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Abstract
Stroke, a global disease with a high disability rate, has limited options for functional rehabilitation and results in an adverse 
impact on patients’ lives. In recent years, mesenchymal stem cells (MSCs) have become a new focus of treatment owing to 
their potential for neuroregeneration. MSCs have demonstrated therapeutic efficacy capable of cell migration, angiogenesis, 
immunomodulation, neuroprotection and neural circuit reconstruction. The paracrine action of MSCs can also exert neuro-
trophic effects and improve the functional recovery. This review shows the transplantation protocol for MSCs, discusses the 
potential therapeutic mechanisms, and summarizes clinical trials on MSCs for treating ischemic stroke. The current proofs 
show that MSC therapy for ischemic stroke is safe and feasible. The timing and optimal dose of MSC administration are 
the main challenges in its clinical use. Although still under research, MSC therapy has the potential to be a new therapeutic 
approach for neurological recovery from ischemic stroke in the future.

Keywords  Stem cell · Mesenchymal stem cell · Cell therapy · Ischemic stroke · Cerebral vascular disease · 
Neuroregeneration

Stroke is one of the three major diseases causing the high-
est lethality and disability rate globally [1]. Current man-
agement for acute ischemic stroke consists of intravenous 
thrombolysis and endovascular recanalization [2]. However, 
given the short therapeutic window, many patients failed to 
receive the necessary treatment and developed lifelong dis-
abilities [3]. Current treatments have rarely been effective 
in neurogenesis and functional recovery during the chronic 

phase, resulting in an adverse impact on patients’ lives and 
socioeconomic conditions [4].

Therefore, neuroregenerative approaches are being devel-
oped to facilitate the repair of damaged neural networks 
and reduce the risk of disability from ischemic stroke [5]. 
Advances in regenerative medicine indicated the possibility 
of tissue repair and functional improvement. Stem cell ther-
apy is a promising therapeutic strategy for ischemic stroke, 
owing to the stem cells’ capacity of self-renewal, homing, 
and multi-lineage differentiation [6]. The stem cells used 
for this purpose include mesenchymal stem cells (MSCs), 
neural stem cells (NSCs), embryonic stem cells (ESCs) and 
induced pluripotent stem cells (iPSCs) [7].

In this review, we focus on MSCs. MSCs are defined as 
cells that can self-renew and develop the characteristics 
of mesenchymal tissues [8]. MSCs can be obtained from 
the bone marrow, muscle, dental pulp, adipose tissue, or 
umbilical cord [9–13]. The ability of orientable differentia-
tion makes MSCs an ideal cell source for nerve regeneration 
[14]. Meanwhile, sufficient evidence has shown that MSCs 
promote recovery through angiogenesis, secretion of neu-
rotrophic factors, inhibition of apoptosis and modulation 
of the immune system [15–20]. MSCs administration can 
help reconstruct function area [21], promote synaptogenesis 
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and stimulate nerve regeneration [22]. In clinical research, 
the potential tumorigenic risks limit the utility of ESCs 
and iPSCs [23–25]. The unique immunomodulatory effect 
of MSCs can modulate inflammatory response caused by 
ischemic stroke, thereby reducing brain tissue damage. 
These factors make MSCs the focus of stem cell studies. 
Here, we review the research progress on MSC therapy, 
especially the therapeutic mechanisms in functional recov-
ery. We also discuss the experimental evidence and clinical 
trials on the use of MSCs in ischemic stroke patients and 
prospect the future direction of MSC research.

The Mesenchymal and Tissue Stem Cell Committee 
of the International Society for Cellular Therapy (ISCT) 
defined the minimum criteria for MSCs as follows:

	 (i)	 Isolated cells showing adherence to plastic in culture.
	 (ii)	 Cells expressing mesenchymal or endothelial surface 

markers (CD73, CD90, and CD105) and negative 
for hematopoietic markers (CD11b, CD14, CD19, 
CD34, CD45, CD79α and HLA-DR).

	 (iii)	 Ability to differentiate into osteoblasts, adipocytes, 
and chondroblasts in vitro [26–28].

