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Abstract
At present, the standard practices for home-based assessments of abnormal movements in Parkinson’s disease (PD) are based 
either on subjective tools or on objective measures that often fail to capture day-to-day fluctuations and long-term information 
in real-life conditions in a way that patient’s compliance and privacy are secured. The employment of wearable technolo-
gies in PD represents a great paradigm shift in healthcare remote diagnostics and therapeutics monitoring. However, their 
applicability in everyday clinical practice seems to be still limited. We carried out a systematic search across the Medline 
Database. In total, 246 publications, published until 1 June 2020, were identified. Among them, 26 reports met the inclusion 
criteria and were included in the present review. We focused more on clinically relevant aspects of wearables’ application 
including feasibility and efficacy of the assessment, the number, type and body position of the wearable devices, type of PD 
motor symptom, environment and duration of assessments and validation methodology. The aim of this review is to provide 
a systematic overview of the current knowledge and state-of-the-art of the home-based assessment of motor symptoms and 
fluctuations in PD patients using wearable technology, highlighting current problems and laying foundations for future works.

Keywords Parkinson’s disease · Body-mounted · Body sensors · Motor symptoms · Dyskinesias · Motion monitoring · 
Home-based systems · Wireless technology

Introduction

Parkinson’s disease (PD) is the most common form of move-
ment disorder, characterized by diverse day- and night-time 
motor and non-motor signs [1]. The cardinal daytime motor 
features are bradykinesia, rigidity, tremor, postural insta-
bility, and, in the case of advanced PD, levodopa-induced 
motor fluctuations and dyskinesias as well [2–4]. Levo-
dopa-induced dyskinesias consist of abnormal involuntary 
movements appearing mostly as a consequence of the long-
term levodopa treatment [5]. Night-time PD motor features 
include nocturnal hypokinesia or akinesia [6–8], restless legs 
syndrome (RLS), periodic limb movement in sleep (PLMS) 
and parasomnias (mainly the rapid eye movements sleep 
behaviour disorder, RBD) [9].

Due to diverse types and often fluctuating patterns of 
these movement abnormalities in PD and the difficulty in 
detecting their true nature in a laboratory/in-clinic setting 
[10, 11], several methods for the home-based assessments 
of abnormal movements in PD have been developed [12]. 
Symptom diaries edited by patients are typically used for 
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the long-term assessments of daytime PD motor symptoms 
at home [13–15]. Other common tools are questionnaires, 
clinical rating scales (i.e. the MDS-UPDRS [16, 17]), clini-
cians’ phone calls and home visits, video-guided software 
technologies or telemedicine consultations. However, these 
tools are either based on subjective patient’s/caregiver’s per-
ception or represent a snapshot of the symptoms’ character, 
often unable to provide the clinician with reliable overview 
of the symptoms’ characteristics under real-life conditions, 
in the long-term course, including the day-to-day fluctua-
tions [13, 14, 18]. In addition, patients and caregivers are 
often unable to reliably communicate details on the type, 
frequency and intensity of sleep-related PD abnormal move-
ments, despite their importance on the disease and quality-
of-life outcome [14].

In recent years, technology is a unique driving force 
behind advances in healthcare and we now witness the 
advent of entirely new categories of interface mechanisms, 
including wearable devices. In the field of PD, there is an 
increasing number of studies using wearable technology for 
motor assessments in PD patients, aiming to overcome the 
above-mentioned limitations. Although results are promis-
ing, the use of wearable in everyday clinical practice has 
been quite limited. While we can debate the details of this 
trend in healthcare, it is essential to recognize, understand, 
and effectively leverage the growing landscape of wearables 
to increase their applicability in everyday clinical practice 
and ensure the best outcomes for PD patients, their caregiv-
ers, clinicians and society as a whole.

The aim of the current review is to provide a systematic 
overview of the current literature and state-of-the-art knowl-
edge on the use of wearable technology to assess at home 
parkinsonian motor symptoms.

Methods

Extraction of the articles was performed by two authors 
(S.A., P.B.) and was evaluated by the rest of the authors.

Selection criteria

A systematic review of (1) articles in English, (2) published 
between 1 January 2008 and 1 June 2020 using the Medline 
database was performed. (3) We used the search terms listed 
in Supplemental Table 1, to identify articles addressing the 
application of wearable devices for the in-home monitor-
ing of motor symptoms in PD patients. (4) The articles 
should contain an abstract. (5) In the study, we included 
only original articles. Case reports, reviews and editorials 
were excluded.

The initial search identified 237 records. We included 
additionally 9 relevant studies found either on the reference 
list of the retrieved articles, or on the ScienceDirect webpage 
as articles of possible interest or even in a parallel search in 
PubMed and Web Of Science using the terms: “Parkinson” 
in combination with “Sensors”. Twenty-six articles met all 
above-mentioned selection criteria and were included in the 
systematic review (Fig. 1).

Results

Among 26 studies, 24 studies assessed daytime PD symp-
toms and two studies assessed PD patients exclusively 
during the night. The results of the two latter studies are 
reported separately.

