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Abstract
Introduction  Glymphatic fluid circulation may be considered the lymphatic system of the brain and the main role of such 
system seems to be played by aquaporins (AQPs), a family of proteins which regulates water exchange, in particular AQP4 
and 1. Alterations of glymphatic fluid circulation through AQPs variations are now emerging as central elements in the 
pathophysiology of different brain conditions, like hydrocephalus. This systematic review provides an insight about the 
role of AQPs in hydrocephalus establishment and compensation, investigating their possible role as diagnostic tools or 
therapeutic targets.
Methods  PubMed database was screened searching for the relevant existing literature in English language published until 
February 29th 2020, according to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) 
Statement.
Results  A total of 40 articles met the inclusion criteria for our systematic analysis. AQP4 resulted the most studied water 
channel, followed by AQP1. The changes in cerebrospinal fluid (CSF), brain parenchyma and choroid plexus (CP) in differ-
ent hydrocephalus type were analyzed. Moreover, important pharmacological interactions regarding AQP and molecules or 
conditions were discussed. A very interesting result is the general consensus on increase of AQP4 in hydrocephalic patients, 
unless in patients suffering from idiopathic normal pressure hydrocephalus, where AQP4 shows a tendency in reduction.
Conclusion  AQP seem to play a central role in the pathophysiology of hydrocephalus and in its compensation mechanisms. 
Further studies are required to definitively establish their precise roles and their quantitative changes to allow their utilization 
as diagnostic tools or therapeutic targets.

Keywords  Aquaporin · Hydrocephalus · Glymphatic system · Cerebrospinal fluid · Normal pressure hydrocephalus

Introduction

Brain parenchyma is devoid of lymphatic vessels for inter-
stitial fluid (ISF) transport. Glymphatic fluid circulation 
can be considered the lymphatic system of the brain and it 
is emerging as a fundamental system for supporting brain 
metabolism and clearance of waste products [1, 2]. It is also 
emerging as an important player in some forms of dementia, 
where clearance of B-amyloid is impaired due to a reduction 
of expression of aquaporin (AQP) 4 channels [3–5].

Cerebrospinal fluid (CSF) is a fluid contained in subarach-
noid space and ventricles and it amounts for about 150 ml of 
which 125 are contained in basal cisterns [6]. After produc-
tion, the amount of CSF derives from the net filtration and 
adsorption of water and solutes in the interstitial space [1, 7, 
8]. In fact, CSF flows within the Virchow–Robin spaces in 
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an arterial paravascular space, where it enters the brain and 
is then absorbed in the venous paravascular space, where it 
enters the venous flow [2, 4, 9]. This exchange of water is 
regulated by AQP channels that are a family of membrane 
proteins that passively allow the bidirectional transport of 
water according to hydrostatic and osmotic pressure [4, 7]. 
Any changes in AQPs expression may contribute to hydro-
cephalus due to an impairment of water reabsorption in the 
venous compartment [10–12].

Nowadays AQP4 is considered the most important ele-
ment in the glymphatic system but other aquaporins, such 
as AQP1, have also been reported to play important roles 
[7, 10, 13]. AQP4 is predominantly expressed in the brain 
parenchyma, while other AQPs such as AQP1 are expressed 
in other regions like choroid plexus.

Hydrocephalus is a common disease that neurosurgeons 
are required to face during the everyday clinical practice. It 
can be related to an acute blockage of the CSF circulation 
as a result, for example, of an intracranial hemorrhage; or it 
may be a chronic condition, like idiopathic normal pressure 
hydrocephalus (iNPH) [6].

Nowadays, CSF diversions both in terms of ventriculop-
eritoneal shunts or endoscopic third ventriculostomies repre-
sent the only way to treat hydrocephalus. On one hand, they 
are simple surgical procedures but, on the other hand, they 
could have a poor clinical response [14, 15] or complications 
that might be dangerous and potentially fatal [6].

For this reason, neurosurgeons should treat only patients 
with a certain or a very probable diagnosis. This may not be 
so easy in communicating and chronic hydrocephalus, like 
iNPH [14, 16]. AQPs are, therefore, be good candidates as 
diagnostic tools [6, 14, 17], potentially dosing them in CSF 
samples taken during a tap test.

