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Abstract
Neuroimaging for dementia has made remarkable progress in recent years, shedding light on diagnostic subtypes of demen-
tia, predicting prognosis and monitoring pathology. This review covers some updates in the understanding of dementia 
using structural imaging, positron emission tomography (PET), structural and functional connectivity, and using big data 
and artificial intelligence. Progress with neuroimaging methods allows neuropathology to be examined in vivo, providing 
a suite of biomarkers for understanding neurodegeneration and for application in clinical trials. In addition, we highlight 
quantitative susceptibility imaging as an exciting new technique that may prove to be a sensitive biomarker for a range of 
neurodegenerative diseases. There are challenges in translating novel imaging techniques to clinical practice, particularly in 
developing standard methodologies and overcoming regulatory issues. It is likely that clinicians will need to lead the way if 
these obstacles are to be overcome. Continued efforts applying neuroimaging to understand mechanisms of neurodegenera-
tion and translating them to clinical practice will complete a revolution in neuroimaging.
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Introduction

Brain imaging in dementia is undergoing a revolution that is 
transforming neuroimaging research from merely describing 
changes in the brain, to understanding what those changes 
mean. This revolution has been driven primarily by a need 
for biomarkers to evaluate potential disease modifying treat-
ments, leading to a better understanding of the association 
between neuroimaging changes and underlying pathology. 
The effect has been a suite of neuroimaging methods and 
analytics that help with:

•	 identifying diagnostic subtypes
•	 predicting prognosis
•	 monitoring pathology in vivo.

The benefits of using neuroimaging in this way may find 
their way to memory clinics in the near future. Neuroim-
aging for the clinical diagnosis of dementia has tradition-
ally been used to rule out alternative causes of cognitive 

impairment. Times are changing, and nearly all the diagnos-
tic criteria for neurodegenerative diseases now include neu-
roimaging as a supportive criterion, and in some cases, such 
as Frontotemporal Dementia [1], imaging changes are part of 
the core criteria. However, these criteria remain vague on the 
specific sequences or measures required to support a diag-
nosis, usually specifying ‘atrophy’ in a region of interest. 
As automation and quantification becomes more prevalent 
to evaluate neuroimaging, it is likely that future criteria will 
become more specific on the extent of change that suggests 
a specific diagnosis and the type of neuroimaging required 
as evidence.

In this review, we discuss a few of the most significant 
recent advances in neuroimaging and what they mean for our 
understanding of dementia and the potential relevance for 
clinical practice. Due to space constraints we cannot cover 
all of this field including the use of neurophysiology with 
MEG [2], the application of arterial spin labelling as a prom-
ising disease measure [3, 4], and insightful new approaches 
using combinations of imaging modalities to investigate 
disease aetiology [5].
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Structural imaging

Since seminal studies of progressive hippocampal atro-
phy in Alzheimer’s disease in the 1990s [6], structural 
MRI has been the workhorse of neuroimaging in dementia. 
Structural imaging has revealed atrophy decades prior to 
the onset of symptoms in cohorts of people with Mende-
lian forms of Alzheimer’s Disease [7] and Frontotemporal 
Dementia [8].

Changes in brain structure continue to provide insight, 
particularly on the subtypes of disease. For example, the 
identification of distinct atrophy patterns associated with dif-
ferent rates of disease progression in Alzheimer’s disease 
and Frontotemporal Dementia [9]. The SuStaIn model used 
in this work adds to an understanding of clinical heterogene-
ity in disease progression by associating differential rates of 
changes over time with specific patterns of atrophy.

Despite its long history, relying on structural MRI for 
the early diagnosis of Alzheimer’s disease in the form of 
mild cognitive impairment (MCI) is not currently recom-
mended. A recent Cochrane review found a high false 
negative rate of 27% and a false positive rate of 29% [10] 
based on data from 33 studies. Most of the data came from 
studies looking solely at the hippocampus although overall 
the data quality was sparse with insufficient data available 
to establish whether, for example, total brain volume could 
better differentiate between MCI and Alzheimer’s disease.

Although this seems a disappointing finding, there 
may yet be more sensitive analytical tools or mathemati-
cal approaches using machine learning that can pick up 
patterns of structural change that may prove useful as a 
diagnostic biomarker [11].

An alternative approach to identifying a more sensitive 
imaging biomarker is to use a more powerful scanner, such 
as 7 T MRI. The “Tesla” refers to the strength of the mag-
netic field of an MRI scanner, with 1.5 T the one most often 
used in clinical practice, and 3 T MRI scanners being used 
routinely for research at academic centres. Although 7 T 
scanners are less common, shared protocols are helping to 
facilitate data-sharing to build larger cohorts between 7 T 
centres, such as those published by the UK7T network [12]. 
The stronger magnetic field is particularly useful in identify-
ing vascular abnormalities, including cerebral microbleeds, 
which was the focus of much of the early work with7T MRI 
in neurodegeneration [13, 14]. One study found that 78% 
of people with early Alzheimer’s disease/MCI had cerebral 
microbleeds [15], presumably relating to some form of amy-
loid angiopathy. These findings strengthen the argument for 
an early and important role for vascular abnormalities in 
Alzheimer’s disease.

