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Abstract

Introduction Glymphatic fluid circulation may be considered the lymphatic system of the brain and the main role of such
system seems to be played by aquaporins (AQPs), a family of proteins which regulates water exchange, in particular AQP4
and 1. Alterations of glymphatic fluid circulation through AQPs variations are now emerging as central elements in the
pathophysiology of different brain conditions, like hydrocephalus. This systematic review provides an insight about the
role of AQPs in hydrocephalus establishment and compensation, investigating their possible role as diagnostic tools or
therapeutic targets.

Methods PubMed database was screened searching for the relevant existing literature in English language published until
February 29th 2020, according to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA)
Statement.

Results A total of 40 articles met the inclusion criteria for our systematic analysis. AQP4 resulted the most studied water
channel, followed by AQP1. The changes in cerebrospinal fluid (CSF), brain parenchyma and choroid plexus (CP) in differ-
ent hydrocephalus type were analyzed. Moreover, important pharmacological interactions regarding AQP and molecules or
conditions were discussed. A very interesting result is the general consensus on increase of AQP4 in hydrocephalic patients,
unless in patients suffering from idiopathic normal pressure hydrocephalus, where AQP4 shows a tendency in reduction.
Conclusion AQP seem to play a central role in the pathophysiology of hydrocephalus and in its compensation mechanisms.
Further studies are required to definitively establish their precise roles and their quantitative changes to allow their utilization
as diagnostic tools or therapeutic targets.
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Electronic supplementary material The online version of this Introduction

article (https://doi.org/10.1007/s00415-020-10122-z) contains

supplementary material, which is available to authorized users. Brain parenchyma is devoid of lymphatic vessels for inter-
stitial fluid (ISF) transport. Glymphatic fluid circulation
can be considered the lymphatic system of the brain and it
is emerging as a fundamental system for supporting brain
metabolism and clearance of waste products [1, 2]. It is also
emerging as an important player in some forms of dementia,
where clearance of B-amyloid is impaired due to a reduction

of expression of aquaporin (AQP) 4 channels [3-5].
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Cerebrospinal fluid (CSF) is a fluid contained in subarach-
noid space and ventricles and it amounts for about 150 ml of
which 125 are contained in basal cisterns [6]. After produc-
tion, the amount of CSF derives from the net filtration and
adsorption of water and solutes in the interstitial space [1, 7,
8]. In fact, CSF flows within the Virchow—Robin spaces in
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an arterial paravascular space, where it enters the brain and
is then absorbed in the venous paravascular space, where it
enters the venous flow [2, 4, 9]. This exchange of water is
regulated by AQP channels that are a family of membrane
proteins that passively allow the bidirectional transport of
water according to hydrostatic and osmotic pressure [4, 7].
Any changes in AQPs expression may contribute to hydro-
cephalus due to an impairment of water reabsorption in the
venous compartment [10-12].

Nowadays AQP4 is considered the most important ele-
ment in the glymphatic system but other aquaporins, such
as AQP1, have also been reported to play important roles
[7, 10, 13]. AQP4 is predominantly expressed in the brain
parenchyma, while other AQPs such as AQP1 are expressed
in other regions like choroid plexus.

Hydrocephalus is a common disease that neurosurgeons
are required to face during the everyday clinical practice. It
can be related to an acute blockage of the CSF circulation
as a result, for example, of an intracranial hemorrhage; or it
may be a chronic condition, like idiopathic normal pressure
hydrocephalus (iNPH) [6].

Nowadays, CSF diversions both in terms of ventriculop-
eritoneal shunts or endoscopic third ventriculostomies repre-
sent the only way to treat hydrocephalus. On one hand, they
are simple surgical procedures but, on the other hand, they
could have a poor clinical response [14, 15] or complications
that might be dangerous and potentially fatal [6].

