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Abstract
Background  In 123I-metaiodobenzylguanidine (123I-MIBG) myocardial scintigraphy, the early heart-to-mediastinum (H/M) 
ratio is considered to reflect the density of the cardiac sympathetic nerve endings, washout rate (WR) is an indicator of 
the cardiac sympathetic tone, and the delayed H/M ratio reflects both. The Delayed H/M ratio is usually used to support 
the diagnosis of Lewy body diseases (LBDs) and idiopathic REM sleep behavior disorder (iRBD); however, which values 
should be used have not been specified. Here, we hypothesized that the combination of these values is appropriate for the 
diagnostic purpose.
Methods  In this single-center retrospective cohort study, we recruited 106 patients with LBDs or iRBD and 33 patients 
without those diseases, of whom we reviewed the 123I-MIBG myocardial scintigraphy results.
Results  Sensitivity/specificity to diagnose LBDs and iRBD were 0.77/0.94 for the early H/M ratio (≤ 2.0), 0.82/0.94 for the 
delayed H/M ratio (≤ 2.0), and 0.89/0.91 for WR (≥ 23.0). When patients were considered positive if at least either the early 
H/M ratio or WR was abnormal, the sensitivity significantly increased to 0.97, whereas the specificity remained similar at 
0.91. Furthermore, our subgroup analyses revealed that WR enhancement preceded H/M ratio reduction, but, in patients 
with a severely reduced early H/M ratio, paradoxically normal WR could be observed.
Conclusion  We propose the highly sensitive, combined early H/M ratio and WR assessments for 123I-MIBG myocardial 
scintigraphy. The temporal precedence of cardiac sympathetic dysfunction over denervation and the floor effect in 123I-MIBG 
uptake may underlie the sensitivity improvement.
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Introduction

Differentiation of each Parkinsonian syndrome poses a huge 
challenge for clinicians. In fact, postmortem pathological 
studies revealed that the clinical diagnosis made even by 
experienced neurologists is often inaccurate [1–6]. There-
fore, tools to aid the differential diagnosis are of prominent 
importance. Among them, 123I-metaiodobenzylguanidine 
(123I-MIBG) myocardial scintigraphy has been consistently 
reported as a powerful tool to distinguish Lewy body dis-
eases [LBDs; i.e. pure autonomic failure (PAF), Parkinson’s 
disease (PD), and dementia with Lewy bodies (DLB)] and 
idiopathic REM sleep behavior disorder (iRBD) from other 
mimicking diseases since its first application to neurologi-
cal diseases in the 1990s [7–16]. Recently, reduced cardiac 
123I-MIBG uptake was employed as one of supportive crite-
ria in the clinical diagnostic criteria of PD [1] and as one of 
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indicative biomarkers in that of DLB [17]. However, these 
criteria do not specify which quantification values obtained 
in 123I-MIBG myocardial scintigraphy, namely, the early 
heart-to-mediastinum (H/M) ratio, delayed H/M ratio, and 
wash-out rate (WR), should be used for diagnosis, although 
the delayed H/M ratio is empirically preferred [10, 12].

The early H/M ratio is considered to primarily reflect the 
density of the cardiac sympathetic nerve endings, WR is an 
indicator of the cardiac sympathetic tone, and the delayed 
H/M ratio reflects both [18–22]. A recent longitudinal imag-
ing study using 18F-dopamine positron emission tomogra-
phy suggested that dysfunction precedes denervation in 
the cardiac sympathetic nerves [23]; therefore, WR should 
theoretically be more sensitive than the delayed H/M ratio. 
However, the floor effect in radioisotope uptake can produce 
paradoxically normal WR in patients with severe cardiac 
sympathetic denervation and reduce the sensitivity of WR 
[24, 25]. Considering these two opposing facts, we hypoth-
esized that the combined early H/M ratio and WR assess-
ments of 123I-MIBG myocardial scintigraphy would be best 
suited for the diagnoses of LBDs and iRBD.

Methods

Patients

This was a single-center retrospective cohort study con-
ducted at the Department of Neurology and Center for 
Sleep-related Disorders of Kansai Electric Power Hospital, 
a regional referral hospital in Osaka, Japan. The institu-
tional review board approved the study protocol. Among 
157 consecutive patients who underwent 123I-MIBG myo-
cardial scintigraphy from May 2013 to February 2019, 
11 patients with diabetes, peripheral neuropathy, and/
or a history of heart failure were firstly excluded because 
123I-MIBG uptake has been reported to decrease in these 
conditions. Seven more patients were also excluded because 
their definite final diagnosis could not be obtained. Finally, 
we included 106 patients with a final diagnosis of LBDs or 
iRBD and 33 patients with a final diagnosis of other dis-
eases. Patients with LBDs included 63 PD, 8 DLB, and 3 
PAF patients, all of whom were diagnosed according to the 
established clinical criteria at the last follow-up visit (fol-
low-up duration 3.37 ± 1.96 years) [1, 17, 26], as well as 32 
iRBD patients who underwent all-night polysomnography 
and were diagnosed as described in the International Clas-
sification of Sleep Disorders, third edition [27]. All-night 
polysomnography equipped with the standard montage for 
scoring sleep stages was conducted and scored according to 
the manual by the American Academy of Sleep Medicine 
[28]. Patients with other diseases included 3 multiple system 
atrophy (MSA), 4 progressive supranuclear palsy (PSP), 4 