This increased imaging power offered by 7 T MRI, 
also allows for better resolution of small structures in the 

brain, including subfields of the hippocampus. Analysis of 
the hippocampus in this way has suggested that the pre-
subiculum is the earliest subfield to be involved in Alz-
heimer’s disease [16], and that atrophy is greatest in the 
pre-subiculum and subiculum in this condition—a finding 
that is supported by other imaging approaches as well as 
pathological studies [17, 18]. This level of resolution is 
now getting to a point where we may be able to image 
pathology in vivo, a claim strengthened by the possibility 
of identifying cortical layers in vivo using 7 T MRI [19].

Other small structures relevant to less common neurode-
generative diseases are now also amenable to measurement 
using 7 T MRI, for example the locus coeruleus in progres-
sive supranuclear palsy [20]. An atlas of the locus coeruleus 
in an older population is freely available for this purpose 
(https​://www.nitrc​.org/proje​cts/lc_7t_prob/).

High-field MRI is therefore playing an increasing role in 
evaluating structural brain changes at ever increasing levels 
of resolution which is now approaching that of delineating 
pathology in situ.

Positron emission tomography (PET)

The pathology of dementia in vivo promises to be revealed 
by the fastest growing player in dementia imaging: Posi-
tron Emission Tomography (PET). PET ligands for beta-
amyloid are now well established [21], though their use in 
elderly populations is limited given the high rates of false 
positives; in an Australian cohort of cognitively normal peo-
ple the number of positive beta-amyloid scans was 18% at 
60–69, rising to 65% over the age of 80 [22]. To determine 
the clinical value of beta-amyloid PET, a real world study 
of 11,409 participants in the US aims to assess its utility in 
memory clinics (https​://www.ideas​-study​.org/). The study 
is ongoing, but initial results demonstrate that an amyloid 
PET scan led to a change in patient management in 60.2% 
of people with MCI and 63.5% of people with dementia, 
with approximately three quarters of the change being the 
commencement of a drug for Alzheimer’s disease [23]. It 
is hard to know whether this is useful in that a potential 
biomarker has had such a large impact, or rather that there 
are concerns given the high false positive rate could lead to 
over-diagnosis and unnecessary treatment. In this respect, 
the planned follow-up studies to assess whether there is a 
beneficial clinical outcome to this widespread use of amy-
loid PET and the associated change in clinical practice is 
much anticipated.

Ligands targeting proteins other than beta-amyloid have 
also been developed, with tau being the most advanced. 
First-generation ligands such as AV-1451 [24] are particu-
larly useful in Alzheimer’s disease which is associated with 
abnormally hyperphosphorylated and misfolded tau that 
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contains both 3 and 4 repeats of exon 10 of the MAPT gene, 
so-called 3R/4R tau. Other tauopathies such as progressive 
supranuclear palsy (4R tau), corticobasal degeneration (4R 
tau), frontotemporal dementia (3R tau) and chronic trau-
matic encephalopathy (3R/4R tau) are characterised by dif-
ferent and distinct types and conformations of abnormally 
folded tau [25, 26]. The tau PET ligands bind less avidly to 
these alternative isoforms forms of tau [27]. Furthermore, 
there are issues of off-target binding, for example AV-1451 
binds to the TDP-43 protein found in Semantic Dementia, 
motor neurone disease and a proportion of people with fron-
totemporal dementia [28, 29], and with monoamine oxidase 
in the basal ganglia [30, 31]. Second generation tau ligands 
are emerging with less off-target binding, but none have 
yet demonstrated good affinity for non-Alzheimer tauopa-
thies [32]. Despite their limitations, the first-generation 
tau ligands do show changes in expected brain regions in 
tauopathies including progressive supranuclear palsy [33] 
and apraxia of speech (a subtype of non-fluent variant pri-
mary progressive aphasia) [34]. Therefore, at the present 
time, tau PET is most relevant for Alzheimer’s disease as a 
potential diagnostic biomarker but may be useful for track-
ing changes in pathology for both Alzheimer’s disease and 
other tauopathies.