For this reason, neurosurgeons should treat only patients
with a certain or a very probable diagnosis. This may not be
so easy in communicating and chronic hydrocephalus, like
iNPH [14, 16]. AQPs are, therefore, be good candidates as
diagnostic tools [6, 14, 17], potentially dosing them in CSF
samples taken during a tap test.

Further looking, understanding the role of AQPs in the
development and maintenance of a hydrocephalus may lead
to consider these water channels also as good candidates for
targeted treatments [18-20], in a similar way as acetazola-
mide for idiopathic intracranial hypertension [21]. In other
words, discovering their precise function could allow the
realization of targeted medicaments to alternatively inhibit
or activate them, to be administered intrathecally or orally.

Given the increasing knowledge about the involvement of
glymphatic system and AQPs in hydrocephalus, we aim to
provide a systematical review of the literature about the role
of AQPs in hydrocephalus to enlighten possible future trans-
lational aspects of basic research studies on hydrocephalus.

Methods

We reviewed the existing literature on PubMed (Medline)
until February 29th 2020, in English language, without
restrictions about the paper publication status, according

to the Preferred Reporting Items for Systematic Reviews
and Meta-Analyses (PRISMA) Statement [22] (see also
Supplementary Material for the PRISMA checklist). We
conducted a research on PubMed with the sequential key-
words “aquaporin AND hydrocephalus” and “aquaporin
AND CSF”, then we reviewed the references of the rel-
evant studies as additional source of eligible articles. We
decided to include works specifically focused on hydro-
cephalus, without limitation about the species of the
research, and to exclude pure reviews (without new cases)
and editorials.

Afterwards, all titles and abstracts were screened to
exclude not relevant studies: neurological conditions other
than/causing other than hydrocephalus (brain edema, includ-
ing infectious diseases and tumors causing it); studies about
the role of AQPs in physiologic conditions; AQPs in spi-
nal cord physiology and pathology. Some other studies
could successively have been excluded after full-text article
reading.

Data of the eligible works were obtained through careful
analysis of full text by one author and checked by another.

Results

Through literature searching on PubMed, 87 articles were
found using the words “aquaporin AND hydrocephalus”.
Using as keywords “aquaporin AND CSF” we found 330
articles, 49 of which already included in the first search. In
addition, 4 other articles were identified as eligible from the
analysis of the references in the previous articles.

Therefore, a total of 372 papers were screened through
analysis of title and abstract and 327 were excluded (articles
considered not relevant, pure reviews and editorials, studies
without at least the abstract in English language).

A number of 45 articles were analyzed through full text
reading and other 5 were further excluded (3 because did not
actually investigate the hydrocephalic condition, 1 because
was in fact a review, 1 because was not about the hydroceph-
alus-AQP relationship).

Finally, 40 articles could be included in the qualitative
synthesis (Fig. 1) [11, 12, 18-20, 23-57].

For each study, we extrapolated the AQP type(s) the
authors addressed to, the hydrocephalus type(s) considered,
the species involved, the material, wherein AQPs were stud-
ied, the effective number of cases, and the relevant results
with possible direct pharmacological evidence (Tables 1,
2, studies in animals and human beings, respectively). For
analysis purposes, we considered Tables 1, 2 as a whole.

Some general statements can be posed considering all the
40 articles, while others are based on the different hydro-
cephalus type.

@ Springer
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Fig. 1 Flow diagram of the inclusion process based on the “PRISMA 2009 flow diagram” (see reference [22])

General considerations

Considering the year of publication, it is evident that the
interest about the role of AQPs in the pathophysiology has
been discovered during the last 15 years, and that the last
year was the most prolific one (Fig. 2).

It is also clear that the AQP the scientists are more
interested in is AQP4 (Table 3). In 10 studies more than
one channel was studied (two or three at once). They all
included APQ1 and AQP4 (10/10); one also studied AQP5
(1/10) and another AQP9 (1/10). Looking at the 30 works
focused on a single AQP, in 24/30 (80.0%) the main char-
acter was AQP4, while in the others 6/30 (20%) it was
AQP1. Moreover, all articles but one in the last 3 years
studied AQP4.