Fig. 1  Flow-chart of selection 
process
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The structured reporting of the results includes the fol-
lowing sections: (1) feasibility and efficacy of a home-
based assessment using wearables, (2) wearables: type, 
number and body location, (3) type of PD motor symptom, 
(4) assessment environment, (5) assessment activities, (6) 
assessment duration, (7) validations methods, (8) wearables 
during sleep. Since the use of wearables in PD has been pre-
viously reviewed highlighting the technology behind weara-
bles [19], we preferred to focus on more clinically relevant 
aspects of the application of wearables.

Feasibility and efficacy

The vast majority of the included studies reported on techni-
cal efficacy (precision and reliability) of the used wearables 
and half of them [10, 13, 20–31] included feasibility and 
usability issues (wearable’s tolerability and participants’ 
compliance outside experimental conditions) as primary or 
secondary objectives.

Only six studies reported explicitly on practical feasibility 
[12, 14, 32–35]. In the study by De Lima et al. [33], primary 
objectives were recruitment success, compliance, attrition 
and system usability. The patient’s compliance was highly 
dependent on the degree of activity required; the more active 
the patient was requested to be, the less compliance was 
achieved, resulting in higher attrition. In the study by Fisher 
et al. [32], authors used a body-worn sensor system to assess 
movements in an unsupervised, undisturbed home environ-
ment. The patients were advised to remove the sensor if they 
became unduly burdensome. Although patient’s compliance 
was high, an accurate, real-time evaluation of parkinsonian 
symptoms was not achieved. The study by Bayés et al. [14] 
focused on practicality of the assessment method. It applied 
the Usability Scale (SUS) and the QUEST-questionnaire and 
participants’ satisfaction on the REMPARK system. They 
reported on their system as being user-friendly and satis-
fying study participants. Similarly, the system (brand not 
mentioned) used by Pastorino et al. [35] was reported by 
participants as comfortable and 65% could consider using 
it in real-life conditions as well. The study by Boroojerdi 
et al. [34] questioned participants about practicality of patch 
sensors (use difficulty, patch usage training, removal pain, 
interference with daily activities, interference with sleep, 
embarrassment from patch in public) and found their system 
being generally well tolerated.

Finally, four studies focused almost exclusively on tech-
nical efficacy of wearables without reporting on feasibility 
issues [36–39].

Wearables

A wearable device can integrate multiple sensors and can be 
worn on various body parts, such as hips, wrist or waist, feet 

and ankles, or can be integrated in body equipment or cloth-
ing [40]. For the evaluation of human movement, the most 
common wearable sensor type is a six-axis Inertial Motion 
Unit (IMU) [40], composed of a three-axis accelerometer 
and a three-axis gyroscope. It can also include an additional 
three-axis magnetometer, which would be considered a nine-
axis IMU. Magnetometer sensor is used to add information 
about 3D space orientation. The typical sampling frequency 
adopted for movement studies is 100 Hz.

Available studies used very different types and number of 
wearables, placed in different body locations and therefore a 
general consensus on the best wearable type and body loca-
tion and the optimal sensor number is lacking.

Type of sensors

Most of the reported wearables include accelerometric and/
or gyroscopic measures. Wearable sensors can be sold as a 
stand-alone body-fixed electronic device or can be integrated 
into a whole system. Hybrid systems are defined as the blend 
of technologies that combined wearable and non-wearable 
devices [40]. The latest wearables have the capacity of being 
connected to other devices wirelessly, via Wi-Fi or Blue-
tooth Low Energy (BLE). Many vendors offer proprietary 
software for data download and analysis. The majority of the 
wearables system offer the option of saving the data locally, 
i.e. on a SD card, often data can be downloaded wirelessly 
in real time for immediate visualization [19].

Most of the studies describe in details the applied sensor 
system. In 23 studies, the exact type and label of the applied 
system was clearly mentioned (Table 1), whereas in the 
study by Das et al. [37], the brand of the sensors was omit-
ted. The latter used a set of tri-axial accelerometers located 
on the four limbs and on the waist.

Five studies [23–25, 28, 29] utilized the six-axial IMU 
Dynaport Hybrid (McRoberts, The Hague, Netherlands), 
that can be used either as a stand-alone device, thanks to 
an SD card, or can be connected via Bluetooth communica-
tion with a personal computer [19]. Two studies [12, 27] 
utilized the Kinesia™ (Cleveland Medical Devices Inc., 
Cleveland, OH), which is a hybrid system composed of a 
finger-worn device, made up of 6-axis IMU, and operates 
using a real-time wireless communication with software 
application installed in a computer device/tablet. The soft-
ware application guides the patient through the automated 
motor assessment. Two studies [38, 39] used the SHIMMER 
IMUs and the MercuryLive platform. The system consists 
of wearable 9-axis inertial measurement unit sensors, which 
can be used as a standalone system or can send real-time 
information to a web-based remote monitoring platform. The 
MercuryLive software aims on remote interactions between 
clinicians at hospital and patients at home. Pastorino et al. 
[35, 36] employed the PERFORM, which is a hybrid system 
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consisting of a set of tri-axial accelerometers for the extremi-
ties, a belt-sensor, composed of an accelerometer and a gyro-
scope, to record proximal body movements and a data acqui-
sition unit. Data recorded are then sampled and processed 
by a software, enabling medical professionals the remote 
monitoring of patients. A recent study [34] used the NIM-
BLE biosensor patch (MC10, Inc., Lexington, MA, USA), 
composed of an accelerometer and an EMG enclosed in a 

flexible patch, that attaches to skin via an adhesive sticker. 
This hybrid system can transmit information wirelessly to a 
smartphone or a tablet as well as to a cloud server.