Other PET ligands target potentially important disease 
mechanisms. Inflammation is a very active research topic in 
dementia at the present time, in particular the role of micro-
glia and their function in driving the disease state [35]. Acti-
vated microglia express the protein TSPO that has been a 
target for PET ligands [36]. Applying the first generation 
of these ligands has suggested an early role for inflamma-
tion in a number of neurodegenerative diseases, including 
dementia with Lewy bodies [37], Alzheimer’s disease [38, 
39], corticobasal syndrome [40], progressive supranuclear 
palsy [41] and frontotemporal dementia [42]. The second 
generation ligands are more specific, but limited by the fact 
that approximately 30% of the population has a genetic vari-
ation meaning the ligand will not bind to TSPO [43].

Other ligands have emerged as possibly being useful in 
dementia states, for example UCB-J to measure synaptic 
density [44]. The UCB-J ligand has been looked at in Alz-
heimer’s disease [45] and revealed reduced synaptic den-
sity in the hippocampus that was correlated with episodic 
memory, although this study only used a group of 10 people.

Perhaps surprisingly in this field, there has not yet been a 
successful ligand to target alpha-synuclein as found in Par-
kinson’s Disease, Dementia with Lewy Bodies and Multiple 
System Atrophy, although efforts are ongoing [46, 47].

PET will continue to add to our knowledge of human 
in vivo neurodegeneration as ligands improve and the range 
of targeted ligands broadens. The relationship of PET to 
cognition and neuropathology needs to be clarified further, 
but one imagines this field will mature very quickly. It is 

likely to provide a source of biomarkers for trials of disease 
modifying treatments.

Despite revealing pathology, PET does not necessarily 
explain why specific brain regions are affected or how the 
brain compensates for the presence of pathology, something 
which connectivity analysis studies promises to shed light 
on.

Structural and functional connectivity

The field of connectivity uses neuroimaging to examine 
connections between brain regions, either functional con-
nections [48, 49] by examining time series data (functional 
MRI, EEG, MEG); or with structural connections (diffusion 
tensor imaging, cortical thickness). The importance of brain 
networks was highlighted by pioneering work demonstrat-
ing that brain networks are a template for atrophy in various 
neurodegenerative diseases [50, 51], for example the default 
mode is associated with Alzheimer’s disease [52] and the 
salience network with frontotemporal dementia [53].

It has been tempting to link these networks to the theory 
of protein templating and spread of pathological proteins 
through connected brain regions in a prion-like fashion [54], 
and indeed the distribution of tau has been linked to func-
tional networks [55]. This concept of ‘prion-like’ spread 
posits that abnormally conformed proteins cross synapses 
between connected brain regions to cause normal proteins to 
become abnormal in the “infected” region. Alternatively it 
may be that regions within these brain networks share a com-
mon susceptibility to disease linked to neurodevelopmental 
changes laid down through genetic variance that associates 
with later disease states [56]. Ultimately, it is likely that both 
spread and susceptibility play a part in neurodegeneration, 
but have different roles in different disorders; for example 
we have used functional connectivity and PET to examine 
the distribution of tau in neurodegeneration, finding that the 
pattern in Alzheimer’s disease was more in keeping with 
trans-synaptic spread, and in PSP was more in keeping with 
susceptibility of metabolically active regions [57].

As well as providing susceptibility to disease, there is 
some evidence that brain networks can be helpful in com-
pensating for the effects of early pathology, maintaining 
cognition in the long presymptomatic phase during which 
atrophy is detectable on scanning but cognition remains nor-
mal [58]. This is in line with the idea of cognitive reserve, 
that early life education, social interactions and genetic fac-
tors protect the brain from the effects of dementia [59, 60]. 
Cognitive reserve appears to be associated with a specific 
network of brain regions, though the implications for neu-
rodegeneration are not yet fully understood [61]. However, 
FDG-PET studies have demonstrated a role for cognitive 
reserve in Alzheimer’s disease [62], Dementia with Lewy 
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Bodies [63] and Corticobasal Degeneration [64], and the 
TMEM106B genotype has been found to modulate the pro-
tective effect of cognitive reserve in genetic forms of fron-
totemporal dementia [65].

It remains to be seen whether connectivity measures 
are reliable enough to be useful as diagnostic or longitu-
dinal biomarkers, but they are beginning to reveal a com-
plex interaction between brain structure and function in 
neurodegeneration.

Big data and artificial intelligence

The field of neuroimaging has led the scientific commu-
nity in open science initiatives, particularly in the crea-
tion of large repositories of open data [66, 67]. The most 
widely used datasets in the field of neurodegeneration are 
the Alzheimer’s Disease Neuroimaging Initiative (ADNI) 
[68], the Dominantly Inherited Alzheimer Network (DIAN) 
[69], the Parkinson’s Progression Markers Initiative (PPMI) 
[70], the Genetic Frontotemporal Initiative (GenFI) [8], and 
the ARTFL-LEFTDS Longitudinal Frontotemporal Lobar 
Degeneration (ALLFTD) cohort [71]. Given some of these 
datasets consist of over 1000 participants, they have attracted 
the attention of groups working with Artificial Intelligence 
(AI) methods.