As long as it concerns the species involved in the investi-
gations, only 4 studies included two species, while the others
included only one. Human patients and controls underwent
acquisition of CSF and/or specimens of brain parenchyma or
of choroid plexus or underwent radiological evaluation for
obtaining results in 19 works; in 1 work, human cells were
cultured. In 15 and 6 experiments were involved rats and

@ Springer

mice, respectively; dog, parrot and rabbit were used in one
work each (Tables 1, 2, 4).

Another interesting consideration is about control groups:
33 out of the 40 (82.5%) studies included a control patient
or group. The remaining 7 works are case reports or limited
case series (4/7), a large series in which only encephalomeg-
alic mice were considered (1/7) and papers in which specific
number of cases as well as a possible control cohort are not
mentioned (2/7).

AQP and hydrocephalus “type”

We gathered studies in which the same or similar hydroceph-
alus pathophysiology (simplifying, “type’) was involved.

Obstructive hydrocephalus

A number of 16 articles (16/40—40%) specifically studied
obstructive hydrocephalus; 2 of these described the phe-
nomenon in neuromyelitis optica (NMO) patients, while
1 was focused on the initial stage of non-communicating
hydrocephalus development. The interest in obstructive
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Fig.2 Column chart representing the number of studies per year
investigating the role of aquaporins in hydrocephalus. The article by
Eide et al. officially published in 2020 (see reference [23]) has been

Table 3 Number of works in which each aquaporin was studied

AQP studied No. of works
More than one AQP 10

Including 4 10

Including 1 10
Including 5 1

Including 9 1

Only one AQP 30

About AQP4 only 24

About AQP1 only 6

AQP aquaporin

Table 4 Number of works in which a certain species was investigated

Species No. of works

Human (CSF, choroid plexus or brain parenchyma) 19
Human (cultured cells) 1
Rat 15
Mouse
Dog
Parrot
Rabbit

—_ = = O

CSF cerebrospinal fluid

@ Springer

included in the column “2019”, since it was available online before
December 31st, 2019

NPH/age related hydrocephalus

Other 8 papers (8/40—20%) focused on either iNPH or “age-
related” hydrocephalus. Authors considered these etiologies
only since 2013 and interest increased during the last months
of our review. In almost all AQP4 was the main character
(7/8), but also AQP1 deserved a role (2/8).

NPH could have a distinct physiopathology with respect
to other chronic hydrocephalus cases. In iNPH, AQP1 gen-
erally shows an increase, while AQP4 a decrease. On the
other hand, in chronic and age-related cases in experimen-
tal models, AQP4 express an increase combined with less
polarization.

Congenital or “multiple” hydrocephalus

A particular subgroup is constituted by the reports in which
was studied “congenital” hydrocephalus independently from
its origin, articles about one type evolving in the other type,
or works without subgrouping for hydrocephalus type. This
group includes 10 articles (10/40—25%) and was more
investigated at the beginning of our considered period. As in
the others anyway, AQP4 has always been the most studied
(8/10) followed by AQP1 (4/10).

Very interestingly in one study many CSF biomarkers
showed robust association with congenital hydrocephalus,
but not with AQP4 [34]. In other studies, AQP4 shows a
general increase in the CSF of hydrocephalic patients and
this increase is greater in communicating than in obstructive
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and controls [42]. Moreover, the increase is higher at later
stage (also when it is caused by another condition such as
neurocysticercosis [27]) and is accompanied by the usual
altered polarization.

AQP1 is characterized by a certain degree of decrease in
choroid plexus and brain at initial stages, but a quite sure
increase at the CSF-blood barrier and in the CSF (more in
obstructive cases, with inverted polarization) [46]. AQP1
shows an increase in CSF hypersecretion conditions and a
decrease when there is an obstruction of CSF circulation or
when ventricular sizes are in range [20, 26, 46].

