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Abstract
Presymptomatic studies in ALS have consistently captured considerable disease burden long before symptom manifestation 
and contributed important academic insights. With the emergence of genotype-specific therapies, however, there is a pressing 
need to address practical objectives such as the estimation of age of symptom onset, phenotypic prediction, informing the 
optimal timing of pharmacological intervention, and identifying a core panel of biomarkers which may detect response to 
therapy. Existing presymptomatic studies in ALS have adopted striking different study designs, relied on a variety of control 
groups, used divergent imaging and electrophysiology methods, and focused on different genotypes and demographic groups. 
We have performed a systematic review of existing presymptomatic studies in ALS to identify common themes, stereotyped 
shortcomings, and key learning points for future studies. Existing presymptomatic studies in ALS often suffer from sample 
size limitations, lack of disease controls and rarely follow their cohort until symptom manifestation. As the characterisation 
of presymptomatic processes in ALS serves a multitude of academic and clinical purposes, the careful review of existing 
studies offers important lessons for future initiatives.
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Abbreviations
ACE-R  Addenbrooke’s Cognitive 

Examination-Revised
AD  Alzheimer’s disease
AD  Axial diffusivity
ALLFTD  ARTFL–LEFFTDS Longitudinal 

Frontotemporal Lobar Degeneration
ALS  Amyotrophic lateral sclerosis
ALSFRS-R  Amyotrophic Lateral Sclerosis Func-

tional Rating Scale-revised
ANG  Angiogenin
APEX1  Apurinic/apyrimidinic endodeoxyri-

bonuclease 1
APOE4  Apolipoprotein E4
APP  Amyloid precursor protein
ASCA  Amnestic Comparative 

Self-Assessment

ASO  Antisense oligonucleotide
AUC   Area under the receiver operator char-

acteristic curve
AVLT  Auditory verbal learning test
BADL  Basic activities of daily living
BDI  Beck Depression Inventory
BNT  Boston naming test
bvFTD  Behavioural variant FTD
CBD  Corticobasal degeneration
C-CFT  C-Labeled 2-β-carbomethoxy-3-β-(4-

fluorophenyl)tropane
C-CFT  C-Labeled 2-β-carbomethoxy-3-β-(4-

fluorophenyl)tropane
C-PiB  C-Pittsburgh compound B
C9orf72  Chromosome 9 open reading frame 72
CAPG  Macrophage-capping protein
CBF  Cerebral blood flow
CBI-R  Cambridge Behavioural Inventory 

revised
CDR  Clinical Dementia Rating Scale
CDR-SUM  Clinical Dementia Rating sum of box 

score
CHI3L1  Chitinase 3-like protein 1
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CHI3L2  Chitinase 3-like protein 2
CHIT1  Chitotriosidase-1
CHMP2B  Charged multivesicular body protein 

2b
CMAP  Compound muscle action potential
Cr  Creatine
CRP  C-reactive protein
CSF  Cerebrospinal fluid
CST  Corticospinal tract
CVLT  California Verbal Learning test
D-KEFS  Delis–Kaplan Executive Function 

System
DCTN  Dynactin subunit 1
DRS  Dementia rating scale
DTI  Diffusion tensor imaging
E/I  Excitation/inhibition
ECAS  Edinburgh Cognitive and Behavioural 

ALS Screen
ECLIA  Electrochemiluminescence 

immunoassay
ELISA  Enzyme-linked immunosorbent assays
EMG  Electromyography
EXAMINER  Executive Abilities: Measures and 

Instruments for Neurobehavioral 
Evaluation and Research

F-FDG  Fluorodeoxyglucose
FA  Fractional anisotropy
FAB  Frontal assessment battery
fALFF  Fractional amplitude of low frequency 

fluctuation
FBB  Florbetaben, a fluorine-18
FBI  Frontal Behavioural Inventory
FC  Functional connectivity
fMRI  Functional magnetic resonance 

imaging
FTD  Frontotemporal dementia
FTD-CDR  FTD-specific Clinical Dementia 

Rating
FTLD  Frontotemporal lobar degeneration
FUS  Fused in sarcoma
FVC  Forced vital capacity
GENFI  Genetic Frontotemporal dementia 

Initiative
GM  Grey matter
GPNMB  Glycoprotein non-metastatic B
GRN  Progranulin
HADS  Hospital Anxiety and Depression 

Scale
HD  Huntington’s disease
HFE  High FE2 + 
HIST1H2B  Histone cluster 1, H2b
HIST1H4A  Histone cluster 1, H4
HTT  Huntingtin

i-TRAQ  Isobaric tags for relative and absolute 
quantitation

IADL  Instrumental activities of daily living
LDST  Letter Digit Substitution Test
LEFFTDS  Longitudinal Evaluation of Familial 

Frontotemporal Dementia Subjects
LMN  Lower motor neuron
LRRK2  Leucine Rich Repeat Kinase 2
MAP2  Microtubule-associated protein 2
MAPT  Microtubule-associated protein tau
MD  Mean diffusivity
MDRS  Mattis Dementia rating scale
MEG  Magnetoencephalography
MEP  Motor evoked potential
MMSE  Mini Mental State Examination
MOCA  Montreal Cognitive Assessment
MRC  Medical Research Council rating scale
MRI  Magnetic resonance imaging
MRM  Multiple reaction monitoring
MRS  Magnetic resonance spectroscopy
mtDNA  Mitochondrial DNA
MUNE  Motor Unit Number Estimation
MUNIX  Motor Unit Number Index
MVIC  Maximal voluntary isometric 

contraction
Myo  Myo-inosito
NAA  N-Acetylaspartate
NEFH  Neurofilament heavy
NEFL  Neurofilament light
NEFM  Neurofilament medium;
NfL  Neurofilament light
NODDI  Neurite orientation dispersion and 

density imaging
NPI-Q  Neuropsychiatric Inventory 

Questionnaire
NPTXR  Neuronal pentraxin receptor
OPTN  Optineurin
PD  Parkinson’s disease
PET  Positron emission tomography
PINK1  PTEN-induced kinase 1
PLS  Primary lateral sclerosis
pNfH  Phosphorylated neurofilament heavy 

chain
PON  Paraoxonase
Pre-Fals  Pre-familial amyotrophic lateral 

sclerosis
PREV‐DEMALS  Predict to Prevent Frontotemporal 

Lobar Degeneration and Amyotrophic 
Lateral Sclerosis Study Group

PRISMA  Preferred Reporting Items for System-
atic Reviews and Meta-Analyses

PRPH  Peripherin
PSEN1  Presenilin 1
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PSEN2  Presenilin 2
RAVLT  Rey Auditory Verbal Learning Test
RBMT  Rivermead Behavioural Memory test
rCMA  Rostral cingulate motor area
RD  Radial diffusivity
ReHo  Regional Homogeneity
rs-fMRI  Resting state Fmri
RWT   Phonematic Regensburger 