Further looking, understanding the role of AQPs in the 
development and maintenance of a hydrocephalus may lead 
to consider these water channels also as good candidates for 
targeted treatments [18–20], in a similar way as acetazola-
mide for idiopathic intracranial hypertension [21]. In other 
words, discovering their precise function could allow the 
realization of targeted medicaments to alternatively inhibit 
or activate them, to be administered intrathecally or orally.

Given the increasing knowledge about the involvement of 
glymphatic system and AQPs in hydrocephalus, we aim to 
provide a systematical review of the literature about the role 
of AQPs in hydrocephalus to enlighten possible future trans-
lational aspects of basic research studies on hydrocephalus.

Methods

We reviewed the existing literature on PubMed (Medline) 
until February 29th 2020, in English language, without 
restrictions about the paper publication status, according 

to the Preferred Reporting Items for Systematic Reviews 
and Meta-Analyses (PRISMA) Statement [22] (see also 
Supplementary Material for the PRISMA checklist). We 
conducted a research on PubMed with the sequential key-
words “aquaporin AND hydrocephalus” and “aquaporin 
AND CSF”, then we reviewed the references of the rel-
evant studies as additional source of eligible articles. We 
decided to include works specifically focused on hydro-
cephalus, without limitation about the species of the 
research, and to exclude pure reviews (without new cases) 
and editorials.

Afterwards, all titles and abstracts were screened to 
exclude not relevant studies: neurological conditions other 
than/causing other than hydrocephalus (brain edema, includ-
ing infectious diseases and tumors causing it); studies about 
the role of AQPs in physiologic conditions; AQPs in spi-
nal cord physiology and pathology. Some other studies 
could successively have been excluded after full-text article 
reading.

Data of the eligible works were obtained through careful 
analysis of full text by one author and checked by another.

Results

Through literature searching on PubMed, 87 articles were 
found using the words “aquaporin AND hydrocephalus”. 
Using as keywords “aquaporin AND CSF” we found 330 
articles, 49 of which already included in the first search. In 
addition, 4 other articles were identified as eligible from the 
analysis of the references in the previous articles.

Therefore, a total of 372 papers were screened through 
analysis of title and abstract and 327 were excluded (articles 
considered not relevant, pure reviews and editorials, studies 
without at least the abstract in English language).

A number of 45 articles were analyzed through full text 
reading and other 5 were further excluded (3 because did not 
actually investigate the hydrocephalic condition, 1 because 
was in fact a review, 1 because was not about the hydroceph-
alus-AQP relationship).

Finally, 40 articles could be included in the qualitative 
synthesis (Fig. 1) [11, 12, 18–20, 23–57].

For each study, we extrapolated the AQP type(s) the 
authors addressed to, the hydrocephalus type(s) considered, 
the species involved, the material, wherein AQPs were stud-
ied, the effective number of cases, and the relevant results 
with possible direct pharmacological evidence (Tables 1, 
2, studies in animals and human beings, respectively). For 
analysis purposes, we considered Tables 1, 2 as a whole.

Some general statements can be posed considering all the 
40 articles, while others are based on the different hydro-
cephalus type.
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General considerations

Considering the year of publication, it is evident that the 
interest about the role of AQPs in the pathophysiology has 
been discovered during the last 15 years, and that the last 
year was the most prolific one (Fig. 2).

It is also clear that the AQP the scientists are more 
interested in is AQP4 (Table 3). In 10 studies more than 
one channel was studied (two or three at once). They all 
included APQ1 and AQP4 (10/10); one also studied AQP5 
(1/10) and another AQP9 (1/10). Looking at the 30 works 
focused on a single AQP, in 24/30 (80.0%) the main char-
acter was AQP4, while in the others 6/30 (20%) it was 
AQP1. Moreover, all articles but one in the last 3 years 
studied AQP4.

As long as it concerns the species involved in the investi-
gations, only 4 studies included two species, while the others 
included only one. Human patients and controls underwent 
acquisition of CSF and/or specimens of brain parenchyma or 
of choroid plexus or underwent radiological evaluation for 
obtaining results in 19 works; in 1 work, human cells were 
cultured. In 15 and 6 experiments were involved rats and 

mice, respectively; dog, parrot and rabbit were used in one 
work each (Tables 1, 2, 4).