Three studies [10, 14, 21] used the so-called 9 × 2 
inertial measurement unit, developed in the frame of the 
REMPARK European project. This is a waist device com-
posed of an accelerometer, a gyroscope, a magnetometer, 
a microcontroller, a Bluetooth communication module and 

Table 1  Brands, type and composition of the different wearable systems employed in the studies

IMU inertial motion unit, EMG electromyography, iMEMS integrated microelectromechanical system

Wearable systems Composition Authors

Dynaport Hybrid (McRoberts, The Hague, The 
Netherlands)

Tri-axial accelerometers and gyroscopes in 
Bluetooth communication with a host personal 
computer

Weiss et al. [23], Dijkstra et al. [25], 
Herman et al. [28], Bernad-Elazari 
et al. [29]

REMPARK system Single 9 × 2 inertial measurement unit and smart-
phone (with applications enabling e.g. diary 
fulfilment by patients and sending the collected 
information to the cloud, making it potentially 
available to health workers to manage the dis-
ease online)

Bayés et al. [14]

KinesiaTM system (Cleveland Medical Devices 
Inc., Cleveland, OH)

Finger-worn device (made up of tri-axial acceler-
ometers and gyroscopes and in real-time wire-
less communication with a computer or a tablet) 
and software app, guiding patients through the 
automated motor assessment

Mera et al. [12], Heldman et al. [27]

SHIMMER IMUs and MercuryLive platform Wearable IMUs sending information to a web-
based remote monitoring platform, allowing 
remote interactions between clinicians and 
patients

Chen et al. [38], Patel et al. [39]

PERFORM system Set of tri-axial accelerometers and a belt-sensor 
(composed of an accelerometer and a gyro-
scope), sending information to a software with 
the possibility to remote monitor patients

Pastorino et al. [35]

Pebble Smartwatch (Intel Pharma Analytics 
Platform)

The watch detects motion information and 
transfers it to a phone, which interprets it via the 
Fox Wearable Companion App (estimation of 
outcomes e.g. tremor) and transmits it via Wi-Fi 
or mobile data to a cloud environment

De Lima et al. [33]

NIMBLE biosensor patch (MC10, Inc., Lexington, 
MA, USA)

Flexible conformable skin-attached patch, com-
posed of an accelerometer and an EMG, that 
wirelessly transmits gathered information to 
a smartphone or a tablet as well as to a cloud 
server

Boroojerdi et al. [34]

9 × 2 inertial measurement unit Tri-axial accelerometer Pérez-lópez et al. [10], Samà et al. [21]
Parkinson’s Kinetigraph (PKG; Global Kinetics 

Corporation)
Tri-axial iMEMS accelerometer Griffiths et al. [20], Tan et al. [31]

Rehacom (Hasomed, Magdeburg, Germany) Tri-axial accelerometer and gyroscope Ramsperger et al. [13]
Axivity AX-3 Tri-axial accelerometer Fisher et al. [32]
MicroMini-Motionlogger (Ambulatory Monitor-

ing, Inc.)
Actigraphic device Pan et al. [26]

Actiwatch (Cambridge Neurotechnology Ltd., UK) Actigraphic device containing a uni-axial accel-
erometer

Binder et al. [22]

Night-Recorder Triaxial iMEMS accelerometers and gyroscope Bhidayasiri et al. [7], Sringean et al. [6]
Samsung Smartphone (Galaxy S3 mini; Samsung, 

Seoul, South Korea) and Roche PD Mobile 
Application v1 (Roche, Basel, Switzerland)

Inertial measurement unit composed of an acceler-
ometer, a gyroscope and a magnetometer

Lipsmeier et al. [30]
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a memory storage unit. This hybrid system relies on espe-
cially developed applications, enabling, i.e. disease man-
agement and diary fulfilment by patients. The collected 
information is sent to a cloud server, thus enabling the 
online manage of the disease.

Actigraphy is the monitoring of human rest/activities, 
usually done with a watch-like package worn on the wrist. 
The sensor adopted is usually a uniaxial accelerometer, 
low energy, which can measure motor activity for one or 
more  weeks. After the measurement,  data are usually 
downloaded and analyzed.

Pan et al. [26] used the wrist actigraph from Micro-
Mini-Motionlogger (Ambulatory Monitoring, Inc.) aggre-
gating daytime data into a 1-min epoch whilst Binder et al. 
[22] used the Actiwatch (Cambridge Neurotechnology 
Ltd., UK). Both actigraphy systems include a uniaxial 
accelerometer.