Wortflüssigkeits-test
SAT  Semantic Association Test
SDMT  Symbol digit modalities test
SEA  Social Cognition and Emotional 

Assessment
SETX  Senataxin
SICI  Short interval intracortical inhibition
SIGMAR1  Sigma non-opioid intracellular recep-

tor 1
SMA  Spinal muscular atrophy
SMN  Survival motor neuron
SNCA  Synuclein alpha
SOD1  Superoxide dismutase 1
SOP  Standard operating procedure
SPG  Spatacsin
TARDBP  TAR DNA-binding protein, 43
TBM  Tensor-based morphometry
TMS  Transcranial magnetic stimulation
TMT  Trail making test
UBQLN2  Ubiquilin-2
UCHL1  Ubiquitin carboxyl-terminal hydrolase 

1
UDSNB  Neuropsychological battery of the 

Uniform Data Set
UMN  Upper motor neuron
UPDRS  Unified Parkinson’s Disease 

Rating Scale
VAPB  Vesicle-associated membrane protein-

associated protein B/C
VAT  Visual Association Test
VBM  Voxel-based morphometry
VCP  Valosin containing protein
VOSP  The visual object and space perception 

battery
WAIS  Wechsler Adult Intelligence Scale
WCST  Wisconsin Card Sorting Test
WM  White matter
WRAT   Wide Range Achievement Test

Introduction

One of the latest developments in amyotrophic lateral scle-
rosis (ALS) is the emergence of genotype-specific phar-
macotherapies heralding a paradigm shift from generic 

neuroprotective strategies to precision, genotype-specific 
interventions [1, 2]. The fundamental heterogeneity of the 
disease is now universally recognised and genotype- and 
phenotype-specific clinical traits, radiological signatures 
and disease trajectories have been characterised [3–5]. The 
notion that a long presymptomatic phase precedes symp-
tom manifestation and that neurodevelopmental factors 
may contribute to the pathogenesis of ALS is increasingly 
accepted [6]. The presymptomatic phase of ALS has been 
relatively arcane until the publication of seminal presymp-
tomatic papers which confirmed considerable pathological 
changes years before symptom manifestation [7, 8]. Existing 
presymptomatic studies in ALS invariably suffer from sam-
ple size limitations and are strikingly diverse with regards 
to their study design, methodological approach and conclu-
sions. The systematic review of these papers, the frank dis-
cussion of their limitations, and the careful integration of 
their findings is particularly timely with the emergence of 
genotype-specific therapies [1, 2]. One of the key contribu-
tions of recent imaging studies in ALS is the confirmation 
that by the time patients fulfil diagnostic criteria for ALS, 
considerable disease burden can already be detected, limit-
ing the therapeutic potential of putative disease-modifying 
drugs. These observations suggest that the optimal thera-
peutic window is likely to be at an earlier stage in high risk, 
genetically susceptible populations. The presymptomatic 
phase of ALS has long been of academic interest [9], and 
inspired small-scale studies [10], dedicated terminology [9], 
but the advent of antisense oligonucleotide therapies (ASOs) 
highlights the urgency for large presymptomatic studies and 
the meticulous integration of molecular, pathological and 
radiological observations in asymptomatic mutation carri-
ers. ASO-mediated drugs have already been approved by 
the US Food and Drug Administration for the treatment of 
spinal muscular atrophy and Duchenne muscular dystro-
phy [11–13], and currently being trialled for ALS [1]. The 
nuanced characterisation of pathophysiological processes 
before perceptible disability develops may help to identify 
the optimal therapeutic window for pharmacological inter-
vention before irreversible functional impairment ensues. 
Longitudinal studies of mutation carriers spanning from the 
adolescence to significant disability would provide an oppor-
tunity to describe anatomical patterns of disease spread, vali-
date current staging systems, evaluate prognostic indicators 
and test prevailing propagation theories such as corticofugal 
spread, network-wise propagation, selective vulnerability, 
trans-synaptic spread etc., [9, 14–16]. Reports of consider-
able presymptomatic cerebral pathology without overt func-
tional impairment also suggest a degree of ‘motor reserve’, 
network redundancy or possible compensatory processes to 
maintain function until a critical threshold is reached and 
symptoms develop. Large presymptomatic studies also per-
mit the systematic assessment of the sensitivity profile of 
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our current biomarkers. For example, detecting white mat-
ter changes in a patient with significant disability may be 
less challenging than capturing early asymptomatic changes 
in white matter integrity decade before projected symptom 
manifestation. Despite the dual academic and clinical rel-
evance of characterising the presymptomatic course of ALS 
[17–19], striking inconsistencies exist in the current litera-
ture due to the sample size limitations and methodological 
differences [20–22]. Our objective is the careful integration 
of the lessons of existing presymptomatic studies in ALS, to 
identify key learning points from individual studies, reflect 
on common methodological shortcomings and distil a robust 
framework for future studies.