Recent studies identify several new markers, such as 
SSEA1/4, CD44, CD146, and CD271. And CD271 is con-
sidered one of the most specific MSC markers [29–32]. 
These surface markers are related to the stemness within 
MSCs and contribute to the identification of MSCs in vivo. 
The identification by markers can improve the purity of 
MSCs than isolation based on traditional plastic adherence. 
MSCs differentiate into neural cells by expressing neuronal 
markers (NeuN and MAP-2) and migrate to brain lesions 
[33–37]. Meanwhile, MSCs can also play a regenerative role 
by secreting a variety of paracrine factors, such as vascular 
endothelial growth factor (VEGF), hepatocyte growth fac-
tor (HGF), brain-derived neurotrophic factor (BDNF), glial-
derived neurotrophic factor (GDNF), and fibroblast growth 
factor (FGF) [38–42]. In preclinical studies, MSC transplan-
tation has been found to be a safe and recommended recov-
ery strategy for treatment.

Principles of mesenchymal stem cell (MSC) 
therapy

Generally, MSC transplantation is carried out by intrac-
ranial and intravascular methods. The main intracranial 
methods are stereotactic injection and intraventricular 
injection [43]. Stereotactic injection helps transport the 
MSCs to the infarction area directly. This method requires 
high precision to reach the target area [44]. Intraventricu-
lar injection distributes MSCs to a wider range of cerebral 

regions. The therapeutic efficacy in such cases depends on 
the number of cells [45].

Intravascular methods include intravenous and intra-
arterial injection. The level of inflammatory cytokines 
increases after infarction attracting MSCs to the center of 
the ischemic area [46]. MSCs by intravenous injection are 
difficult to pass through pulmonary vessels due to the large 
volume, and few cells are able to reach the target area [47]. 
Intra-arterial injection through the internal carotid artery 
can deliver MSCs in a short time. However, intra-arterial 
injection may cause occlusion of the end arteries in the 
brain [48, 49].

Intracranial transplantation may cause mechanical dam-
age, but it is better at transporting the cells to the target 
sites than other methods. Intravascular transplantation 
requires more cells and is better for large infarctions than 
intracranial method. In clinical applications, intravascular 
delivery is easier to perform than the intracranial method.

Intranasal injection, a new transplantation method, 
needs further research [50]. Cells can be transported from 
the nasal mucosa to the injured area by blood circulation 
[51]. Intranasal injection, as a noninvasive method, could 
be a prospective method of cell transplantation [52, 53].

Recent studies have shown that extracellular vesicles 
(EVs) derived from MSCs have therapeutic effects com-
parable to those of direct cell transplantation. EVs can 
reduce neuroinflammation, enhance angiogenesis, and 
increase neurogenesis. Compared to MSCs transplanta-
tion, EVs show unique advantages in stroke treatment, 
such as no first-pass effect, ability to pass the blood–brain 
barrier (BBB), and ability to reduce the risk of cell-related 
infarction. EVs therapy is a new therapeutic approach for 
neuroprotection in acute ischemic stroke [54–56].

Although there are clinical trials of MSCs in ischemic 
stroke treatment, there is still no consensus on the opti-
mal dose in cell therapy. Currently, the recommended dose 
for clinical trials is 1–2 × 106/kg of weight [57, 58]. Fur-
thermore, it is still questionable whether the MSCs dose 
should be personalized according to the infarct size.

The different phases of pathological ischemic process 
offer different targets for MSC therapy. In the early phase, 
MSC delivery may reduce the inflammatory response, 
regulate the dynamic environment against toxicity, and 
decrease the injury in the peri-infarct area. At 2–3 weeks 
after ischemia, late cell transplantation can modulate the 
reparative processes in favor of angiogenesis and neuro-
genesis [59]. Clinically, MSCs administration has been 
found to be safe in stroke populations in early-phase trials 
[60, 61]. However, the effectiveness of MSC therapy in 
subacute and chronic ischemic stroke has yet to be vali-
dated. Therefore, the optimal timing of administration 
needs further evaluation.
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Therapeutic mechanisms of MSC therapy

MSCs can differentiate into neurons and glial cells to 
repair structural damage [62, 63]. However, MSCs lack 
the voltage-gated ion channels expressed in functional 
nerve cells for generating action potentials [64]. Thus, 
direct cellular replacement may not be the primary method 
for achieving a therapeutic effect. Currently, many stud-
ies show that the paracrine actions of MSCs exert neuro-
trophic effects, improving the functional benefit directly or 
indirectly. Paracrine signaling may be the main condition 
for the recovery process [65–67].

Reparative mechanisms of MSCs mainly include cell 
migration, angiogenesis, immunomodulation, neuroprotec-
tion and neural circuit reconstruction.