Another interesting consideration is about control groups: 
33 out of the 40 (82.5%) studies included a control patient 
or group. The remaining 7 works are case reports or limited 
case series (4/7), a large series in which only encephalomeg-
alic mice were considered (1/7) and papers in which specific 
number of cases as well as a possible control cohort are not 
mentioned (2/7).

AQP and hydrocephalus “type”

We gathered studies in which the same or similar hydroceph-
alus pathophysiology (simplifying, “type”) was involved.

Obstructive hydrocephalus

A number of 16 articles (16/40—40%) specifically studied 
obstructive hydrocephalus; 2 of these described the phe-
nomenon in neuromyelitis optica (NMO) patients, while 
1 was focused on the initial stage of non-communicating 
hydrocephalus development. The interest in obstructive 

Fig. 1   Flow diagram of the inclusion process based on the “PRISMA 2009 flow diagram” (see reference [22])
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hydrocephalus has been present since the first studies. This 
is the only type in which AQP5 and 9 were investigated 
(1/16 each—6.2%), although a greater interest was posed 
in AQP1 (6/16—3.7% studies) and even more on AQP4 
(14/16—25%).

From the synthesis of the results, AQP4 in obstructive 
hydrocephalus has generally shown an altered distribution 
within cells when studied with immunohistochemical tools 
on biopsies and a generalized increase when studied in 
CSF. Some studies report that, although this, a difference 
in AQP4 concentration does not exist, while the majority 
of the studies described firstly a “normal” concentration 
of AQP4 at the initial stages of the developing of hydro-
cephalus and then a higher presence of this water chan-
nel in later stages. This is evident in particular when the 
patients/cases are studied at different time points.

Other two results underline the role of AQP4: hydro-
cephalus in NMO and AQP4 knockout mice. NMO is pri-
marily an autoimmune disease directed against AQP4, and 
some of these patients may develop hydrocephalus. In such 
cases, the pathophysiology seems clearly relatable to this 
water channel and the absence of immunoreactivity for 
AQP4 can be found in obstructive hydrocephalic patients 
suffering from such pathology. On the other hand, in a 
subset of AQP4 knockout mice there was development of 
hydrocephalus and if another cause was superimposed the 
hydrocephalus worsened.

As far as it concerns AQP1, it equally shows in some 
studies only an altered polarity, whereas in other a 
decrease in the acute condition and then a slight increase 
later. Interesting the described down-regulation of AQP1 
mRNA levels both at 24 and at 72 h, phenomenon anyway 
described also in controls.

Communicating hydrocephalus

In 6 works (6/40—15%) the authors studied communicat-
ing hydrocephalus, and in 2 out of 6 reported the possibil-
ity of communicating hydrocephalus in NMO.

Communicating hydrocephalus has been constantly 
investigated during the years too. The experiments were 
quite equally subdivided between AQP1 (3/6) and AQP4 
(4/6).

AQP4 shows an increase and an altered polarization 
also in communicating hydrocephalus. If a dysfunction of 
this channel is figured out, this may predispose to such a 
type of hydrocephalus—this was observed in communicat-
ing hydrocephalic NMO patients.

AQP1 shows a general decrease: it can’t be detected in 
CSF and express an extremely low immunoreactivity even 
in case of hyperplasia of the choroid plexus.
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NPH/age related hydrocephalus

Other 8 papers (8/40—20%) focused on either iNPH or “age-
related” hydrocephalus. Authors considered these etiologies 
only since 2013 and interest increased during the last months 
of our review. In almost all AQP4 was the main character 
(7/8), but also AQP1 deserved a role (2/8).

NPH could have a distinct physiopathology with respect 
to other chronic hydrocephalus cases. In iNPH, AQP1 gen-
erally shows an increase, while AQP4 a decrease. On the 
other hand, in chronic and age-related cases in experimen-
tal models, AQP4 express an increase combined with less 
polarization.

Congenital or “multiple” hydrocephalus

A particular subgroup is constituted by the reports in which 
was studied “congenital” hydrocephalus independently from 
its origin, articles about one type evolving in the other type, 
or works without subgrouping for hydrocephalus type. This 
group includes 10 articles (10/40—25%) and was more 
investigated at the beginning of our considered period. As in 
the others anyway, AQP4 has always been the most studied 
(8/10) followed by AQP1 (4/10).