Methods

A formal systematic literature review was conducted using 
the following search terms on PubMed: “amyotrophic lat-
eral sclerosis”, “motor neuron disease”, “C9orf72”, “fron-
totemporal lobar degeneration”, “frontotemporal dementia” 
combined with each of the following keywords “presymp-
tomatic”, “premanifest”, “asymptomatic”. An additional 
search combined the above search terms with the following 
keywords: “magnetic resonance imaging”, “MRI”, “posi-
tron emission tomography”, “PET”, “electromyography”, 
“neuroimaging”, “electrophysiology”, “neurophysiology”, 
“transcranial magnetic stimulation”, “motor unit number 
estimation”, “motor unit number index”, “neurofilament”, 
“biomarkers”. Only original research papers were systemati-
cally reviewed. Conference abstracts published in supple-
ments of neuroscience journals were not considered. Only 
human studies were systematically reviewed. No exclusion 
criteria were set based on year of publication, but only 
articles written in English were reviewed. Animal studies, 
review papers, opinion pieces, editorials, case reports, and 
case series were excluded. Based on the above criteria a total 
of 48 original research papers were reviewed in accordance 
with the Preferred Reporting Items for Systematic Reviews 
and Meta-Analyses (PRISMA) recommendations. The iden-
tified papers were systematically reviewed based on the fol-
lowing criteria:

(1) Core study design parameters (target cohort: pre-symp-
tomatic/pre-manifest, control group: healthy controls/
non-carrier relatives/disease controls, sample size, 
cross sectional/longitudinal, prospective/retrospective, 
multi-centre/single centre, follow-up interval, number 
of follow-up time points, number of participants, attri-
tion rates, follow-up into the symptomatic phase)

(2) Clinical and laboratory assessments (Genetic testing, 
demographic profiles, availability of electrophysiologi-

cal assessment, neurological or neuropsychological 
data, functional rating scales)

(3) Neuroimaging methods (cerebral/spinal, whole-brain/
region-of-interest, MRI / PET, structural/diffusion/
spectroscopy/rs-fMRI, field strength 1,5 T/3 T / 7 T, 
single/multi-modal analyses, post-mortem validation.

To appraise methodological approaches in other neuro-
degenerative conditions and their potential applicability to 
ALS, a selection of presymptomatic imaging papers were 
also reviewed in frontotemporal dementia (20 papers), 
Huntington’s disease (11 papers), Alzheimer’s disease (13 
papers) and Parkinson’s disease (13 papers).

Results

While the terms ‘preclinical’, ‘premanifest’ and ‘presymp-
tomatic’ are widely used, the term ‘asymptomatic mutation 
carrier’ is preferred by many. It has been proposed [20] that 
term ‘preclinical’ should be reserved for the period where 
there are no identifiable pathological changes and the term 
‘presymptomatic’ used for the phase when neuroimaging, 
electrophysiology or detailed cognitive assessment may 
already detect abnormalities. Despite these recommenda-
tions the above terms are often used interchangeably. The 
number of papers identified stratified by the key study meth-
odology are shown in Fig. 1.

Neuroimaging studies of asymptomatic mutation 
carriers

Cohort characteristics

Based on our search criteria, we have identified twenty-five 
imaging studies investigating presymptomatic C9orf72 hexa-
nucleotide carriers [7, 8, 23–30], four studies focusing on 
presymptomatic SOD1 carriers [10, 30–35], and three stud-
ies evaluating both [30–32]. We also identified a study which 
included NEK1, TARDBP and FUS gene mutation carriers in 
addition to participants with the C9orf72 and the SOD1 [31]. 
The number of presymptomatic subjects included in single 
studies showed significant variation ranging from 2 [35] 
to 249 [36]. Eight studies had included over 100 presymp-
tomatic carriers [36–42]. The number of presymptomatic 
C9orf72 carriers included ranges from 2 [32] to 83 [28] and 
the number of presymptomatic SOD1 carriers ranges from 
2 [35] to 24 [10] in the current literature. Thirteen studies 
also included symptomatic patients [28, 40, 43–45], and 19 
studies only focussed their investigation on presymptomatic 
cohorts [8, 27, 29, 37, 38]. The strategy to select symp-
tomatic participants was inconsistent; some studies only 
included symptomatic gene carriers [10, 23, 24, 28, 31, 35, 
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40, 41, 43–46] while others included sporadic patients [24, 
32]. The size of the symptomatic cohort also shows great 
variation ranging from as little as 12 subjects [32] to 270 
[31]. Symptomatic control cohorts included patients with 
ALS [10, 24, 28, 31, 35], FTD [24, 28] and ALS-FTD [24, 
28]. Without exception, all identified studies included a 
cohort of healthy controls. These cohorts were either unre-
lated healthy controls [10, 24, 28, 29, 31–33, 35, 40], or 
more commonly, gene negative relatives of symptomatic 
patients [8, 23, 34, 36, 37, 42, 47]. A common shortcom-
ing of the available papers is that when unrelated healthy 
controls were used as a reference group, their gene profile 
is seldom reported [30]. Furthermore, none of the reviewed 
studies used ‘disease controls’, which would have helped 
to gauge the specificity of findings to ALS. The mean age 
of asymptomatic C9orf72 subjects ranged from 39.8 [7] to 
51 years [29] and in the case of SOD1, carriers from 32.3 
[34] to 47.2 years [10, 30]. In studies where a symptomatic 
cohort was included, their mean age ranged was 47.8 years 
[32] to 65.2 years [41]. Presymptomatic cohorts were gener-
ally relatives of symptomatic ALS [8, 27, 32], ALS-FTD or 
FTD patients [8, 27, 36] (Table 1).

Cohort size observations

Existing presymptomatic studies vary considerably with 
regards to overall sample size and statistical power. The total 
number of participants ranges from as few as 21 [34] to as 
many as 472 subjects [36]. While several studies included 
over 300 participants, these are invariably multi-centre stud-
ies necessitating some degree of inter-rater reliability test-
ing for clinical assessments, sequence harmonisation for 
imaging and standard operating procedures for biomarker 

collection, storage and analysis [28, 31, 36, 40, 41]. Irre-
spective of the overall sample size, almost half all identified 
presymptomatic studies in ALS-FTD (15 out of 32) resulted 
from data generated from multi-site consortia such as the 
Genetic Frontotemporal dementia Initiative (GENFI) [28, 
36, 38–46], the ARTFL–LEFFTDS Longitudinal Fronto-
temporal Lobar Degeneration (ALLFTD) [37, 47] research 
consortium and the Predict to Prevent Frontotemporal Lobar 
Degeneration and Amyotrophic Lateral Sclerosis Study 
Group (PREV-DEMALS) [7]. More than half of the identi-
fied studies (17 out of 32) were single-centre studies [10, 
23–26, 32–35, 48]. Very few single-centre studies reached 
cohort sizes over 100 [49–51], and the largest single-centre 
recruited included 113 participants [50]. The most asympto-
matic C9orf72 participants included in a single-centre study 
were 40 participants [8] (Table 1).