Pharmacological implications

Four studies out of 40 involving possible pharmacologi-
cal considerations were found. Two dealt with obstructive
hydrocephalus cases (olomoucine [19], erythropoietin or
EPO [18]); one involved age-related hydrocephalus (hypoxia
related) [31] and one involved congenital hydrocephalus
(vinpocetine) [20].

In one study intraperitoneal olomoucine showed a capac-
ity to attenuate the entity of hydrocephalus through inhibi-
tion of astrogliosis, which can be among the causes of later
stages obstruction [19].

In another research intraperitoneal EPO further up-regu-
lated AQP4 enhancing the natural mechanism which begins
when hydrocephalus becomes clinically evident [18].

Hypoxia seems to have a key role in development of
hydrocephalus. In fact, in a mice model it seems to act syn-
ergistically with aging to produce hydrocephalus [31].

Vinpocetine in a choroid plexus cell line of a congenital
hydrocephalus demonstrated to up-regulate AQP1 and AQP4
in cultured choroid plexus cells [20].

Discussion

The brain parenchyma has no lymphatic system [1, 4]. This
dogma of the human anatomy has fallen after recent studies
suggesting that ISF is exchanged at the level of the so-called
glymphatic system, which represent a form of lymphatic sys-
tem of the brain. In this view, our knowledge about CSF
formation and reabsorption has changed [1]. In fact, CSF
derives from the net filtration and adsorption of water and
solutes in the interstitial space. This exchange is regulated
by several complex mechanisms that are mainly regulated by
hydrostatic and oncotic pressure at the level of the paravas-
cular system [1, 4, 5, 7]. Given the presence of a waterproof
blood brain barrier, exchange of water in the glymphatic
system is granted by the presence of a family of water chan-
nels proteins called aquaporins (AQPs) [7, 13]. Expression
of these channels regulates the amount of water in the cen-
tral nervous system. As consequence, hydrocephalus which

means “accumulation of water in the brain” can be explained
in some cases by an impairment of function of the glym-
phatic system at AQP level, especially in case of communi-
cating hydrocephalus [7, 42, 58].

Different is the case of obstructive hydrocephalus in
which a macroscopic blockage of the CSF circulation is at
the base for a compartmentalization of CSF, like in case of
triventricular or biventricular hydrocephalus due to tumors,
or a microscopic blockage impairs adequate flow like in
hemorrhages. Moreover, in case of hydrocephalus due to
degenerative diseases the mechanism of development seems
different from the previous two. So far, basic research studies
are opening a new window on the knowledge about hydro-
cephalus formation and physiology that have the possibility
to impact on clinical management and treatment [4, 8]. For
example, on the apical membrane of choroid plexus epithe-
lium AQP1 has been found, suggesting a role for it in CSF
production [8]. Moreover, it has been proved that inhibition
of CSF production in rodents by treatment with acetazola-
mide impairs CSF clearance [4]

This is why the scientific community has intensified the
production of works about AQP in the last years. About the
scientific production, it is possible to note some focal points:
(1) AQP4 is the most studied aquaporin followed by AQP1,
while other aquaporin are only matter of small reports; (2)
the majority of study groups is trying to recreate an own
internal reference system with a control group; (3) the num-
ber of studies involving animals is comparable to the number
involving humans (24 vs. 20, Tables 1, 2 and 4); (4) up to
now, a standard model of hydrocephalus is still lacking.

From this systematic review, we inferred some interest-
ing results that allowed us many reflections about different
hydrocephalus types.

e Obstructive hydrocephalus

Obstructive hydrocephalus is the most studied hydro-
cephalus in our topic, firstly because this is the easiest to
be recreated through animal models (with blood or kaolin).
From a pathophysiological point of view, we found an inter-
esting report showing how a deletion of AQP4 predispose to
congenital aqueductal stenosis and hydrocephalus probably
due to ependymal cells alterations [12]. This study suggests
that AQP4 may have a role in maintaining the structural
integrity of ependymal epithelium [12, 44].