De Lima et al. [33] gathered accelerometric data using 
the Pebble smartwatch (Intel Pharma Analytics Platform) 
connected to the patients’ smartphone. In this hybrid system, 
the motion information is transferred from the watch to the 
phone via the Fox Wearable Companion App and after an 
estimated analysis, is transmitted to a cloud environment. 
The app allows the patients to estimate their motor states 
or to report the time of medication intake. Lipsmeier et al. 
[30] employed a Samsung smartphone (Galaxy S3 mini; 
Samsung, Seoul, South Korea) with a preinstalled Roche 
PD Mobile Application v1 (Roche, Basel, Switzerland). The 
Smartphone-incorporated IMU served the detection of body 
movements during the execution of motor tasks guided by 
the Roche PD Mobile Application.

One study by Fisher et al. [32] used the Axivity AX-3, a 
stand-alone small tri-axial accelerometer, which can sample 
continuously 14 days at 100 Hz, and has a USB port for data 
access. A study by Griffiths et al. [20] used the wrist-worn 
Parkinson’s Kinetigraph (PKG; Global Kinetics Corpora-
tion), a tri-axial integrated microelectromechanical System 
(iMEMS) accelerometer. Finally, Ramsperger et al. [13] 
exploited for the in-lab initial measurements the Mobility 
Lab system (APDM, Portland, USA), which included iner-
tial measurement units on the lateral part of each ankle and 
afterwards for the 12-week home-based sub-study, a six-axis 
IMU  (Rehacom®, Hasomed, Magdeburg, Germany).

Number of sensors

Most of the studies used a small number of body-fixed sen-
sors. Seventeen studies [10, 12–14, 20–31, 33] used only 
one sensor, one study [32] used two sensors, one study [34] 
used four sensors, three studies [35–37] used five sensors, 
one study [39] used eight sensors and one study [38] used 
nine body-worn sensors.

Body‑location of the sensors

In the reviewed studies, wearable sensors were placed on 
the trunk (waist, lower back or sternum), the extremities 
(bilateral or unilateral, dominant or non-dominant limb), the 
upper limbs (forearm, wrist, fingers or back-of-hand), or on 
the lower limbs (ankle or shin). Few studies placed sensors 
in multiple body locations [34–38]. The body localizations 
of sensors in the reviewed studies are presented in Table 2.

Eight of the reviewed studies [10, 14, 21, 23–25, 28, 29] 
placed the single wearable device using a belt. In three stud-
ies [10, 14, 21], the wearable was attached on the waist near 
the iliac crest, and in the other five [23–25, 28, 29], the wear-
able device was fixed on the lower back. Two studies [12, 
27] applied the  KinesiaTM system at the index finger of the 
more affected hand of the patient. Six studies [20, 22, 26, 
31–33] fixed the wearable on the wrist, among them five [20, 
22, 26, 31, 33] only on one wrist (of the most affected [20, 
22, 31] and/or the dominant hand [20, 26, 31]), and one [32] 
on both wrists through a Velcro-strap. In four other studies 
[35–38], the monitoring devices were attached both on the 
trunk and on the four limbs. In the study by Ramsperger 
et al. [13], a single sensor was placed at the ankle of the 
most dyskinetic leg. Patel et al. [39] placed eight body-fixed 
devices on extremities, more precisely bilaterally at two 
different levels (proximal and distal). Boroojerdi et al. [34] 
attached patch sensors to chest and the more affected side of 
shin, forearm and back-of-hand. In the study by Lipsmeier 
et al. [30], location changed depending on the performed 
motor task; during free daily activities, the smartphone had 
to be worn in a belt pouch or in the trouser pocket, whereas 
during the performance of standardized motor tasks, it could 
be asked to be hold it in the palm of the hand.

Only few studies justified their selection regarding the 
body part to apply the wearables. Weiss et al. [24] chose the 
lower back because of its proximity to the centre of mass of 
the body and the comfortability of the location, thus avoid-
ing interference with physical activity. In another study by 
the same group [23], wearables were placed at the lower 
back to monitor gait and to estimate fall risk. Pérez-Lopez 
et al. [10] placed a single body-fixed sensor on the waist 
and noticed the high sensitivity of the position in detecting 
mild trunk dyskinesias, in contrast to the low sensitivity of 
the position in detecting weak dyskinesias on distal limbs. 
Boroojerdi el al. [34] chose to localize the sensors on the 
chest and the more affected side of shin, forearm and back-
of-hand, because of prior results, indicating these locations 
as being more accurate in detecting body movements.