Cell migration

Most of the current MSC trials use intravascular deliv-
ery methods. Therefore, MSCs need to cross the BBB to 
migrate towards the target regions. The BBB is composed 
of endothelial cells (ECs), basal layer, pericytes, and astro-
cytes. Tight junctions between ECs and membrane trans-
port proteins make the BBB a selective barrier. Influenced 
by ischemic stroke, the junctions between ECs disrupt, 
leading to paracellular permeability elevation. MSCs 
engage with ECs by multistage homing cascade, includ-
ing selectin-mediated rolling, integrin-associated adhe-
sion, and chemokine-directed migration. MSCs release 
CXCL-11 and bind with CXCR-3 on ECs. This can acti-
vate ERK1/2 signaling and open the tight junctions [68]. 
Moreover, activating PI3K/Akt and inhibiting Rho/ROCK 
signaling lead to the disassembling of tight junctions and 
opening of paracellular pathways for MSCs transmigra-
tion [69]. The interactions between vascular EC adhesion 
molecule (VCAM)-1 and very late antigen (VLA)-4 also 
regulate the passage across the barrier [70]. However, 
some studies have found that the transmigration action of 
MSCs is independent of VCAM-1 [71]. The mechanism 
and molecular pathway in the passage of MSCs across the 
BBB need further clarification.

MSCs migration is usually achieved by responding to 
different chemotactic signals. In the infarct zone, micro-
glia and astrocytes secrete chemokines such as SDF-1 in 
the surrounding environment. The expression of CXCR-4, 
as the physiological receptor for SDF-1, increases on the 
surface of MSCs [72]. The interaction between SDF-1 and 
CXCR-4 mediates cell migration [73]. Recent studies show 
that CXCR-7 may exert a synergistic effect with CXCR-4 
in promoting MSC migration [74]. Valproate can promote 
MSCs migration by inducing CXCR-4 overexpression, 

and lithium can upregulate MMP-9 to enhance chemot-
axis [75]. MSCs are mainly transported to the ischemic 
penumbra and subventricular zone in response to chemot-
actic signals, including those of MCP-1 and MIP-1a [76].

In addition, c-Met signaling induces MSC migration to 
the damaged areas [77]. Recent studies have shown that 
overexpression of neurogenin-1 can increase the homing 
ability of MSCs and enhance the engraftment efficiency in 
the ischemic area [78].

Angiogenesis

MSC transplantation can improve revascularization in the 
ischemic zone, resulting in recovery effects. MSC infusion 
can enhance microvascular regeneration [79]. Reformation 
of neurovascular units can be beneficial to neuronal regen-
eration and functional recovery in ischemic regions [80–84]. 
The trophic factors secreted by MSCs such as VEGF, induce 
the formation of immature vessels [81, 85–87]. Other growth 
factors secreted by MSCs, including BDNF, IGF-1, GDNF, 
bFGF, Ang-1, and Ang-2, probably contribute to enhanced 
angiogenesis in the ischemic core and border zone [88–94]. 
However, VEGF may induce the increased vascular perme-
ability in the BBB causing cerebral edema [95]. In contrast, 
the anti-edemic effect of Ang-1may counteract vessel leak-
age [96]. Meanwhile, Ang-1 can specifically combine with 
Tie-2 on vascular endothelial cells, phosphorylate Tie-2, and 
promote the maturation and stability of new blood vessels 
[89]. Ang-1 plays an important role in neovascularization.

In preclinical models, MSCs were found to differentiate 
into endothelial cells and activate endothelial progenitor 
cells that can enhance the proangiogenic effect. Notch sign-
aling pathway [97, 98] and mitochondrial nanotube trans-
portation [99] are considered the key mechanisms of MSC-
induced angiogenesis. Angiogenesis increases the blood 
flow in the brain tissue, which is beneficial for endogenous 
neurogenesis. MicroRNAs (miRNAs) are also important for 
angiogenesis. Recent trials showed that miRNA-210 was 
associated with angiogenesis promotion [100].