AI describes a set of mathematical tools for identifying 
relationships and patterns within data and is particularly 
suitable for the complex and non-linear relationships found 
in neuroimaging data [72]. These methods need large data-
sets to pick up subtle patterns and to work out what might be 
‘signal’ and what might be ‘noise’. Machine learning meth-
ods are a subset of AI tools that have been used to predict 
the path of cognition in people with early signs of cognitive 
change with reasonable success [73, 74], and in one study 
these findings were replicable in a second cohort of patients 
[75]. Hence, machine learning methods are showing some 
promise in predicting cognitive change but do need to be 
translated to the clinical setting, which may require a cul-
tural shift by clinicians who will need to adapt to using new 
information available from AI algorithms [76].

More complex models have been applied to the challenge 
of diagnosis using a subset of machine learning methods 
called ‘deep learning’ algorithms. Theoretically, these meth-
ods can detect a wider variety of features within a dataset, 
and they do indeed achieve a high accuracy (up to 96.0%) 
in the diagnosis of people with dementia [11]. But this 
improved accuracy comes at a cost of interpretability, ie it 
is not clear what parts of the scan are being used to assign 
people to a diagnostic group. It could be argued that the lack 
of transparency doesn’t matter, as long as the answer is cor-
rect. But, if these methods are going to be transferred into 
routine clinical practice, the clinician must have an answer 

as to ‘why’ the algorithm assigns someone to having demen-
tia or not. It may be there are other explanations for the brain 
changes picked out by the algorithm that could lead to mis-
classification, for example a person may have hippocampal 
sclerosis causing hippocampal atrophy and not Alzheimer’s 
disease. A few emerging methods may address the challenge 
of interpretation in deep learning, such as the DeepLight 
method that has successfully been applied to functional MRI 
data in the human connectome project [77]. Another way 
to overcome these challenges is by brute force—larger sets 
of training datasets in the tens or hundreds of thousands of 
scans, rather than the few hundred to a couple of thousand 
that we currently have available. These larger datasets will 
allow the deep learning algorithm to have ‘seen’ a particular 
abnormality multiple times before, even if it is uncommon, 
and the error rates will fall as a result. Even so, it may be 
that doctors are reluctant to trust an algorithm they do not 
fully understand.

Translation

The advances in imaging shedding light on diagnosis, prog-
nosis and pathology are welcome in the research world, but 
as yet they have made very little impact on clinical practice.

One critical issue in achieving this is the standardisation 
of methodologies for neuroimaging data collection, preproc-
essing and analysis. Standard work schemes are beginning to 
emerge driven by the Organisation for Human Brain Map-
ping [78] and large datasets such as the UK biobank (https​://
imagi​ng.ukbio​bank.ac.uk/) and the Human Connectome Pro-
ject [79]. However, even with standard methods there remain 
significant regulatory hurdles that are required to properly 
assess and register these methods as medical products. This 
process takes time and energy, probably beyond the scope 
of the scientists who develop them for their own academic 
work. Companies would usually take on and scale up such 
products but may be reluctant to take on methods that are 
already in the public domain through (hugely valuable) open 
science initiatives. It may, therefore, fall to clinicians to take 
the lead to ensure that methods considered standard in aca-
demic circles are translated to clinical practice.

The next big thing…?

It is, of course, notoriously difficult to predict future trends in 
any field. But one modality of MRI that is receiving increas-
ing attention is Quantitative Susceptibility Mapping (QSM). 
This technique is sensitive to iron, calcium and other mag-
netic substances [80]. The deposition of iron measured using 
QSM has been linked with cognition in Alzheimer’s disease 
[81] and Parkinson’s disease [82]. In Alzheimer’s disease, 
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iron is found in the plaques and tangles that characterise the 
disease, though there is still some work required to establish 
what exactly is being identified, for example whether ferrous 
or ferric iron is picked up by QSM. Although iron chelation 
therapy is now being trialled in some of these condition, the 
drugs can cause life-threatening complications of agranulo-
cytosis and neutropenia which tempers ones enthusiasm for 
them [83], but nevertheless this imaging modality may yet 
shed light on the role of iron in the aetiology of neurode-
generation, and prove to be a useful non-invasive biomarker.

Conclusions

In conclusion, the field of neuroimaging is maturing from 
the simple measurement of volume and structure, to a host 
of methods that can identify better methods for monitoring 
disease progression and pathology as well as help us to bet-
ter understand patterns of neurodegeneration, and uncover 
mechanisms that protect cognitive function in the face of 
neuropathology. As these methods mature, it will be up to 
clinicians to lead their translation to the clinical world. If 
that can be achieved, the revolution in neuroimaging will 
be complete.
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