanical pain 
threshold, MPS mechanical pain sensitivity, WUR​ wind-up ratio, 

MDT mechanical detection threshold, VDT vibration detection thresh-
old, DMA dynamic mechanical allodynia, and PHS paradoxical heat 
sensations. *p < 0.05; **p < 0.01; ***p < 0.001: level of significance 
compared to the normative data of the DFNS (z score 0; SD 1). 
+p < 0.05: level of significance between MSA vs. HC and PD vs. HC, 
respectively
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The autonomic failure

In MSA, autonomic failure is part of the diagnosis, and 
its severity is normally more devastating compared to PD 
[31]. We found significant orthostatic hypotension and a 
decreased peripheral vasoconstriction after cold stress in 
MSA. NE microdialysis, however, was closer to HC than 
to PD. These findings support that degeneration of central 
autonomic neurons is the main reason for autonomic failure 
in MSA [16], whereas peripheral noradrenergic innerva-
tion might be relatively preserved. Accordingly, in MSA, 
α-synuclein deposits are present only in a minority of the 
noradrenergic fibers in the skin [14]. Furthermore, a few 
MSA patients have cardiac sympathetic denervation indi-
cated by reduced cardiac uptake of MIBG [37]. Thus, the 
peripheral autonomic nervous system remains relatively 
preserved in MSA.

Autonomic failure in PD is different [40, 52, 53]. Our 
results indicate orthostatic hypotension, preserved cold 
stress-induced vasoconstriction but stronger vasoconstric-
tion after microdialysis of physiological NE concentrations. 
The latter provided evidence for denervation hypersensitiv-
ity of NE receptors on cutaneous blood vessels [6]. Previous 
histological studies have visualized moderate degeneration 
of peripheral sympathetic fibers in PD [9]. Skin samples 
suggested that phosphorylated α-synuclein (P-α-synuclein) 
deposits led to the degeneration of the peripheral autonomic 
nerve fibers [14]. Thus, our results suggest that PD auto-
nomic failure is, at least partially, due to peripheral noradr-
energic failure.

Somatosensory function

Sensory function in treated PD was reported to be heteroge-
neous [54] with different patterns of sensory loss (hypesthe-
sia) and sensory gain (hyperalgesia) [36, 56]. In the present 
study, we applied the widely accepted QST study protocol 
of the DFNS [43]. In PD and MSA, we found increased 
thermal detection thresholds, indicating Aδ and C fiber dys-
function or degeneration. This pattern of sensory abnormali-
ties resembles the pattern found in small fiber neuropathies 
[11, 21]. Indeed, in MSA and PD, α-synuclein deposits were 
described in epidermal and subepidermal nerve fibers [14]. 
However, none of the PD or MSA patients reported sensory 
symptoms or any clinical signs of small fiber neuropathies, 
such as neuropathic pain [11]. Additionally, the mechanical 
detection threshold was increased in PD only, correlating to 
large fiber neuropathy, which has been described before in 
PD [10]. The mechanism why neuropathy develops in neuro-
degenerative extrapyramidal diseases is unclear. Impairment 
of vitamin B12 and folate uptake might be one reason [7], or 
peripheral somatosensory nerve degeneration is an inherent 
part of PD and MSA pathology.

Another remarkable QST finding was hyperalgesia for 
pinprick stimuli, which was found in PD and MSA. Pinprick 
hyperalgesia indicates central (i.e., spinal) sensitization [2]. 
Previous studies have been inconsistent. While in early PD 
pain processing was found to be unaltered [18], a recent 
meta-analysis [47] and a pain–evoked potentials study [55] 
revealed hyperalgesia to painful stimuli as common in PD. 
One explanation for hyperalgesia is the lack of dopamine 
which physiologically mediates descending pain inhibition 
to the spinal cord [34]. Conversely, oral dopamine increases 
pain thresholds [5]. In addition, sensory–motor integration 
in the cortex of PD patients is abnormal, particularly in PD 
patients with pain. This abnormal integration was inde-
pendent from L-dopa administration [48]. Thus, PD-related 
disturbances of spinal or cortical pain processing might be 
responsible for mechanical hyperalgesia in our patients. 
Peripheral hyperalgesia in subclinical neuropathy without 
pain symptoms is less likely but not excluded.

Limitations

The number of participants differs between the groups. How-
ever, as PD occurs more frequently than MSA, our results 
are justified. Moreover, we compared the QST results from 
our patients not only to our control group but also to the 
DFNS normative data set. We did not assess clinical auto-
nomic symptoms, which were present in MSA by definition, 
but might be present probably also in PD where they might 
precede motor symptoms [41]. We did not use the MDS-
URPDS-III but the former URPDS-III. We investigated 
early-to-intermediate PD patients which can be deferred 
from the low L-dopa equivalent daily doses and the low 
score in the URPDS. Dyskinesia, a symptom that is not 
included in the URPDS-III but in the MDS-URPDS-III was 
not prevalent in our patients’ group.

Conclusion

MSA and PD look similar in peripheral sympathetic and 
somatosensory dysfunction. They differ, however, substan-
tially in the mechanisms behind these disturbances. The 
results of our study may help to find a targeted treatment of 
autonomic and pain symptoms in both diseases.
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