Study methods

The vast majority, 22 out of the 32 presymptomatic imaging 
studies are cross-sectional [10, 33, 39, 45, 48], and only ten 
longitudinal presymptomatic studies can be presently identi-
fied [8, 24, 28, 30, 38, 43, 44, 47, 50, 51]. Significant variabil-
ity can also be observed with regards to follow-up intervals, 
which range from 6 months [24] to 2 years [50, 51]. The long-
est overall follow-up period was 6 years [51]. The majority of 
longitudinal studies are 2 time-point studies, with a select few 
assessing subjects across three timepoints [24, 47, 51]. Only 
one study evaluated participants up to four times longitudi-
nally [28]. T1-weighted structural MRI data were appraised 
in the majority (24) of presymptomatic imaging studies [28, 
37, 38, 40–43, 45–47], diffusion MRI data in 14 studies [7, 
8, 23, 27, 31, 33, 34] and functional MRI data in 6 studies 

Fig. 1  Number of studies identified by the core search criteria
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[25, 32, 36, 44, 49, 51]. MR spectroscopy was performed in 
one study [10] and one study used arterial spin labelling [39]. 
Two presymptomatic PET studies were identified [29, 35], one 
using flumazenil [35], and the other used fluorodeoxyglucose 
(F-FDG) [29] as a tracer. While many studies investigated 
a single parameter, 14 studies implemented a multi-modal 
approach [7, 23–26, 29, 32–34, 39, 49–51]. The majority of 
MRI studies were performed on a 3 T MRI platform [7, 8, 10, 
28, 33]. Seven studies relied on imaging data from a 1.5 T 
scanner [34] and of these, 5 were multi-site studies relying on 
mixed data from 1.5 T and 3 T scanners [31, 38, 40, 41, 44]. 
No ultra-high field (7 T) human presymptomatic studies were 
identified at the time of this review (Table 1).

Imaging findings in presymptomatic ALS

In C9orf72 hexanucleotide repeat expansion carriers, frontal 
[28], temporal, parietal, occipital [23], thalamic [25, 26], cer-
ebellar [26] and striatal [25] atrophy was consistently detected. 
Diffusion MRI captured reduced WM integrity in the corti-
cospinal tracts [8, 25], orbitofrontal regions [30], corpus cal-
losum, cingulum, uncinate and inferior longitudinal fasciculi 
[7, 25, 27]. Neurite orientation dispersion and density imaging 
(NODDI) is thought to be more sensitive in detecting white 
matter alterations than traditional DTI metrics [27]. A PET 
study of presymptomatic C9orf72 participants confirmed 
hypometabolism in frontotemporal, insular, thalamic and basal 
ganglia regions [29]. It is noteworthy, that some studies did not 
detect cerebral changes in asymptomatic C9orf72 carriers [24].

In asymptomatic SOD1 carriers, white matter degen-
eration was observed in the posterior limb of the internal 
capsule [34], reduced flumazenil binding in the left fronto-
temporal junction [35], and reduced NAA/Cr and NAA/Myo 
ratios in the superior spinal cord [10]. A multimodal study 
of seven asymptomatic SOD1 carriers found no significant 
abnormalities on diffusion tensor imaging and threshold 
tracking transcranial magnetic stimulation [33].

In asymptomatic mixed-genotype cohorts frontal, tem-
poral, parietal [48] and cerebellar [41] atrophy was noted 
as well as subcortical grey matter degeneration including 
the caudate [48], hypothalamus [31], and thalamus [41, 
48]. White matter alterations were observed in the anterior 
thalamic radiation [50]. Marked connectivity changes were 
detected by some functional MRI studies [32, 36], while oth-
ers identified functional resilience despite structural degen-
eration [44] (Table 1).

The clinical profile of mutation carriers

Accompanying clinical assessments

Most presymptomatic imaging studies incorporate a brief 
neurological assessment to screen for clinical signs [24, 27, 

29, 31, 32, 34, 35, 37, 49–51], but the details of the exam 
are seldom reported [8, 10, 25, 48]. In symptomatic patients, 
the revised amyotrophic lateral sclerosis functional rating 
scale (ALSFRS-r) [8, 10, 24, 31–33, 35], Medical Research 
Council (MRC) scale [33], Trigg’s hand function score [33], 
and composite upper motor neuron (UMN) scores [35] are 
typically administered. Nineteen out of 32 studies also com-
mented on neuropsychological performance. The battery of 
neuropsychological instruments varied greatly across the 
identified studies. Many studies used generic, non-ALS spe-
cific, screening tests such as the Mini Mental State Examina-
tion (MMSE) [7, 8, 24, 25, 27–29, 36, 38, 41, 42, 48–51], the 
Montreal Cognitive Assessment (MOCA) [47], the Frontal 
Assessment Battery (FAB) [7, 27, 48], the Clinical Demen-
tia Rating Scale (CDR) [47], or the Mattis Dementia rating 
scale (MDRS). Some centres relied on ALS-specific screen-
ing tools such as the (ECAS) [25, 29, 30], while others used 
an extensive battery of neuropsychological tests assessing 
memory, visuospatial, language, executive domains, anxiety 
and depression [25]. Some studies focused on specific cog-
nitive domains known to be preferentially affected in ALS, 
such as executive function. This was typically interrogated 
by digit span [42], Stroop test [26], trail making test (TMT) 
[36, 42, 47], fluency tasks [7, 26, 42], the Delis–Kaplan 
Executive Function System (D-KEFS) [24] or symbol digit 
modalities test (SDMT) [42]. Language was either assessed 
by the Boston naming test [7, 42] or the Wide Range 
Achievement Test (WRAT) [25]. Memory performance was 
appraised using the California Verbal Learning test (CVLT) 
and Benson figure recall [25] and other recall tests [7, 42]. 
Visuospatial function was assessed using the Benson fig-
ure and The Visual Object and Space Perception Battery 
(VOSP) [25]. Possible neuropsychiatric manifestations have 
been assessed by the Neuropsychiatric Inventory Question-
naire (NPI-Q) [25, 50], and depression has been screened for 
by the geriatric depression scale [25] or the Beck Depres-
sion Inventory (BDI) [25, 29]. While deficits in social cogni-
tion are recognised in symptomatic ALS, these are seldom 
assessed specifically in presymptomatic cohorts [30, 53–55]. 
Presymptomatic behavioural manifestations were evaluated 
by the revised Cambridge Behavioural Inventory (CBI-R), 
[28, 36, 42] and the Frontal Behavioural Inventory (FBI) [7, 
24, 48]. ALS-specific behavioural instruments [56, 57] were 
not applied to presymptomatic cohorts. Other instruments 
used in presymptomatic studies included the neuropsycho-
logical battery of the Uniform Data Set (UDSNB) and the 
Executive Abilities: Measures and Instruments for Neurobe-
havioral Evaluation and Research (EXAMINER) [47].