Type of PD motor symptom

PD patients suffer from a wide spectrum of motor symptoms 
and different wearables have been applied for home-based 
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monitoring of motor symptoms in PD. Among the reviewed 
studies, seven studies assessed bradykinesia [12, 21, 27, 
30, 31, 36, 38], seven studies assessed tremor [12, 22, 27, 
30, 34, 38], ten studies assessed motor fluctuations/dyski-
nesias [10, 13, 14, 20, 27, 31, 32, 34, 35, 38], nine studies 
assessed postural instability and gait disturbance [14, 21, 
23–25, 28–30, 34] and only one study assessed dysarthria 
[30]. In three studies, authors did not clearly state the type 
of motor symptom that was assessed by wearables [26, 37, 
39]. Usually, the decision on the target symptom defined the 
type and body placement of the wearables (see Table 1). The 
Dynaport Hybrid (McRoberts, The Hague, Netherlands) has 
been typically used for the assessment of axial symptoms 
and gait in PD patients [23–25]. Dijkstra et al. [25] placed 
the DynaPort Hybrid system at the lower back of PD patients 
and successfully assessed objective features of gait (walk-
ing with 81.7% sensitivity and 76.4% specificity, shuffling 
with only 6.4% sensitivity) and postures abnormalities (lying 
with 99.3% sensitivity and 76.4% specificity, sitting with 
85.4% sensitivity and 75.7% specificity, standing with 74.4% 
sensitivity and 80.5% specificity) in patients with mild to 
moderate PD. In addition, the DynaPort Hybrid system was 
reported to be able to discriminate PD patients from controls 
as well as PD fallers from PD non-fallers. PD patients had 
significantly slower gait amplitude and slope, but higher gait 
width while undergoing ADLs compared to controls [24]. 
In addition, PD fallers showed higher gait variability in the 
vertical and anterior–posterior directions, less consistency 
in the vertical direction and less smooth gait pattern in the 

vertical and anterior–posterior directions compared to PD 
non-fallers [23].

The KinesiaTM system (Cleveland Medical Devices Inc., 
Cleveland, OH) was typically employed to detect cardinal 
PD symptoms, mainly tremor as well as bradykinesia and 
dyskinesia [12, 27]. In the study by Mera et al. [12], the 
KinesiaTM system showed satisfactory capability in captur-
ing the positive or negative response of several symptoms 
to parkinsonian medication, highlighting its potential utility 
as long-term objective monitoring of PD symptoms. Indeed, 
medication significantly improved rest and postural tremor 
and average speed and amplitude scores while kinetic tremor 
and average rhythm scores did not significantly improve.

Among the reviewed studies, two studies [20, 31] used 
the Parkinson’s Kinetigraph (PKG; Global Kinetics Corpo-
ration) device to assess bradykinesia, dyskinesia and motor 
fluctuations. The system was reported to be reliable in distin-
guishing between early and troublesome motor fluctuations 
as well as dyskinetic and non-dyskinetic patterns, in patients 
with PD. The bradykinesia and dyskinesia scores assessed 
by PKG were significantly correlated with the UPDRS part 
III and part IV, respectively [20].

A single 9 × 2 IMU located on the waist was employed 
in two of the reviewed studies [10, 21] and showed good 
validity in detecting bradykinesia and bradykinetic patterns 
in gait (92.52% sensitivity, 89.07% specificity, 91.81% accu-
racy) [21] and in identifying choreic dyskinesias (93% sensi-
tivity and 95% specificity for any strong dyskinesia and mild 
trunk dyskinesia) in PD patients [10]. However, single 9 × 2 

Table 2  The different body locations of wearables used in reviewed studies

Extremities

Wrist Index finger Ankle

Griffiths et al. [20], Binder et al. [22], Pan et al. [26], Tan 
et al. [31], Fisher et al. [32], De Lima et al. [33]

Mera et al. [12], Heldman et al. [27] Ramsperger et al. [13]

Trunk

Waist Lower back Sternum

Pérez-lópez et al. [10], Bayés et al. [14], Samà et al. [21] Weiss et al. [23, 24], Dijkstra et al. [25], Herman et al. [28], 
Bernad-Elazari et al. [29]

Bhidayasiri et al. [7]

Multiple locations

Trunk and limbs Chest and limbs Only limbs

Pastorino et al. [35, 36]
Das et al. [37]
Chen et al. [38]
Sringean et al. [6]

Boroojerdi et al. [34] Patel et al. [39]

Alternate locations

Waist or hand

Lipsmeier et al. [30]
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IMU was not sensitive enough to detect mild dyskinesias 
appearing on the limbs (39% sensitivity) [10].

Bayés et al. [14] applied the same type of IMU located 
on the waist (part of the REMPARK system) and reported 
satisfactory capability (97% sensitivity and 88% specificity) 
in discriminating medication-associated ON vs OFF states 
based on gait analysis and the identification of dyskinetic 
patterns. Similarly, the single Rehacom IMU device (Has-
omed, Magdeburg, Germany) located at the most affected 
side, could discriminate PD patients with and without dys-
kinesias with a satisfactory 85% sensitivity and 98% speci-
ficity [13].

Lipsmeier et al. [30] also used an IMU sensor and dem-
onstrated the reliability and validity of a mobile application 
(Samsung Galaxy S3 together with the Roche PD Mobile 
Application v1) in detecting tremor, bradykinesia, postural 
instability, balance and gait and therefore discriminating PD 
patients from controls. The test–retest reliability was found 
to range from 0.64 for finger tapping to 0.98 for postural 
tremor. Most of the active tests and passive monitoring 
features significant discriminated between PD patients and 
control subjects and significant correlated with their corre-
sponding MDS-UPDRS items or subscale scores.