Immunomodulatory effects

In comparison with other types of stem cells, MSCs have 
immunomodulatory effects that mediate immune responses. 
Inflammatory cell proliferation reduced after coculture with 
MSCs in vitro [101]. Leukocytes gather in the infarct zone 
after stroke. The strong inflammatory response leads to sec-
ondary nerve cells apoptosis [102]. MSC transplantation can 
modulate the immune response by inhibiting cytotoxic T 
cells and promoting regulatory T cells [103–105]. MSCs 
suppress maturation and secretion of B-cell antibodies. 
MSCs reduce the cytotoxicity of immune cells and antibody 
secretion [106, 107].
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In addition to immune cells modulation, MSCs pro-
mote immunosuppression by regulating the expression of 
cytokines. TGF-β secreted by MSCs can block the upregu-
lation of MCP-1 and the infiltration of CD68 + cells [108]. 
Meanwhile, MSCs attenuate astrocyte reactivity by increas-
ing the expression of IL-10 and decreasing the expression 
of TNF-α [109, 110]. Inhibition of TNF-α has been shown 
to limit monocyte maturation, resulting in the lack of anti-
gen-presenting functions in dendritic cells [111]. Although 
several growth factors and cytokines are involved in MSC-
mediated immunomodulatory including IL-6 [112], IL-23/
IL-17 [113], MMP2, TGF-β1, HGF, NGF, pGe2, TLR-4, 
and RAGE [114, 115], the underlying mechanisms have yet 
to be validated.

Neuroprotection

MSCs can also exert neuroprotective effects, inhibit apop-
tosis and promote endogenous repair. MSCs increase the 
expression of neurotrophic factors, achieving neuroprotec-
tive effect directly and/or indirectly, such as VEGF, GDNF, 
BDNF, NGF, IGF-1, HGF, EGF, and bFGF [58, 92, 116, 
117]. BDNF interacts with tyrosine kinase receptors promot-
ing neuronal survival [118]. IL-10, as an anti-inflammatory 
cytokine, induced immune tolerance in preclinical models 
[119]. MSCs increase the expression of IL-10 [120], which 
can inhibit microglial activation, reduce inflammatory 
cytokine expression (IL-1β, IL-6 and TNF-α), and subse-
quently decrease neuronal degeneration after stroke [112].

In the acute phase of ischemic stroke, the microglia 
can help reduce brain damage. However, excessive micro-
glia activation or sustained immune response can lead to 
apoptosis. CXC3CL1 secreted by MSCs has been found to 
induce the production of the neuroprotective phenotype of 
the microglia and suppress neurotoxic microglia activity 
[121]. MSCs can effectively suppress activated microglia 
and inhibit apoptosis. Apoptotic response to the astrocytes 
reduced and bFGF expression increased in rat models after 
MSC transplantation [122, 123]. A recent study showed that 
MSCs can activate miRNA-29b-3p mediated Akt-dependent 
anti-apoptotic cascade and inhibit apoptosis [124].

Neural circuit reconstruction

Several mechanisms are involved in MSC-mediated neural 
circuit reconstruction of the infarct zone and boundary area, 
including neurogenesis inducement [86], axonal sprout [125, 
126], and synaptogenesis enhancement [127].

Endogenous neurogenesis and axonal plasticity may be 
the basic mechanisms by which MSCs improve the neu-
rological function after ischemic stroke [80, 114]. Axonal 
sprouting increases the link between different cerebral areas, 
thus reconstructing neural connections. t-PA activation [125] 

and PAI-1 downregulation [128] in the boundary area can 
promote axonal formation and establishment of synaptic 
connections. In addition, MSCs crosslink peripheral cells, 
astrocytes, and endothelial cells to repair the BBB [129] and 
establish a microenvironment promoting neurogenesis and 
neural circuit recovery.

MSCs can stimulate the production of TGF-β activating 
the multiplication of endogenous neural stem cells located 
in the hippocampus and subventricular zone [130, 131]. 
Neuroblast migration induced by MSCs [114] enhances the 
survival of cortical cells in the peri-infarct zone and helps 
repair the neural network [126, 132]. The expression of IL-6 
increases in the ischemic penumbra via the nuclear factor 
kappa-B signaling pathway [133]. This can activate resi-
dent stem cells and promote endogenous repair. Meanwhile, 
angiogenesis induced by MSCs promotes endogenous neuro-
genesis; miRNA-184 promotes neurogenesis after ischemic 
stroke [100].

Moreover, the paracrine actions of MSCs can stimulate 
neurogenesis. MSCs promote the expression of synaptic 
vesicle protein and BDNF which induce the differentiation 
of astrocytes and synaptogenesis directly or indirectly [134, 
135]. However, the molecular mechanism of MSC-induced 
neural plasticity requires further research.