Very interestingly in one study many CSF biomarkers 
showed robust association with congenital hydrocephalus, 
but not with AQP4 [34]. In other studies, AQP4 shows a 
general increase in the CSF of hydrocephalic patients and 
this increase is greater in communicating than in obstructive 

Fig. 2   Column chart representing the number of studies per year 
investigating the role of aquaporins in hydrocephalus. The article by 
Eide et al. officially published in 2020 (see reference [23]) has been 

included in the column “2019”, since it was available online before 
December 31st, 2019

Table 3   Number of works in which each aquaporin was studied

AQP aquaporin

AQP studied No. of works

More than one AQP 10
Including 4 10
Including 1 10
Including 5 1
Including 9 1
Only one AQP 30
About AQP4 only 24
About AQP1 only 6

Table 4   Number of works in which a certain species was investigated

CSF cerebrospinal fluid

Species No. of works

Human (CSF, choroid plexus or brain parenchyma) 19
Human (cultured cells) 1
Rat 15
Mouse 6
Dog 1
Parrot 1
Rabbit 1
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and controls [42]. Moreover, the increase is higher at later 
stage (also when it is caused by another condition such as 
neurocysticercosis [27]) and is accompanied by the usual 
altered polarization.

AQP1 is characterized by a certain degree of decrease in 
choroid plexus and brain at initial stages, but a quite sure 
increase at the CSF-blood barrier and in the CSF (more in 
obstructive cases, with inverted polarization) [46]. AQP1 
shows an increase in CSF hypersecretion conditions and a 
decrease when there is an obstruction of CSF circulation or 
when ventricular sizes are in range [20, 26, 46].

Pharmacological implications

Four studies out of 40 involving possible pharmacologi-
cal considerations were found. Two dealt with obstructive 
hydrocephalus cases (olomoucine [19], erythropoietin or 
EPO [18]); one involved age-related hydrocephalus (hypoxia 
related) [31] and one involved congenital hydrocephalus 
(vinpocetine) [20].

In one study intraperitoneal olomoucine showed a capac-
ity to attenuate the entity of hydrocephalus through inhibi-
tion of astrogliosis, which can be among the causes of later 
stages obstruction [19].

In another research intraperitoneal EPO further up-regu-
lated AQP4 enhancing the natural mechanism which begins 
when hydrocephalus becomes clinically evident [18].

Hypoxia seems to have a key role in development of 
hydrocephalus. In fact, in a mice model it seems to act syn-
ergistically with aging to produce hydrocephalus [31].

Vinpocetine in a choroid plexus cell line of a congenital 
hydrocephalus demonstrated to up-regulate AQP1 and AQP4 
in cultured choroid plexus cells [20].

Discussion

The brain parenchyma has no lymphatic system [1, 4]. This 
dogma of the human anatomy has fallen after recent studies 
suggesting that ISF is exchanged at the level of the so-called 
glymphatic system, which represent a form of lymphatic sys-
tem of the brain. In this view, our knowledge about CSF 
formation and reabsorption has changed [1]. In fact, CSF 
derives from the net filtration and adsorption of water and 
solutes in the interstitial space. This exchange is regulated 
by several complex mechanisms that are mainly regulated by 
hydrostatic and oncotic pressure at the level of the paravas-
cular system [1, 4, 5, 7]. Given the presence of a waterproof 
blood brain barrier, exchange of water in the glymphatic 
system is granted by the presence of a family of water chan-
nels proteins called aquaporins (AQPs) [7, 13]. Expression 
of these channels regulates the amount of water in the cen-
tral nervous system. As consequence, hydrocephalus which 

means “accumulation of water in the brain” can be explained 
in some cases by an impairment of function of the glym-
phatic system at AQP level, especially in case of communi-
cating hydrocephalus [7, 42, 58].

Different is the case of obstructive hydrocephalus in 
which a macroscopic blockage of the CSF circulation is at 
the base for a compartmentalization of CSF, like in case of 
triventricular or biventricular hydrocephalus due to tumors, 
or a microscopic blockage impairs adequate flow like in 
hemorrhages. Moreover, in case of hydrocephalus due to 
degenerative diseases the mechanism of development seems 
different from the previous two. So far, basic research studies 
are opening a new window on the knowledge about hydro-
cephalus formation and physiology that have the possibility 
to impact on clinical management and treatment [4, 8]. For 
example, on the apical membrane of choroid plexus epithe-
lium AQP1 has been found, suggesting a role for it in CSF 
production [8]. Moreover, it has been proved that inhibition 
of CSF production in rodents by treatment with acetazola-
mide impairs CSF clearance [4]

This is why the scientific community has intensified the 
production of works about AQP in the last years. About the 
scientific production, it is possible to note some focal points: 
(1) AQP4 is the most studied aquaporin followed by AQP1, 
while other aquaporin are only matter of small reports; (2) 
the majority of study groups is trying to recreate an own 
internal reference system with a control group; (3) the num-
ber of studies involving animals is comparable to the number 
involving humans (24 vs. 20, Tables 1, 2 and 4); (4) up to 
now, a standard model of hydrocephalus is still lacking.