As far as it concerns AQP4, it seems to have a concentra-
tion in range of normality in case of initial stages of obstruc-
tive hydrocephalus and it shows a higher presence in later
stages, when hydrocephalus becomes relevant [28, 32, 45].
This is in line with experimental studies on kaolin-induced
hydrocephalus in which serial CSF sampling demonstrates
an up-regulation of AQP4 in later stage of hydrocephalus
probably in response to obstruction of CSF circulation [42].

@ Springer
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Such studies also suppose that AQP4 production might be
regulated by a pressure sensitive mechanism. For AQP1
there is no unequivocal statement, since in some studies,
only altered polarization is described, while in others, there’s
a trend similar to AQP4 but less evident. However, interest-
ingly in a study an increase in AQP1 and AQP4 was found in
a model of rat subarachnoid hemorrhage with hydrocepha-
lus, with also an increased ratio AQP1/AQP4 [28].

In this kind of hydrocephalus, where there is a mechani-
cal obstruction to CSF circulation, pharmacological options
seem to have a poor promising utility. However, in a study
olomoucine showed a capacity to attenuate the entity of
hydrocephalus through astrogliosis inhibition [19]. At later
stages, obstruction due to aqueductal stenosis seems effec-
tively to have among its causes also astrogliosis so olomou-
cine would be a very promising option in selected cases.

Furthermore, it is interesting to note that obstructive
hydrocephalus seems to have two components involved in its
physiopathology: (1) related to obstruction of CSF circula-
tion; (2) related to an alteration of AQP recycle at later stage
that it can be speculated to be a compensatory mechanism
secondary to an engulfment of glymphatic system.

e Communicating hydrocephalus

Considering communicating hydrocephalus in its inclu-
sive meaning, the studies in humans principally concern
iNPH and communicating hydrocephalus NMO-related,
while other kinds of hydrocephalus are sporadically reported
[43] and almost only in animal models [31, 36, 40, 49]. In
a study, AQP4 demonstrated to be increased in communi-
cating congenital hydrocephalus in comparison to controls
[42]. The increase of AQP4 in communicating hydrocepha-
lus might be a compensatory mechanism of the brain to try
to react to an impairment of the reabsorption of CSF.

So far, reports from the literature suggest the existence
of two distinct features relating hydrocephalus and AQPs:
(1) AQP4 is generally increased in CSF or parenchyma of
communicating hydrocephalus; (2) in iNPH, there is a global
decrease of AQP4 in CSF in contrast with other kind of com-
municating hydrocephalus.

Considering the congenital hydrocephalus, AQP4 is
again generally reported as increased, while AQP1 seems
to increase when there is CSF hypersecretion. Some discord-
ant results have been proposed in 2017 [34]: no association
between AQP4 and congenital hydrocephalus. These con-
troversial findings can be related with the model of hydro-
cephalus chosen (congenital hydrocephalus mainly due to
aqueductal stenosis): firstly, CSF circulation is different in
the early stages of life; secondly, the kind of hydrocephalus
is mainly but not totally obstructive.

In 2013 a series of children with both communicating and
obstructive hydrocephalus was studied [42]. A significant

@ Springer

increase of AQP4 was evident in CSF of children with com-
municating hydrocephalus compared to normal controls and
to children with obstructive hydrocephalus; these latter had
a higher AQP4 concentration compared to controls, but not
statistically significant. These results confirm our considera-
tions being in line with the previous analyses.

This discrepancy between the two studies is of interest,
since it shows how the kind of hydrocephalus can influence
the expression of AQPs in humans.

e Are normal pressure hydrocephalus and degenerative
brain diseases linked pathologies?