Preclinical trials

MSCs have the multidirectional differentiation potential, 
e.g., osteoblasts, chondrocytes, adipocytes and neurons 
[62]. The beneficial effects of MSCs include neural lineage 
trans-differentiation, neurogenesis, angiogenesis induction 
and synapse formation. Therefore, MSCs are suitable for 
treating ischemic stroke and preclinical studies.

Researchers found that both allogeneic and heterogenetic 
MSCs produced a significant recovery in middle cerebral 
artery occlusion (MCAO) models. In an early preclinical 
trial, researchers tested the therapeutic efficacy of MSCs in 
the MACO rat model. Approximately 21% of bone marrow-
derived MSCs (BMSCs) were distributed in the MCA ter-
ritory after intracarotid arterial injection. The treated rats 
exhibited functional improvement as compared with con-
trols [88]. Then, the same team carried out research on the 
treatment of rats with ischemic stroke rats using intravenous 
injection of human MSCs. The researchers observed signifi-
cant functional recovery in the treated rats. The expression 
of BDNF and NGF increased in the ischemic tissue, and 
the level of apoptosis reduced in the penumbral area. The 
proliferation of endogenous neural stem cells and the forma-
tion of new cells occurred in the subventricular area [122].

Although MSCs have the ability to cross the BBB, a lim-
ited number of cells can migrate to the ischemic boundary 
sites. Several studies have shown that despite a small number 
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of MSCs migrating to the injury site, the trophic factors and 
cytokines secreted by MSCs have a therapeutic effect [136].

Paracrine secretion

After MSCs injection, cells migrate to the infarct zone and 
differentiate into neuronal, glial, and endothelial cells to 
enhance neuroplasticity. However, the paracrine action of 
MSCs can also induce the regenerative process by increas-
ing the level of growth factors or receptors, such as VEGF, 
NGF, EPOR, TROY, RAGE, and neuropilin. Meanwhile, 
cytokines or chemokines (IL-13, MMP2, and MIP) are mod-
ified after MSC administration [137].

In the ischemic hemisphere, β1-integrin could promote 
angiogenesis and increase blood supply to the local cortex. 
In addition, SDF-1, GDNF, and BDNF expression increased 
significantly after MSC therapy [138]. IGF-1 plays an 
important role in neurological recovery. The expressions 
of IGF-1 and IGF-1 receptor (IGF-1R) in MSC-treated rats 
significantly increased in the ischemic brain tissue. IGF-1 
is associated with neurogenesis due to MSC transplantation 
[139].

Genetic modification with exogeneous cytokines can 
enhance the roles of MSCs. In a preclinical trial, MSCs 
transfected with the Ang-1 gene led to significantly more 
functional recovery than uninfected MSCs in MCAO rat 
models [89]. To enhance the recovery effect, the research 
team transfected MSCs with the Ang-1 and VEGF genes. 
The Ang-VEGF-MSCs showed the greatest structural–func-
tional recovery in all groups [140]. Exogenous gene transin-
fection has been suggested to enhance the therapeutic effect 
of MSCs. Combined gene transfection in MSC therapy rep-
resents a new strategy.

Angiogenesis and neurogenesis

The multidirectional differentiation potential of MSCs 
causes their trans-differentiation into endothelial cells and 
neural cells. Angiogenesis and neurogenesis constitute the 
mechanisms of structural repair. In rats with ischemic stroke, 
MSC transplantation may produce functional recovery by 
inducing angiogenesis [80]. The expression of endogenous 
growth factors increased after MSCs transplantation and 
induced the formation of small vessels in the infarct bound-
ary, including VEGF, EGF, and bFGF [90, 141]. The infarct 
volumes of MCAO rats reduced after MSC therapy. MSCs 
induced the proliferation of subventricular zone cells, which 
may promote endogenous neurogenesis [92]. It significantly 
reduced the mortality of the rats and facilitated behavioral 
and neurological recovery. MSCs promote the reconstruction 
of the neurovascular units and recovery of brain function 
[142].