The NIMBLE biosensor patch (MC10, Inc., Lexington, 
MA, USA) was used to record abnormal movements from 
PD patients (including tremor, gait and motor fluctuations) 
and transform this information in meaningful symptom 
severity scores. Accuracy for each activity ranged from 32% 
(pronation/supination) to 67% (rest-tremor-amplitude) [34].

Finally, the PERFORM system employed by Pastorino 
et  al. [35, 36] was showed to be able in differentiating 
between ON vs OFF states with a good correspondence 
(88%) between data achieved from wearable sensors and 
data collected on motor symptoms’ diaries [35]. In addi-
tion, the system was able (with an accuracy of about 70%) 
to identify and classify bradykinesia severity compared to 
UPDRS-based clinical evaluation in PD patients [36].

Assessment environment

Despite some similarities, study designs and methodology 
varied among the reviewed studies. Most of the studies 
assessed patients both at in-clinic and at-home environment, 
using a two-step approach [12, 13, 20, 23–26, 28, 29, 32, 
34, 36, 39]. Data from the in-clinic assessment were used 
to create and train the detection algorithm under controlled 
conditions, whereas data from the in-home part served the 
application and validation of the algorithm under real-life 
conditions [13, 20, 24, 25, 32, 34, 36, 39]. A typical example 
of this dual method is the study by Ramsperger et al. [13]. 
In this study, an algorithm for the detection of leg dyskine-
sias and the prevention of falling in PD patients was created 

under controlled conditions, and then validated in real-life 
conditions at home.

Seven studies [14, 21, 22, 30, 31, 33, 35, 37, 38] assessed 
participants only at home without previous training of the 
algorithm in controlled conditions. In the work of Bayés 
et al. [14], the study design included two steps, excluding an 
in-clinic assessment and including a day where participants 
and their caregivers were trained in operating the system 
and filling the diaries, without any data collection. This was 
followed by a three-day period of movement recordings and 
data collection under uncontrolled conditions at home.

Two studies [10, 27] divided PD patients into two groups 
subjected to different study protocols. In the study by Held-
man et al. [27], patients were randomized to either a tra-
ditional management in-clinic (controls) or to an in-home 
sensor-based assessment. Study objective was to assess the 
impact of using at-home wearables on the advanced therapy 
referral rate. Authors found a significantly higher referral 
rate by patients assessed with body sensors and concluded 
that wearables could help identify patients who could poten-
tially take advantage of an advanced Parkinson’s therapy. 
In the study by Pérez-Lopez et al. [10], participants were 
assessed either in-clinic, to train a part of the detection algo-
rithm, or at home, to train another part of the algorithm and 
to evaluate its validity in real-life conditions.

Assessment activities

The degree of freedom during the execution of activities 
is crucial and can be classified in three categories: com-
pletely free (participants carried sensors and were able to 
move freely during their activities of daily living (ADL)), 
restricted (participants were assessed by performing default 
motor tasks, such as tasks based on the MDS-UPDRS clini-
cal rating scale) and partially free or, respectively, partially 
restricted (participants had to perform scripted daily activi-
ties in a free or guided manner).

Among the included studies, 14 studies [13, 14, 20, 
22–24, 26, 28, 29, 31–33, 36, 37] assessed participants 
wearing sensors continuously during the day while per-
forming unconstrained everyday activities, three studies 
[12, 27, 38] monitored patients exclusively while perform-
ing guided default motor tasks, and two studies [25, 35] gave 
participants a partial freedom, requiring the execution of 
scripted daily activities executed in a free or guided man-
ner. In five studies [21, 30, 34, 35, 39], participants had to 
perform both constrained and unconstrained activities. In the 
study by Samà et al. [21], patients had to execute, in a free 
manner, scripted ADL. However, they could also execute 
non-scripted unexpected activities, such as the answer to a 
phone call. In the study by Pastorino et al. [35], patients had 
to perform initially a pre-scheduled assessment session and 
then were left free to undergo their normal daily activities. 
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In the study by Patel et al. [39], patients had to perform 
UPDRS-specific tasks as well as daily living activities; how-
ever, it was not clearly mentioned if these activities were 
constrained or unconstrained. In the study by Boroojerdi 
et al. [34], participants had to wear body-fixed sensors dur-
ing a whole day both, while performing free their ADL, as 
well as while undergoing motor assessments (at least one 
set of motor tasks in the morning before levodopa intake 
and at least two sessions of motor tasks after the medication 
intake).

Assessment duration

The duration of wearables assessment might depend on sev-
eral factors, such as the study design, the study objectives, 
the type of parkinsonian symptoms (tremor, rigor, dyski-
nesias etc.), the amount of obtained data and the battery 
capacity.