Clinical findings in presymptomatic cohorts

A study of presymptomatic C9orf72 carriers identified 
subtle deficits in executive functioning, verbal fluency [30] 
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and memory [29], while another study detected significant 
memory impairment [25]. Several studies found that MMSE 
scores are slightly lower in presymptomatic C9orf72 carri-
ers, but still within normal range [7, 25, 28, 29, 48]. Perfor-
mance on other tests such as the MDRS [7], FAB [7, 48], 
FBI [7, 48], Benson figure [7, 25], Boston naming test [7, 
25], Stroop, verbal fluency, and digit span [25] is thought to 
be relatively preserved and comparable to healthy controls.

Electrophysiology studies of asymptomatic 
mutation carriers

Presymptomatic mutation carriers at risk of developing ALS 
have also been extensively investigated by quantitative elec-
trophysiology tools (Table 2), such as motor unit number 
estimation (MUNE) [21, 22, 58], magnetoencephalography 
(MEG) [59], and transcranial magnetic stimulation (TMS) 
[33, 60–62]. Some of these studies also interrogated accom-
panying MRI data [33, 59, 62]. Asymptomatic C9orf72 [59, 
60, 62] and SOD1 [21, 22, 33, 58, 59, 61] mutation carriers 
are typically either compared to unrelated healthy controls 
[33, 59–61], gene-negative family members [62] or both [21, 
22, 58]. Longitudinal studies [21, 60, 62] followed patients 
for up to 3 years [21, 60] with a follow-up interval as short as 
6 months [21]. The number of total participants in presymp-
tomatic electrophysiology studies range from 52 [59] to 186 
[62] with up to 19 presymptomatic SOD1 [21, 58] and up 
to 11 presymptomatic C9orf72 [60] carriers included in any 
one study. The majority of these studies also include a group 
of symptomatic patients [21, 22, 59–61], and often symp-
tomatic mutation carriers [62]. Symptomatic patients were 
mostly ALS [21, 22, 59–61] or FTD patients [62], but one 
study also included PLS patients [59]. None of the reviewed 
studies included neurodegenerative ‘disease-controls’. The 
age profile of presymptomatic mutation carriers in elec-
trophysiology studies range from 40 [61] to 51.7 [59] but 
several studies did not report demographic data in detail. 
In presymptomatic electrophysiology studies, the presymp-
tomatic cohort was on average 10 years younger than the 
symptomatic cohort. On TMS, alterations in intracortical 
facilitation transmission are seen up to 3 decades before 
expected symptom onset [62]. One study showed that SICI 
was absent in only two presymptomatic SOD1 carriers and 
reduced in one [61]. A study investigating MUNE showed 
no changes in presymptomatic SOD1 carriers [22], but a 
follow-up study reported that 2 of 19 SOD1 carriers showed 
reduction in MUNE just months before the symptom onset 
[21]. Cortical hyperexcitability was detected in symptomatic 
C9orf72 carriers but not asymptomatic carriers [60]. Some 
electrophysiology studies report the clinical profile, includ-
ing MRC scores in presymptomatic cohorts [21, 58, 61] 
or ALSFRS-r in symptomatic patients [59–61]. Cognitive 

screening with ECAS [59] or MMSE [62] was also imple-
mented in some studies.

Biofluid studies of asymptomatic mutation carriers

In the era of ‘omics’ (proteomics, lipidomics, metabolomics 
etc.) biofluid markers are also increasingly evaluated in 
asymptomatic mutation carriers including neurofilament 
light (NfL) [63–65] or (NEFL) [66], neurofilament heavy 
(pNfH) [64, 65, 67] or NEFH [66], poly(GP) proteins [68, 
69], chitotriosidase-1 (CHIT1) [66, 67, 70], chitinase 3-like 
protein 1 (CHI3L1) [66, 67], chitinase 3-like protein 2 
(CHI3L2) [67], C-reactive protein (CRP) [67], mitochon-
drial DNA (mtDNA) [71], ubiquitin carboxyl-terminal 
hydrolase 1 (UCHL1) [66, 70], microtubule-associated pro-
tein 2 (MAP2) [66], macrophage-capping protein (CAPG) 
[66], glycoprotein non-metastatic B (GPNMB) [66], his-
tone cluster 1, H4 (HIST1H4A) [66], histone cluster 1, H2b 
(HIST1H2B) [66], neurofilament medium (NEFM) [66, 70], 
neuronal pentraxin receptor (NPTXR) [70]. Some studies 
focused on protein profiles in a single biofluid either in the 
CSF [66, 67, 69, 70] or serum [71], while others evalauted 
both CSF and serum [63–65, 68]. The most commonly used 
methods to quantify the concentration of these markers are 
enzyme-linked immunosorbent assays (ELISA) [64, 65, 67], 
electrochemiluminescence immunoassay (ECLIA) [63, 65], 
mass spectroscopy [66, 70], meso scale discovery-based 
immunoassay [68] and poly-GP immunoassay [69]. Some 
longitudinal studies, followed asymptomatic mutation car-
riers for over 3 years [63, 64], and in some studies controls 
were also assessed longitudinally [63, 64]. Most biofluid 
studies investigated asymptomatic SOD1 [63–66, 71] and 
C9orf72 [63–71] cohorts, but some included TARDBP [65, 
66] or FUS [65] mutation carriers. The biggest biofluid study 
included 84 subjects, including 52 SOD1 and 27 C9orf72 
hexanucleotide carriers among other mutation carriers [63]. 
All identified studies also concurrently assessed a sympto-
matic cohort of either ALS [63–70], ALS-FTD [68] or FTD 
[69] patients. Some studies included a PLS cohort [67, 68], 
as well as disease controls such as Alzheimer’s disease [68, 
69], Lewy body dementia [68], Parkinson’s disease [69], or 
Kennedy’s disease [67]. Mean age of asymptomatic muta-
tion carriers ranged from 39.7 [67] to 48.3 years [65]. Some 
biofluid studies screened for the presence of UMN and LMN 
signs [65]. In symptomatic patients, ALSFRS-r was invari-
ably recorded, and some studies also reported UMN [64, 
67], ECAS [64, 67] or FTD-CDR scores [69]. Presympto-
matic neurofilament studies are inconsistent; many did not 
detect elevated levels [65–67]. Altered protein profiles were 
identified by some studies [68–70], especially in the years 
preceding phenoconversion [63, 64] (Table 3).
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Lessons from other neurodegenerative conditions