Immunomodulation and neuroprotective effect

The immunomodulation and neuroprotective effects of 
MSCs are the basic mechanisms that reduce secondary brain 
injury after ischemic stroke. MSCs suppress the activation 
of microglia and delay neuronal death [143]. Besides sup-
pressing microglial activation, MSCs induced an increase in 
IL-10 expression and reduction in neuronal apoptosis in the 
peri-infarct area of MACO rats [144]. MSCs can inhibit the 
production of CD4+ and CD8+ T cells and promote the pro-
duction of regulatory T cells [145]. Meanwhile, MSCs can 
significantly inhibit expressions of Bax, caspase-3, IL-18, 
TLR-4, and PAI-1 [114, 146].

Heterogeneity

MSCs from different sources share morphological, regenera-
tive, and immunomodulatory characteristics [147]. However, 
these cells show variations in other features such as par-
acrine functions and neurogenic potential. Adipose-derived 
MSCs (AD-MSCs) secrete more VEGF, HGF, and TGF-β 
[148, 149] than BMSCs. Meanwhile, the conditioned media 
of AD-MSCs have higher levels of MMP3 and MMP-9 and 
enhance angiogenesis [150].

Clinical trials

Safety is the primary concern in stem cells application in 
clinic. Currently, almost all studies showed no cases of acute 
toxicity, thromboembolism, abnormal cell growths, neuro-
logical deterioration, or death after MSC transplantation. 
Transient febrile reaction was the only side effect related 
to cell administration [151, 152]. MSCs are easy to obtain 
and proliferate. The immunomodulatory characteristics and 
potential of nerve regeneration make MSCs the ideal candi-
date for clinical therapy.

Safety and efficacy

In a study of autologous BMSCs, 30 patients with ischemic 
stroke were divided into an MSC group (n = 5) and control 
group (n = 25). The patients in the MSC group received an 
intravenous infusion of 1.0 × 108 cells. During the 12-month 
follow-up period, the Barthel index and modified Rankin 
Scale (mRS) score of the MSC group improved consistently 
as compared to the scores of the control group [153]. This 
shows the safety of MSC transplantation and improvement 
in patients’ neurological condition. Another clinical trial 
evaluated the safety and feasibility in stereotactic implanta-
tion of autologous BMSCs. This study recruited five patients 
with cerebral infarction. No adverse events occurred in this 
study, and improvements were observed in the neurological 
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recovery [154]. However, due to the limited sample size of 
the two trials, it is difficult to obtain conclusive results.

In a recent randomized controlled trial (RCT), 16 of 
31 patients accepted autologous MSCs therapy. During 
the 2-year follow-up, the MSCs group showed significant 
improvements in motor National Institute of Health stroke 
scale (NIHSS), motor Fugl-Meyer score, and task-related 
fMRI activity in the primary motor cortex. The result shows 
that MSC treatment for subacute ischemic stroke was safe 
and feasible. MSCs improved functional recovery via sen-
sorimotor neuroplasticity [155].

Long‑term efficacy

Some researchers explores whether MSCs can maintain their 
therapeutic effect over time. In a 5-year follow-up clinical 
trial, researchers randomly allocated 85 patients to the MSC 
group and control group. The MSC group received intra-
venous autologous MSCs. They were followed for 5 years; 
finally 52 patients were examined. Compared with the con-
trol group, in the MSC group, mRS score decreased and the 
number of patients with mRS score 0–3 increased signifi-
cantly. The clinical recovery may be associated with SDF-1 
serum levels and subventricular region involvement of the 
lateral ventricle [156].

Efficacy of different transplantation routes

One study examined the effectiveness of different adminis-
tration methods used in MSC transplantation. The research-
ers found that intra-arterial infusion led to higher biologi-
cal distribution than intravenous delivery. This study also 
assessed the safety and efficacy of catheter delivery. They 
recruited four patients with stroke (ischemic stroke three; 
hemorrhagic stroke (1). The patients received a single dose 
of 2 × 107 umbilical cord MSCs. The researchers infused 
the cells to the M1 segment of the MCA via catheteriza-
tion. Muscle strength and mRS score improved in the two 
ischemic stroke patients. However, these two patients expe-
rienced ischemic stroke again at 3 and 6 months after MSCs 
infusion [157], probably due to the short-term effects of stem 
cell therapy.

Different sources of MSCs for cell therapy

Commonly, BMSCs are selected for trials, but the procure-
ment is difficult and the cell number is limited. Compared 
to BMSCs, AD-MSCs can be obtained by relatively safe 
methods such as liposuction procedures. This makes AD-
MSCs an attractive resource for clinical applications [158].