Among the included studies, a wide spectrum of assess-
ment duration was observed. The duration ranged from min-
utes (i.e. monitoring patients only during the execution of 
default motor tasks or standardized mobility-related activi-
ties [25]) to several days while patients had to perform their 
normal activities. Among 24 studies, 15 studies [13, 20, 
22–24, 26–29, 31, 32, 34, 35, 37, 39] applied the wearables 
for  ≥ 24 consecutive hours, six studies [12, 14, 21, 25, 30, 
36] assessed PD patients for  < 24 h, whereas two of them 
[10, 29] did not specify the duration of the assessment. The 
longest assessment was reported by De Lima et al. [33] were 
patients of the Netherlands cohort were assessed continu-
ously for 13 consecutive weeks, 7/7 days a week, 24 hours 
a day.

Validation method

The use of valid comparison methods to properly evaluate 
and validate home-obtained data is important. Comparison 
systems presented by the different studies ranged from symp-
tom’s diaries, to clinical rating scales or questionnaires and 
video-recordings, labelled by movement disorder experts. 
However, several of the reviewed studies do not describe any 
comparison methods [12, 13, 20, 24, 28, 29, 39].

In six out of 24 studies [14, 22, 32, 33, 35, 37], patients 
had to fill out symptom’s diaries, most of them with the aim 
of comparing and validating sensor-derived measures with 
diaries’ annotations.

Other studies not including an in-clinic part [14, 37] 
used symptoms’ diaries for creating algorithms and vali-
dating the home-based sensor-gathered data. Bayés et al. 
[14] employed different strategies to improve the validity 
of diaries: (1) their comparison with daily variations in the 
UPDRS part III (assessed once a day by a researcher) and 
with motor states’ estimations (performed during telephone 

counseling every 2 hours), and (2) the presence of a motor 
state for a minimum of two consecutive diary’s annotations 
for validation.

Seven of the reviewed studies [22, 23, 26, 30, 31, 34, 36, 
38] used clinical rating scales or questionnaires as compari-
son method.

The most common employed clinical rating scale is the 
MDS-UPDRS, particularly its parts II (activities of daily liv-
ing) and III (motor signs). Chen et al. [38] assessed UPDRS 
III via a webcam-based motor assessment as a validation 
method for movements recorded by the wearable devices.

Weiss et al. [23], assessed the falling risk in PD patients, 
by employing many different fall-risk traditional assessment 
means, e.g. fall history during the previous year, fall calen-
dar filled out once a month and the New Freezing of Gait 
Questionnaire (NFOG-Q).

Four studies [10, 21, 25, 36] used video recordings dur-
ing home-based assessments, which were then reviewed by 
two movement disorder specialists. Samà et al. [21] applied 
video recordings of patients while undergoing constrained 
daily living activities as gold standard for bradykinesia 
detection.

Wearables during sleep

Feasibility and efficacy

Data on the feasibility and comfortability of wearables dur-
ing night-time assessments are very limited. None of the 
reviewed studies illustrated explicit interest in practical 
feasibility. The choice of number and body location of the 
sensors seemed not to depend on patients’ compliance. In 
fact Bhidayasiri et al. [7] chose to use only one sensor and 
to localize it at the sternum, due to the proximity of sternum 
with the centre of body-mass and to minimize artefacts asso-
ciated with arm movements.

Concerning the type of wearables used, both sleep-studies 
[6, 7] employed the Night-Recorder system (Table 1). It con-
sisted of body-fixed sensors composed of triaxial iMEMS 
accelerometers and gyroscope and it was employed for the 
monitoring of episodes of rolling over and getting out of bed 
during sleep (as surrogate markers of nocturnal hypokinesia) 
[7].

The study by Bhidayasiri et al. used only one sensor at the 
sternum, whereas the study by Sringean et al. [6] used five 
wearables attached both on the trunk and on the four limbs.

Assessment environment

Both sleep-studies [6, 7] assessed PD patients directly at 
home, applying for one night (< 24 consecutive hours) an 
unconstrained program of activities, without any changes at 
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the home setting and without having previously trained the 
algorithm in controlled conditions.

Validation method

In both night-studies [6, 7], comparison methods were 
employed. Bhidayasiri et al. [7] compared the wearables’ 
measurements with sleep diaries annotations, filled out by 
PD patients and reporting getting out of bed episodes as 
well as sleep time periods. In the study by Sringean et al. 
[6] clinical scales, video recordings and sleep diaries were 
applied, where patients had to document sleep periods in 
sleep diaries and events of getting out of bed.

Discussion

In the last years, an increasing number of studies reported 
on the use of wearables for the home-based assessment and 
monitoring of parkinsonian abnormal movements. The stud-
ies often address feasibility issues, technical efficiency and 
reliability of wearables, sensor types (mechanism, number of 
sensors and body localization), and validation methodology. 
The aim of this article was to systematically review recent 
studies that assessed abnormal movements in patients with 
PD using wearable technology. We primarily focused on pre-
senting clinically relevant aspects of wearables’ application 
and less on technical issues.

Most of the reviewed studies showed positive results 
regarding accuracy and reliability of wearables in detect-
ing abnormal movements. However, practicality of sensors’ 
systems was not always reported and it seems that in many 
cases, it remains an issue that might limit the applicabil-
ity of the systems. Indeed, in the few cases where comfort 
and tolerability and therefore satisfactory compliance from 
participants were the primary outcome, the sensitivity and 
sensibility of the system did not always reach satisfactory 
levels. A compromise between battery life, sampling rate, 
data size and measurement precision is needed. Privacy and 
data protection are not always properly addressed.