Despite the clinical differences, frontotemporal dementia 
studies offer ample learning opportunities for ALS study 
designs. In addition C9orf72, other FTD-associated muta-
tions have been extensively investigated, including GRN 
[72–84], MAPT [75, 85–88] and CHMP2B [89–91] carriers. 
Mutation carriers were more commonly compared to gene-
negative first-degree relatives [72, 75, 76, 78–80, 88–91], 
but also to healthy controls [73, 74, 77, 81, 86, 87] or both 
[82, 84]. The average age of presymptomatic cohorts in FTD 

ranges from 31 [88] to 56 years [91]. Many of the reviewed 
studies also investigated a symptomatic cohort, but a few 
only focussed on their presymptomatic cohort [74–76, 84, 
87, 89–91]. Similarly to ALS, no studies included ‘disease 
controls’. Neuropsychological data was more commonly 
included than in ALS studies, including screening tests such 
as the CDR [72, 79–81], MOCA [72] and MMSE [73, 74, 
78, 82, 87], behavioural tools such as the FBI [78] and FAB 
[78], neuropsychiatric instruments such as the NPI [78, 82] 
or BDI [87], as well as executive [73–75, 82, 87], language 
[73, 74, 87], visuospatial [73, 82] and memory tests [73, 

Table 2  A selection of presymptomatic electrophysiology studies in ALS

Authors and year of publica-
tion

Study participants Clinical assessments Methods Significant findings in 
presymptomatic cohort

Benussi et al. 2019 [62] 4 presymptomatic C9orf72
48 presymptomatic GRN
61 symptomatic carriers
73 non carrier family 

members

Neuropsychological assess-
ment, CBI-R, MMSE, 
TMT

TMS, structural MRI -Biological changes and 
intracortical facilitation 
transmission abnormalities 
occur 3 decades before, fol-
lowed by intracortical inhi-
bition transmission deficits 
2 decades before expected 
symptom onset, followed by 
an increase of WM lesions, 
brain atrophy, and cognitive 
impairment

Proudfoot et al. 2017 [59] 10 presymptomatic SOD1
2 presymptomatic C9orf72
20 symptomatic carriers/

sporadic
20 healthy controls

Cognitive tests, ALSFRS-R, 
ECAS, ACE-R

MEG, structural MRI -Movement execution 
coincided with excess beta 
desynchronization

Geevasinga et al. 2015 [60] 11 presymptomatic C9orf72
88 symptomatic carriers/

sporadic
74 healthy controls

ALSFRS-R, MRC, UMN 
score

TMS-MEP, CMAP -Cortical hyperexcitability 
is an intrinsic feature of 
symptomatic c9orf72 but 
not asymptomatic

Aggarwal et al. 2012 [58] 19 presymptomatic SOD1
34 non carrier family 

members
16 healthy controls

Neurological exam, MRC MUNE -MUNE is more sensitive 
for monitoring disease 
progression than maximal 
voluntary isometric con-
traction (MVIC), as MUNE 
correlates with number of 
functional motor neurones

Vucic et al. 2008 [61] 17 presymptomatic SOD1
57 symptomatic carriers/

sporadic
55 healthy controls

Neurological exam, 
neuropsychological test, 
ALSFRS-R, MRC, Triggs 
hand function score

TMS - SICI was completely absent 
in 2 pre-symptomatic SOD-
1, in 1 subject there was a 
32% reduction in SICI

-These three individuals sub-
sequently developed clinical 
features of ALS

Aggarwal et al. 2002 [21] 19 presymptomatic SOD1
12 symptomatic sporadic
34 non carrier family 

members
23 healthy controls

Neurological exam, MRC MUNE -In 2 of 19 mutation carri-
ers, there was a sudden 
reduction in MUNE several 
months before the onset of 
weakness

Aggarwal et al. 2001 [22] 18 presymptomatic SOD1
12 symptomatic sporadic
34 non carrier family 

members
23 healthy controls

N/a MUNE -No detectable difference in 
the number of motor units
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82, 87, 88]. While a minority of studies investigated a sin-
gle imaging parameter [72, 80, 89], most studies presented 
structural data as well as diffusion [74, 75, 84, 86], func-
tional [73, 75, 77, 79, 81, 82] or PET data [76, 78, 85, 91]. 
Most of the longitudinal studies were two time-point stud-
ies [72, 74, 76, 87, 89–91], but one multi-timepoint study 
followed patients over 11 years [88]. Robust multi-centre 
initiatives such as Longitudinal Evaluation of Familial Fron-
totemporal Dementia Subjects (LEFFTDS) [72, 88] and The 
Genetic Frontotemporal dementia Initiative (GENFI) have 
been particularly successful at gathering large datasets. One 
of the most widely studied neurodegenerative condition in 
its presymptomatic phase is Huntington’s disease which has 
been extensively evaluated by structural [92–98], diffusion 
[95, 99] and functional [97, 100] MRI studies. These studies 
tend to be much larger than ALS studies and often include 
data from hundreds of participants [92, 94]. Multi-centre 
initiatives such as PREDICT-HD [92, 94], IMAGE-HD 
[93, 98] and TRACK-On HD [95, 97] have facilitated these 
robust collaborative studies. In presymptomatic Alzhei-
mer’s studies, APP [101–105], PSEN1 [101–107], PSEN2 
[101–105] and APOE4 [101, 104, 105, 108–110] mutation 
carriers were investigated with some studies including over 
300 participants [102, 103]. In presymptomatic Parkinson’s 
disease, LRRK2 [111–118], parkin [114, 118–120], PINK1 
[118], ATP13A2 [118] and SNCA [121] mutation carriers 
were evaluated. These studies are relatively smaller than 
those conducted in HD and AD, but can include as much as 
130 participants [118].