From this systematic review, we inferred some interest-
ing results that allowed us many reflections about different 
hydrocephalus types.

•	 Obstructive hydrocephalus

Obstructive hydrocephalus is the most studied hydro-
cephalus in our topic, firstly because this is the easiest to 
be recreated through animal models (with blood or kaolin). 
From a pathophysiological point of view, we found an inter-
esting report showing how a deletion of AQP4 predispose to 
congenital aqueductal stenosis and hydrocephalus probably 
due to ependymal cells alterations [12]. This study suggests 
that AQP4 may have a role in maintaining the structural 
integrity of ependymal epithelium [12, 44].

As far as it concerns AQP4, it seems to have a concentra-
tion in range of normality in case of initial stages of obstruc-
tive hydrocephalus and it shows a higher presence in later 
stages, when hydrocephalus becomes relevant [28, 32, 45]. 
This is in line with experimental studies on kaolin-induced 
hydrocephalus in which serial CSF sampling demonstrates 
an up-regulation of AQP4 in later stage of hydrocephalus 
probably in response to obstruction of CSF circulation [42]. 
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Such studies also suppose that AQP4 production might be 
regulated by a pressure sensitive mechanism. For AQP1 
there is no unequivocal statement, since in some studies, 
only altered polarization is described, while in others, there’s 
a trend similar to AQP4 but less evident. However, interest-
ingly in a study an increase in AQP1 and AQP4 was found in 
a model of rat subarachnoid hemorrhage with hydrocepha-
lus, with also an increased ratio AQP1/AQP4 [28].

In this kind of hydrocephalus, where there is a mechani-
cal obstruction to CSF circulation, pharmacological options 
seem to have a poor promising utility. However, in a study 
olomoucine showed a capacity to attenuate the entity of 
hydrocephalus through astrogliosis inhibition [19]. At later 
stages, obstruction due to aqueductal stenosis seems effec-
tively to have among its causes also astrogliosis so olomou-
cine would be a very promising option in selected cases.

Furthermore, it is interesting to note that obstructive 
hydrocephalus seems to have two components involved in its 
physiopathology: (1) related to obstruction of CSF circula-
tion; (2) related to an alteration of AQP recycle at later stage 
that it can be speculated to be a compensatory mechanism 
secondary to an engulfment of glymphatic system.

•	 Communicating hydrocephalus

Considering communicating hydrocephalus in its inclu-
sive meaning, the studies in humans principally concern 
iNPH and communicating hydrocephalus NMO-related, 
while other kinds of hydrocephalus are sporadically reported 
[43] and almost only in animal models [31, 36, 40, 49]. In 
a study, AQP4 demonstrated to be increased in communi-
cating congenital hydrocephalus in comparison to controls 
[42]. The increase of AQP4 in communicating hydrocepha-
lus might be a compensatory mechanism of the brain to try 
to react to an impairment of the reabsorption of CSF.

So far, reports from the literature suggest the existence 
of two distinct features relating hydrocephalus and AQPs: 
(1) AQP4 is generally increased in CSF or parenchyma of 
communicating hydrocephalus; (2) in iNPH, there is a global 
decrease of AQP4 in CSF in contrast with other kind of com-
municating hydrocephalus.

Considering the congenital hydrocephalus, AQP4 is 
again generally reported as increased, while AQP1 seems 
to increase when there is CSF hypersecretion. Some discord-
ant results have been proposed in 2017 [34]: no association 
between AQP4 and congenital hydrocephalus. These con-
troversial findings can be related with the model of hydro-
cephalus chosen (congenital hydrocephalus mainly due to 
aqueductal stenosis): firstly, CSF circulation is different in 
the early stages of life; secondly, the kind of hydrocephalus 
is mainly but not totally obstructive.