Different sensor types have been used and due to the 
different objectives and study groups, a direct comparison 
between these systems is not possible. Clinimetric proper-
ties of each device have to be tested in laboratory as well as 
in real-life conditions. In the choice of adequate sensors for 
a study, their reliability, validity and sensitivity to change 
for specific clinical parameters, as well as their ecological 
validity when employed outside controlled conditions have 
to be considered [19, 40].

The type of motor symptom to be assessed is crucial 
when choosing the appropriate wearable device and vari-
ous aspects of the motor symptoms that are displayed by 
subjects with PD have been investigated in the reviewed 

studies. In most of these studies, algorithms were devel-
oped either to detect the presence of a specific motor fea-
ture or to differentiate the ON from the OFF condition 
in a subject with PD. However, very often patients with 
PD suffer from a wide spectrum of abnormal movements 
(tremor, bradykinesia, gait abnormalities, medication-
induced dyskinesias, sleep-related abnormal movements) 
which can fluctuate concurrently and their discrimination 
is crucial for the treatment decision-making. Therefore, 
it is important for the ideal home-based monitoring and 
management system for PD to be able to monitor motor 
states in real-life conditions allowing the discrimination 
between normal and abnormal movements during normal 
quotidian activities, between motor state variations and 
between different types of motor symptoms. Currently, 
none of the available system is able to provide such a 
holistic approach on the home-based monitoring of motor 
symptoms in PD.

In respect to body localization, different placements 
and various number of sensors were selected, based on the 
movements to be monitored and the main aim of the study. 
However, we found scarcely any report [34] on a system 
where practicality and tolerability were well balanced with 
an extended motor assessment of multiple systems (axial, 
head, posture, bilaterally limbs, etc.), which in the case of 
PD seems to be essential. Sensor integrated clothing might 
be a solution, which future studies on PD should certainly 
consider.

In respect to validation methodology, most of the stud-
ies used the two-steps approach, an in-clinic step for algo-
rithm creation and an in-home step where the algorithm was 
applied and tested in “real-life” conditions. Although this 
approach offers many advantages, still the constrained condi-
tions at the laboratory applied for the creation of algorithms 
cannot be considered as completely bias-free. Moreover, the 
choice between the execution of unconstrained daily activi-
ties, established daily activities or partially constrained daily 
activities, as well as the choice to use comparison methods 
(i.e. symptoms’ diaries) and the decision about the frequency 
of their employment, seems to be an important decision for 
the study design. In fact, an excessive request of activity 
might negatively impact compliance and, therefore, a com-
promise between assessment precision and minimization of 
the potential burden (e.g. study by Fisher et al. [32]) is often 
necessary.

Different monitoring durations were reported; however, 
the majority of studies applied wearables for more than 
24 h. Indeed, in PD, a continuous 24 h monitoring for con-
secutive days offers a more precise view on disease-related 
and medication-related fluctuations and therefore valuable 
information for the clinician in respect to disease staging 
and treatment decision. Unfortunately, data on accuracy of 
detecting sleep-related movements and practicality during 
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sleep have only been scarcely reported, even in those stud-
ies that collected data longer than 24 h.

In general, it could be affirmed that minimization of 
obtrusion, the use of small number of comfortable sensors, 
requiring a low degree of activity from participants [33] 
and intervening as less as possible in the daily proceed-
ings of the in-home activities, seems to be an important 
factor influencing compliance and adherence of study 
participants.

Some of the reviewed studies shared limitations. The 
majority of studies reported only on a small number of 
participants and therefore, interpretation of the results 
should be done with caution. In addition, studies often 
included PD patients with very different clinical profiles 
and disease stages and therefore their results were not 
always comparable.

The limited timeframe of 12 years poses a limitation for 
our systematic review. However, since the in-home wear-
ables-based clinical approaches gained greatest interest 
during the last decade, and taking into account the speed 
of new scientific discoveries and technological changes, 
we considered it appropriate to review devices of recent 
generation. Even under this limited timeframe, technol-
ogy and the precision of the performed techniques have 
markedly changed, limiting comparability between studies. 
Another limitation of our review is the possible selection 
bias based on language criteria due to the exclusion of 
articles that were not written in English.

Conclusion

The use of wearable devices represents a paradigm shift in 
healthcare remote diagnostics and therapeutics monitoring 
in PD and has been made possible by the technological 
revolution in these systems. Compact-sized, low-cost and 
reliable devices are becoming widely available and offer 
great opportunities to overcome past limitations, such as 
subjectivity and lack of home-based continuous long-term 
monitoring of daytime cardinal symptoms in PD.

However, the current technical challenges, especially 
related to long-term practicality and accuracy, need to be 
addressed in larger cohort studies, fully understood and 
resolved before wearable technology can be successfully 
integrated in the routine management of PD.
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