Although iNPH is a type of communicating hydrocepha-
lus, it has shown a distinct pattern of CSF concentration of
AQPs. In fact, CSF or parenchymal concentrations of iNPH
patients showed that AQP1 is generally increased. Interest-
ingly, it was reported an increase in AQP1 both in patients
with MCI and iNPH [38]. Concerning AQP4, it has been
found generally decreased in patients with iNPH [23, 25, 29,
30, 33]. In another study a decreased concentration of AQP4
in CSF of patients with iNPH and with Alzheimer’s disease
(AD) was reported [25]. Moreover, several studies reported
an increase of amyloid-f (A) in both patients with AD and
iNPH, while hyperphosphorylated Tau is increased only in
patients with AD [59-61]. Therefore, these results suggest
a connection between AD and iNPH [25].

As consequence, from the few studies available on human
also suggesting the reduced AP clearance by the gylmphatic
systems due to a reduction in AQP4 [62, 63], AD and iNPH
might be linked by an impairment of the glymphatic system.
Such considerations could also explain why iNPH patients
often show overlapping symptoms with other brain condi-
tions such as AD, basal ganglia degeneration and Parkin-
son’s disease [14, 16].

Differently from other kind of hydrocephalus, AQP4
reduction in iNPH and AD is related to a progressive disrup-
tion of the paravascular unit involved in the water exchange
[63]. In a purely speculative way, this fact can lead to an
alternative model of hydrocephalus explaining both the
normal intracranial pressure and the low concentration of
AQP4. In fact, in communicating hypertensive hydrocepha-
lus there may not be a loss of brain parenchyma but rather an
accumulation of CSF due to the obstruction of paravascular
spaces [36, 40]. This fact may lead to an up-regulation of
AQP4 in response to increased intracranial pressure and,
therefore, to an increased AQP4 concentration in paren-
chyma and subsequently in CSF [40, 42]. On the other hand,
in case of iNPH there is a progressive accumulation of Ap,
loss of brain parenchyma and progressive impairment of
glymphatic system without an increased intracranial pres-
sure, probably due to brain atrophy. As consequence, due to
a lack of mechanisms to up-regulate AQP4 expression and
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to a progressive loss of paravascular units it is possible to
register low concentrations of AQP4 in CSF of patients with
iNPH [23, 25, 29, 30, 33]. In a similar way, in AD patients,
there is a progressive loss of brain parenchyma and para-
vascular units which relates with low AQP4 concentrations
in CSF [3].

Less is known about the role of AQP1 in iNPH which
generally shows a tendency to increase which is possibly
related with the different expression of such protein in the
brain [38].

These considerations may lead to further investigations
aiming at improving knowledge about hydrocephalus and
normal CSF circulation. Moreover, definitive findings may
lead to the use of a panel of CSF biomarkers to better dif-
ferentiate brain degenerative diseases from iNPH, reducing
the number of misdiagnoses and increasing the response rate
of patients after VP shunt placement.

A summary of the number of studies underlying which
aquaporin is increased or decreased in which hydrocephalus
type is provided in Table 5.

e Future clinical aspects related to AQPs

From a clinical point of view, studies on AQPs show
several translational aspects that may be at the base of the
increased number of studies published in the last months:
AQPs are candidate to become a possible CSF biomarker
to diagnose hydrocephalus. Their role is probably going to
develop from basic science to human clinical experience.

In fact, AQPs measured in CSF might help clinician in
differentiating iNPH from other conditions, to diagnose

some forms of chronic communicating hydrocephalus or
to support the diagnosis of a shunt malfunction in difficult
cases, like in patients with overdrainage or slit ventricles
[64—66]. Considering our hypotheses, in overdrainage cases
APQs levels should not be altered compared to controls, —as
in the slit ventricle syndrome they would show variations in
concentration. In case of obstructive hydrocephalus, AQPs
would as well theoretically be useful in selected cases. They
would be ideally suitable in some clinical scenarios like,
for example, to differentiate between patients responding to
third ventriculostomies or VP shunt.