In 2013 a series of children with both communicating and 
obstructive hydrocephalus was studied [42]. A significant 

increase of AQP4 was evident in CSF of children with com-
municating hydrocephalus compared to normal controls and 
to children with obstructive hydrocephalus; these latter had 
a higher AQP4 concentration compared to controls, but not 
statistically significant. These results confirm our considera-
tions being in line with the previous analyses.

This discrepancy between the two studies is of interest, 
since it shows how the kind of hydrocephalus can influence 
the expression of AQPs in humans.

•	 Are normal pressure hydrocephalus and degenerative 
brain diseases linked pathologies?

Although iNPH is a type of communicating hydrocepha-
lus, it has shown a distinct pattern of CSF concentration of 
AQPs. In fact, CSF or parenchymal concentrations of iNPH 
patients showed that AQP1 is generally increased. Interest-
ingly, it was reported an increase in AQP1 both in patients 
with MCI and iNPH [38]. Concerning AQP4, it has been 
found generally decreased in patients with iNPH [23, 25, 29, 
30, 33]. In another study a decreased concentration of AQP4 
in CSF of patients with iNPH and with Alzheimer’s disease 
(AD) was reported [25]. Moreover, several studies reported 
an increase of amyloid-β (Aβ) in both patients with AD and 
iNPH, while hyperphosphorylated Tau is increased only in 
patients with AD [59–61]. Therefore, these results suggest 
a connection between AD and iNPH [25].

As consequence, from the few studies available on human 
also suggesting the reduced Aβ clearance by the gylmphatic 
systems due to a reduction in AQP4 [62, 63], AD and iNPH 
might be linked by an impairment of the glymphatic system. 
Such considerations could also explain why iNPH patients 
often show overlapping symptoms with other brain condi-
tions such as AD, basal ganglia degeneration and Parkin-
son’s disease [14, 16].

Differently from other kind of hydrocephalus, AQP4 
reduction in iNPH and AD is related to a progressive disrup-
tion of the paravascular unit involved in the water exchange 
[63]. In a purely speculative way, this fact can lead to an 
alternative model of hydrocephalus explaining both the 
normal intracranial pressure and the low concentration of 
AQP4. In fact, in communicating hypertensive hydrocepha-
lus there may not be a loss of brain parenchyma but rather an 
accumulation of CSF due to the obstruction of paravascular 
spaces [36, 40]. This fact may lead to an up-regulation of 
AQP4 in response to increased intracranial pressure and, 
therefore, to an increased AQP4 concentration in paren-
chyma and subsequently in CSF [40, 42]. On the other hand, 
in case of iNPH there is a progressive accumulation of Aβ, 
loss of brain parenchyma and progressive impairment of 
glymphatic system without an increased intracranial pres-
sure, probably due to brain atrophy. As consequence, due to 
a lack of mechanisms to up-regulate AQP4 expression and 
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to a progressive loss of paravascular units it is possible to 
register low concentrations of AQP4 in CSF of patients with 
iNPH [23, 25, 29, 30, 33]. In a similar way, in AD patients, 
there is a progressive loss of brain parenchyma and para-
vascular units which relates with low AQP4 concentrations 
in CSF [3].

Less is known about the role of AQP1 in iNPH which 
generally shows a tendency to increase which is possibly 
related with the different expression of such protein in the 
brain [38].

These considerations may lead to further investigations 
aiming at improving knowledge about hydrocephalus and 
normal CSF circulation. Moreover, definitive findings may 
lead to the use of a panel of CSF biomarkers to better dif-
ferentiate brain degenerative diseases from iNPH, reducing 
the number of misdiagnoses and increasing the response rate 
of patients after VP shunt placement.

A summary of the number of studies underlying which 
aquaporin is increased or decreased in which hydrocephalus 
type is provided in Table 5.

•	 Future clinical aspects related to AQPs

From a clinical point of view, studies on AQPs show 
several translational aspects that may be at the base of the 
increased number of studies published in the last months: 
AQPs are candidate to become a possible CSF biomarker 
to diagnose hydrocephalus. Their role is probably going to 
develop from basic science to human clinical experience.