Discussion

Irrespective of their methodology and genetic focus, the 
majority of existing presymptomatic ALS studies have 
confirmed considerable biological changes before symp-
tom manifestation. They are also consistent in identifying 
changes in brain regions which are characteristically affected 
in symptomatic mutation carriers. The demographic analysis 
of existing C9orf72 studies highlights that mutation carriers 
in their 30 s already exhibit considerable structural degen-
eration, decades before typical symptom manifestation [7, 
8]. The considerable pathological changes detected in young 
mutation carriers raises questions about neurodevelopmen-
tal factors [6, 30, 122], but this could only be appraised 
if mutation carriers in their teens and twenties were also 
included subject to appropriate approvals and genetic coun-
selling. Existing studies suggest a relatively divergent imag-
ing signature in asymptomatic C9orf72 and SOD1 carriers, 
but in the absence of well-powered studies including large 
cohorts of both mutations, these genotype-specific traits are 
not firmly established. Nonetheless, the presymptomatic 
signature of C9orf72 seems to be associated with more Ta
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widespread frontotemporal and subcortical grey matter 
degeneration than those observed in association with SOD1 
[7, 27]. While the available studies are conceptually impor-
tant, stereotypical shortcomings can be readily identified. 
The sample size of asymptomatic mutation carriers in ALS 
imaging studies range from 2 to 83, which coupled with the 
considerable variation in the age of participants, prevents 
making conclusive observations regarding presymptomatic 
biology. The sample size limitations of presymptomatic ALS 
studies are particularly striking in contrast to the available 
AD and HD literature. The systematic review of the litera-
ture also highlights that in contrast to presymptomatic AD 
and HD studies, the majority of presymptomatic studies 
in ALS are single-centre, or national studies. Several ALS 
studies have included both SOD1 and C9orf72 carriers in 
a single presymptomatic group to demonstrate structural 
changes before symptom manifestation. However, with the 
emergence of ASO therapies, it seems paramount to describe 
genotype-specific changes in a specific presymptomatic 
mutation cohort rather than characterising admixed cohorts. 
The importance of defining genetically homogenous groups 
cannot be underestimated, as carriers of specific mutation 
may exhibit different rate of progression and anatomical 
involvement. The strategy to ascertain presymptomatic 
changes also varies considerably in ALS studies; some 
research groups contrast their presymptomatic cohort to 
healthy controls alone, others to symptomatic patients, and 
others to gene-negative family members. Another common 
problem is the selection of symptomatic patients. Including 
a symptomatic patient cohort in presymptomatic studies is 
particularly useful if they carry the same mutation as the 
presymptomatic cohort, but the inclusion of a mixed gene-
positive and gene-negative sporadic patients, or symptomatic 
patients without genetic profiling hinders data interpretabil-
ity. If the symptomatic cohort carries the same mutation, 
their “affected” brain regions can be specifically evaluated 
in the presymptomatic group in targeted region-of-interest 
analyses. Another potential shortcoming of existing studies 
is the lack of disease controls which makes it difficult to 
appraise how specific the findings are to ALS or to a given 
genotype. For example, corpus callosum degeneration is 
regarded as pathognomonic of ALS by the ALS research 
community, despite being observed in a range of other condi-
tions such as HSP to AD. Similarly, increased neurofilament 
levels were observed in a number of presymptomatic ALS 
studies, but they are also raised in many other neurological 
conditions. If no disease-controls are included, the specific-
ity of a biomarker to ALS is impossible to assess and its 
ability to distinguish between neurodegenerative processes 
remain questionable. For example, if a proposed biomarker 
such as CSF neurofilaments, corticospinal tract FA or a TMS 
parameter is similarly affected in ALS, PLS and CBD, it 
will not distinguish between these conditions rendering their 

diagnostic value relatively limited. In real-life clinical sce-
narios, the question is seldom whether a patient is healthy 
or not, the question is typically whether the constellation of 
symptoms presage ALS or PLS or CBD, as these conditions 
carry distinctly different prognoses. Not only existing studies 
do not include disease controls, they do not include other 
motor neuron disease phenotypes either. This seems like a 
missed opportunity. The inclusion of relatively pure UMN 
and LMN phenotypes, such as adult SMA or PLS may help 
to gauge the sensitivity of a proposed marker to the UMN 
versus LMN system [123–125]. Another contentious aspect 
of existing studies is the generalisation of observations from 
small presymptomatic C9orf72 and SOD1 cohorts as rep-
resentative of presymptomatic ALS as a whole. Depend-
ing on the population, the vast majority of ALS patients 
test negative for ALS-associated mutations and are seem-
ingly sporadic. Accordingly, the presymptomatic phase of 
sporadic patients remains a conundrum and may differ in 
anatomical involvement and chronological dynamics from 
the traits observed in C9orf72 or SOD1. This also applies 
to PLS, which is not closely linked to single mutations and 
very little is known about cerebral and spinal disease bur-
den prior to symptom onset. PLS exhibits overlapping albeit 
UMN predominant clinical and radiological characteristics 
with ALS [123], and in the absence of specific mutations to 
carry out presymptomatic studies, research groups attempted 
to characterise ‘early’ symptomatic cohorts before fulfill-
ing diagnostic criteria [124, 126]. These therefore cannot 
be regarded as presymptomatic studies, rather pre-diagnosis 
studies of suspected cohorts. The lessons of these studies 
can be integrated in future ALS studies, namely that gene 
negative ‘suspected ALS’ patients should also be included in 
imaging and biomarker studies in an attempt to characterise 
early pathology in sporadic cohorts. Additionally, presymp-
tomatic gene-positive cohorts should be followed beyond 
symptom manifestation and at least until they fulfil current 
diagnostic criteria for ALS. Characterising disease burden 
by quantitative imaging, electrophysiology and wet bio-
marker protocols at the time of fulfilling diagnostic criteria, 
may help to highlight the limitations of existing diagnostic 
criteria. The refinement of diagnostic criteria may enable 
an earlier diagnosis in suspected patients and in turn earlier 
inclusion in clinical trials. One aspiration would be the intro-
duction of ‘radiologically-supported ALS’ based on objec-
tive radiological variables. Another important question is the 
optimal timing ASO therapy. Once brain and cord pathol-
ogy is detected and electrophysiology changes ascertained 
in mutation carriers there may be an argument to introduce 
therapy early before widespread irreversible changes ensue. 
Existing presymptomatic studies also raise important ques-
tion re: motor reserve. The observation that both electro-
physiology and MRI detects considerable pyramidal tract, 
motor cortex and spinal cord degeneration long before 
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projected symptom manifestation suggest a degree of net-
work resilience or redundancy. A simplistic interpretation 
may be that compensatory processes and redundant net-
works offset degenerative changes until a critical threshold 
is reached.