Intravenous administration of allogeneic AD-MSCs could 
be a safe therapy for early stages of acute stroke. A clinical 
trial researching the safety and efficacy of allogeneic MSC 

transplantation recruited 20 patients with acute ischemic 
stroke. The enrolled patients were equally divided into two 
cohorts treated with allogeneic AD-MSCs or placebo. They 
received a single dose intravenously within the first 2 weeks 
after symptom onset. During the 2-year follow-up period, the 
researchers recorded the mRS score, NIHSS score, infarct 
size, and levels of biochemical markers for efficacy analysis. 
The result showed that allogeneic AD-MSCs are beneficial 
for cerebral recovery [159].

Currently, autologous MSCs are the preferred option 
because of the low risk of rejection. Due to the long culture 
time, autologous MSCs can hardly be used in the acute phase 
of ischemic stroke treatment. Allogeneic MSCs could break 
the limitation. Because MSCs lack HLA-II antigens, allo-
geneic MSCs could hardly cause an immunologic response, 
thus eliminating the risk of rejection [160, 161].

In another clinical trial, 15 patients in three groups were 
treated with allogeneic MSCs. The three doses of 0.5, 1.0, 
and 1.5 × 106/kg were found to be safe. Then, 21 patients, 
as an expanded safety cohort, received allogeneic MSCs at 
a dose of 1.5 × 106/kg. The Barthel score and number of 
patients achieving excellent functional outcomes in this 
cohort increased significantly over the 12-months of follow-
up. The result supported the fact that transplantation of allo-
geneic MSCs was safe and effective. Allogeneic MSCs are 
promising candidates for MSC therapy in acute ischemic 
stroke [162].

Genetic technology and preconditioning

Gene transfection-induced MSCs may have high therapeutic 
value. A phase I/IIa study explored the clinical outcomes 
of modified BMSC transplantation. SB623 cells, as allo-
genic modified BMSCs, are transinfected with a plasmid 
coding for the intracellular domain of Notch-1. The study 
enrolled 18 patients with chronic stroke and divided then 
into three groups that received stereotactic single doses of 
2.5, 5.0, and 10 × 106 SB623 cells. In all, 16 were followed 
up for 12 months. Comparing to the baseline, significant 
improvements were observed in the European Stroke Scale 
(ESS), NIHSS, and Fugl-Meyer score. Thus, SB623 cells 
were found to be safe and effective for clinical use [163].

Preconditioning with stroke serum before transplantation 
can activate MSCs into a primed state and reinforce resist-
ance to ischemic microenvironments. The cytoprotective 
effect of preconditioning enhances the migration and sur-
vival of MSCs [164]. In an autologous MSC transplantation 
study, 12 patients received intravenous auto serum-expanded 
MSCs 36–133 days after stroke. In the first week of infusion, 
the median daily rate of NIHSS change increased. The MRI 
results showed that the mean ischemic area decreased to over 
20%. Although the study did not rule out the placebo effects 
and the effect of natural recovery on treatment outcomes, 
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the result suggested the role of relevant preconditioning in 
improving the efficacy of MSCs [165].

These studies support that MSC transplantation is safe 
and effective in cerebral recovery after ischemic stroke. In 
future, determining the timing of administration and opti-
mum infusion dose could be the predominant challenge in 
MSC therapy [93, 117, 166].

Conclusion

Mature neurons cannot proliferate and differentiate. Neuro-
logical impairment caused by ischemic stroke has been con-
sidered difficult to treat. Currently, the capacity of MSCs in 
neuronal differentiation and functional recovery in ischemic 
therapy has generated immense interest. The general mech-
anisms by which MSCs induce improvement include cell 
replacement, angiogenesis, paracrine actions, neuroprotec-
tive effect, immunomodulation and neural circuit reconstruc-
tion. However, the molecular pathways of neurogenesis and 
angiogenesis need further examination.

In recent years, AD-MSCs have become popular in stem 
cell therapy due to the extensive tissue sources, short cul-
ture time and strong ability of differentiation into neural-like 
cells. Future studies need to focus on the safety and efficacy 
of MSCs and monitor adverse events before widely using 
them in clinical practice. Furthermore, large clinical trials 
are still limited, the optimal timing and doses for MSC trans-
plantation are not yet known. In summary, MSC therapy 
provides a new therapeutic approach and research direction 
in the neurological recovery of stroke patients.
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