In fact, AQPs measured in CSF might help clinician in 
differentiating iNPH from other conditions, to diagnose 

some forms of chronic communicating hydrocephalus or 
to support the diagnosis of a shunt malfunction in difficult 
cases, like in patients with overdrainage or slit ventricles 
[64–66]. Considering our hypotheses, in overdrainage cases 
APQs levels should not be altered compared to controls, –as 
in the slit ventricle syndrome they would show variations in 
concentration. In case of obstructive hydrocephalus, AQPs 
would as well theoretically be useful in selected cases. They 
would be ideally suitable in some clinical scenarios like, 
for example, to differentiate between patients responding to 
third ventriculostomies or VP shunt.

Moreover, AQPs might be candidates as therapeutic tar-
gets for hydrocephalus. Unfortunately nowadays only few 
non-specific and toxic inhibitors or modulators that targets 
some AQPs are currently available, greatly limiting their 
therapeutic utility. The only substances or conditions with 
a proven effect in single studies (EPO, olomoucine and vin-
pocetine) neither have a validation yet, nor their mechanism 
of action is fully understood. EPO seems to have the abil-
ity to further up-regulate AQP4 expression, enhancing the 
mechanism which physiologically begins when hydrocepha-
lus becomes significant. EPO is a well-known substance, 
already utilized in different diseases, whose use could be 
relatively easy to extend also to this condition if the data 
would be validated.

The study of pathophysiology of hydrocephalus in all 
its forms, the molecular study of AQPs and the possible 
future development of target therapies (monoclonal antibod-
ies, microRNA) could be the keys to make AQPs a rou-
tine diagnostic test and also a therapeutic target of para-
mount importance in hydrocephalic cases. They would be 
another “weapon” in the neurologist’s and neurosurgeon’s 

Table 5   Number of studies 
reporting change in AQP in a 
certain hydrocephalus type

“Obstr + comm” includes hydrocephalus from neurocysticercosis, which can be of both types, and a case 
which was communicating at initial stages and then converted to non-communicating. Results in later 
stages of hydrocephalus are considered (not included study by Aghayev et al. [45]). Studies by Feng et al. 
[12], Bloch et al. [54], Oshio et al. [55], Clardy et al. [56], Gratton et al. [57] have been excluded in this 
table: absence of Aqp gene (Aqp null models) or AQP dysfunction does not allow autoregulation and, 
therefore, variability of AQP in parenchyma/CSF
AQP aquaporin, iNPH idiopathic normal pressure hydrocephalus, Obstr + comm obstructive + communicat-
ing
a Neuromyelitis optica-related

Hydrocephalus\AQP AQP4 ⇑ AQP4 ⇓ AQP4 = , altered 
polarity, not 
relevant

AQP1 ⇑ AQP1 ⇓ AQP4 = , altered 
polarity, not 
relevant

Obstructive 7 1a 2 3 1 1
Communicating 6 0 1 1 2 1
iNPH 0 5 0 1 0 0
Congenital 4 0 1 1 1 0
Obstr + comm 2 0 0 0 0 0
Human 2 6 2 3 2 0
Model 14 0 1 3 2 3
Both 2 0 1 0 1 0
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armamentarium, together with other targets of contemporary 
hydrocephalus research, like Na–K-ATPase, mineralocorti-
coid receptors or precocious blood dissolution after suba-
rachnoid hemorrhage [67].

Finally, studies on other AQPs also present in the brain 
(like AQP5 or 9) might help to better understand pathogen-
esis and physiopathology of hydrocephalus.

This review has some limitations. First of all, a uniform 
model of hydrocephalus is still lacking, and therefore, gen-
eralizations may be affected by the differences in the models. 
Secondly, although generally accepted the division between 
“obstructive” and “communicating” remains arbitrary; this 
may reflect into partially different results with `t to this 
review. Finally, other factors besides AQPs are likely to be 
involved in this complex system.

Conclusion

AQPs have been widely studied in the recent years and in 
particular their role in hydrocephalus has been investigated. 
AQP4 is considered the main player in the glymphatic sys-
tem, followed by AQP1. Their proven implication in hydro-
cephalic mechanisms could inspire new research towards 
assessment of their role as diagnostic tools or as therapeutic 
targets. Moreover, in a speculative way, studying the varia-
tion of AQPs in CSF and brain parenchyma may lead in the 
future a possible reclassification of hydrocephalus that could 
be of help not only in understanding the pathophysiology of 
hydrocephalus but also in clinical decision making.
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