While cross-sectional studies have provided pioneering 
insights, they provide limited information on progressive 
changes as they average radiological signatures across dif-
ferent age groups. With few exceptions [7], existing pre-
symptomatic studies in ALS rely on convenience samples 
of asymptomatic mutation carriers with considerable dis-
persion in their demographic profile. For the meaningful 
analysis of early alterations, demographically homogenous 
samples would be desirable. Longitudinal studies have 
the potential to provide a nuanced picture of progressive 
changes; map anatomical propagation patterns, progres-
sive functional alterations and evolving CSF/serum signa-
tures overtime. However these studies should also ideally 
recruit demographically homogenous cohorts. The limita-
tions of two timepoint longitudinal designs are also clear, 
as these don’t permit the modelling of non-linear changes 
and the assessment of ceiling- and flooring-effects [127]. 
The lessons of large AD and HD studies also apply here, 
namely that large multi-timepoint designs are necessary to 
characterise progressive structural degeneration in ALS. A 
limitation of existing longitudinal presymptomatic studies 
in ALS is that mutation carriers are seldom followed until 
phenoconversion or beyond. The availability of radiologi-
cal, electrophysiology or wet biomarker panel in mutation 
carriers before and after symptom manifestation would 
also permit the evaluation of prognostic indicators. There 
are two practical deliverables which were not addressed 
by existing studies, both of which seem relevant for indi-
vidualised patient care and future pharmacological trials. 
One of them is the estimation of projected age of symp-
tom onset based on disease burden in the presymptomatic 
phase. This would be possible if mutation carriers would 
be meticulously followed until symptom manifestation. The 
other practical aspect of presymptomatic studies pertains 
to C9orf72 from a phenotype point-of-view; namely can 
patterns of cerebral or spinal cord involvement be used to 
predict if an individual GGG GCC  repeat expansion carrier 
is more likely to develop FTD or ALS (ALS-FTD). Clinical 
and radiological data have been previously used to build 
prognostic models for individual symptomatic patients, but 
these are yet to be applied to presymptomatic individuals 
[128–131]. These observations highlight another shortcom-
ing of existing presymptomatic studies in ALS; with very 
few exceptions [8, 10] nearly all presymptomatic radiology 
studies are brain studies. Spinal cord involvement is a key 
aspect of ALS, which encompasses anterior horn (LMN) and 
descending pyramidal tract (UMN) degeneration and is now 
readily detected by novel imaging applications [132, 133]. 

Given the availability of robust quantitative spinal protocols, 
these should be carefully integrated into future presympto-
matic studies to assess if they detect changes earlier than 
brain protocols and if they can presage age of onset, site of 
onset, or UMN/LMN predominance. It is conceivable that 
a hexanucleotide carrier with ample extra-motor cerebral 
involvement with no spinal cord abnormalities is more likely 
to develop FTD, than ALS, but unless such studies are con-
ducted and patients followed until disease manifestations 
the predictive value of presymptomatic imaging is difficult 
to gauge. The practical deliverables of robust presympto-
matic studies therefore include phenotypic prediction, age 
of onset estimation and optimising the timing of pharma-
cological interventions Table 4. Very few presymptomatic 
studies report negative or unexpected findings [33, 60]. The 
candid reporting of negative results is hugely important as 
they either reveal genotype-specific traits or reflect on the 
detection sensitivity of the methods implemented. Similarly, 
the comparative evaluation of several imaging metrics in the 
same cohort is helpful to appraise the detection sensitivity 
of specific methods. Some pioneering spectroscopy stud-
ies for example did not perform accompanying structural 
assessments and vice versa [10]. With the current imaging 
technology at our disposal the detection of white and grey 
matter alterations in symptomatic ALS cohorts is no longer 
challenging [134, 135], but the concomitant implementation 
of several imaging modalities in the presymptomatic phase 
enables the critical comparison of various techniques. For 
example NODDI is thought to be superior to characterise 
white matter degeneration in presymptomatic cohorts than 
standard DTI [27]. Multimodal longitudinal imaging in 
presymptomatic cohorts may additionally help to establish 
if certain imaging indices exhibit early ceiling effect [127] 
which would limit its utility to track the post-symptomatic 
changes in clinical trials [136]. Robust presymptomatic stud-
ies can also deliver on important academic objectives. A 
myriad of environmental factors have been proposed in ALS 
which could be objectively evaluated in vivo if mutation car-
riers were tracked from a young age over multiple timepoints 
and environmental factors would carefully recorded.

Conclusions

From an academic perspective, presymptomatic studies 
offer invaluable learning opportunities to study propaga-
tion patterns, characterise early genotype-associated sig-
natures, assess functional resilience, explore concepts like 
“motor reserve” or “cognitive reserve”, and evaluate neu-
rodevelopmental or environmental factors. However, with 
the advent of ASO therapies, the meticulous study of pre-
symptomatic cohorts in ALS gained practical relevance and 
unprecedented urgency. Future studies have to be designed 
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to address specific clinical objectives such as informing 
the timing of pharmacological interventions, monitoring 
response to therapy, validating phenotypic indicators, and 
develop novel, biomarker-supported diagnostic criteria to 
facilitate earlier entry in clinical trials.
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