Moreover, AQPs might be candidates as therapeutic tar-
gets for hydrocephalus. Unfortunately nowadays only few
non-specific and toxic inhibitors or modulators that targets
some AQPs are currently available, greatly limiting their
therapeutic utility. The only substances or conditions with
a proven effect in single studies (EPO, olomoucine and vin-
pocetine) neither have a validation yet, nor their mechanism
of action is fully understood. EPO seems to have the abil-
ity to further up-regulate AQP4 expression, enhancing the
mechanism which physiologically begins when hydrocepha-
lus becomes significant. EPO is a well-known substance,
already utilized in different diseases, whose use could be
relatively easy to extend also to this condition if the data
would be validated.

The study of pathophysiology of hydrocephalus in all
its forms, the molecular study of AQPs and the possible
future development of target therapies (monoclonal antibod-
ies, microRNA) could be the keys to make AQPs a rou-
tine diagnostic test and also a therapeutic target of para-
mount importance in hydrocephalic cases. They would be
another “weapon” in the neurologist’s and neurosurgeon’s

Table 5 Number of studies
reporting change in AQP in a
certain hydrocephalus type

Hydrocephalus\AQP AQP4 ¢+ AQP4 AQP4=, altered

AQP1 f+ AQPI § AQP4=, altered

polarity, not polarity, not

relevant relevant
Obstructive 7 1? 2 3 1 1
Communicating 6 0 1 1 2 1
iNPH 0 5 0 1 0 0
Congenital 4 0 1 1 1 0
Obstr + comm 2 0 0 0 0 0
Human 2 6 2 3 2 0
Model 14 0 1 3 2 3
Both 2 0 1 0 1 0

“Obstr+comm” includes hydrocephalus from neurocysticercosis, which can be of both types, and a case
which was communicating at initial stages and then converted to non-communicating. Results in later
stages of hydrocephalus are considered (not included study by Aghayev et al. [45]). Studies by Feng et al.
[12], Bloch et al. [54], Oshio et al. [55], Clardy et al. [56], Gratton et al. [57] have been excluded in this
table: absence of Aqp gene (Aqp null models) or AQP dysfunction does not allow autoregulation and,
therefore, variability of AQP in parenchyma/CSF

AQP aquaporin, iNPH idiopathic normal pressure hydrocephalus, Obstr + comm obstructive + communicat-

ing

“Neuromyelitis optica-related

@ Springer
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armamentarium, together with other targets of contemporary
hydrocephalus research, like Na—K-ATPase, mineralocorti-
coid receptors or precocious blood dissolution after suba-
rachnoid hemorrhage [67].

Finally, studies on other AQPs also present in the brain
(like AQPS5 or 9) might help to better understand pathogen-
esis and physiopathology of hydrocephalus.

This review has some limitations. First of all, a uniform
model of hydrocephalus is still lacking, and therefore, gen-
eralizations may be affected by the differences in the models.
Secondly, although generally accepted the division between
“obstructive” and “communicating” remains arbitrary; this
may reflect into partially different results with "t to this
review. Finally, other factors besides AQPs are likely to be
involved in this complex system.

Conclusion

AQPs have been widely studied in the recent years and in
particular their role in hydrocephalus has been investigated.
AQP4 is considered the main player in the glymphatic sys-
tem, followed by AQP1. Their proven implication in hydro-
cephalic mechanisms could inspire new research towards
assessment of their role as diagnostic tools or as therapeutic
targets. Moreover, in a speculative way, studying the varia-
tion of AQPs in CSF and brain parenchyma may lead in the
future a possible reclassification of hydrocephalus that could
be of help not only in understanding the pathophysiology of
hydrocephalus but also in clinical decision making.
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