corticobasal syndrome (CBS), 5 Alzheimer disease (AD), 
4 drug-induced parkinsonism, 5 idiopathic normal pres-
sure hydrocephalus (iNPH), 2 essential tremor (ET), and 2 
psychogenic movement disorder patients, all of whom were 
diagnosed clinically at the last follow-up visit (follow-up 
duration 3.87 ± 1.75 years) [29–31], as well as 4 obstructive 
sleep apnea syndrome (OSAS) patients who were diagnosed 
in accordance with the International Classification of Sleep 
Disorders, third edition [27]. Study flowchart is represented 
in Fig. 1. For background characteristics, the age, sex, and 
disease duration were gathered for all participants. Hoehn-
Yahr stage, initial motor symptom (tremor or not), and the 
presence of dream enactment behavior (DEB) were investi-
gated only for PD patients.

123I‑MIBG myocardial scintigraphy

Medications that are well known to affect 123I-MIBG uptake, 
such as serotonin-noradrenaline reuptake inhibitors, tricyclic 
antidepressants, reserpine, and labetalol, were temporally 
stopped [32]. At rest in the supine position, 111 MBq of 
123I-MIBG (Fujifilm Toyama Chemical, Co. Ltd, Tokyo, 
Japan) was intravenously injected. Using a dual-head γ cam-
era (GE healthcare, Tokyo, Japan) with low-energy collima-
tors, the anterior planar image of the chest was acquired 
20 min (early phase) and 3 h (delayed phase) after injection. 
The photopeak of 123I was centered at 159 keV with a 20% 
energy window. Acquisition time was 3 min and a 256 × 256 
matrix was used. For quantification of the result, regions of 
interests (ROIs) were drawn around the heart and the medi-
astinum. Average counts per pixel in the ROI of the heart (H) 
were divided by those in the ROI of the mediastinum (M) 
to calculate the H/M ratio. The H/M ratio in the early phase 
was designated as the early H/M ratio and that in the delayed 
phase was designated as the delayed H/M ratio. WR was 
calculated by the following formula: {[(early H) − (early M) 
− (delayed H) + (delayed M)] × 0.53/13}/[(early H) − (early 
M)] × 100 [33]. The institutional cut-off values were pre-
determined from normal controls as “mean—[2 × standard 
deviation (SD)]” for the early and delayed H/M ratios, and as 
“mean + (2 × SD)” for WR in 1992 when the clinical use of 
123I-MIBG myocardial scintigraphy was approved in Japan, 
and were 2.0, 2.0, and 23.0 for the early H/M ratio, delayed 
H/M ratio, and WR, respectively, which is similar to the 
value obtained in the previous study using similar collima-
tors [33].

Statistical analysis

The statistical software R (version 3.4.0, freely available at 
https​://www.R-proje​ct.org) was used for analyses. We used 
the Mann–Whitney U test for comparing the distribution 
of two-groups, the Kruskal–Wallis test followed by the the 

https://www.R-project.org
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Steel–Dwass test for comparing the distribution of multiple-
groups, and Spearman’s rank correlation coefficients (Rs) 
for correlation analyses. We also used Fisher’s exact test 
for the analyses of contingency tables and McNemar’s test 
for comparisons of the sensitivity and specificity. Receiver 
operating characteristic (ROC) analyses were performed to 
assess the diagnostic accuracy. To compare the area under 
the ROC curve (AUC) of ROC curves, we used the method 
described in DeLong et  al. [34]. Data are expressed as 
mean ± SD. P value of less than 0.05 was considered statis-
tically significant.

Results

The clinical characteristics are summarized in Table 1. The 
representative 123I-MIBG myocardial scintigraphy images 
of each disease were represented in Fig. 2.

The 123I-MIBG myocardial scintigraphy results are sum-
marized in Table 2. Both early and delayed H/M ratios 
were significantly lower in LBDs (i.e. PD, PAF, and DLB) 
and iRBD than in other diseases [early, 1.70 ± 0.41 (LBDs 
and iRBD) vs. 2.32 ± 0.38 (other diseases), p < 0.01; 
delayed, 1.55 ± 0.40 (LBDs and iRBD) vs. 2.32 ± 0.35 
(other diseases), p < 0.01] (Fig. 3a, b), and WR was sig-
nificantly enhanced in LBDs and iRBD than in other dis-
eases [31.08 ± 6.44 (LBDs and iRBD) vs. 20.00 ± 3.85 

(other diseases), p < 0.01] (Fig.  3c). Among LBDs and 
iRBD, the early H/M ratio, the delayed H/M ratio and 
WR were not significantly different between each dis-
ease [early, 1.56 ± 0.30 (iRBD) vs. 1.77 ± 0.46 (PD) vs. 
1.73 ± 0.06 (PAF) vs. 1.65 ± 0.27 (DLB), p = 0.21; delayed, 
1.39 ± 0.24 (iRBD) vs. 1.65 ± 0.46 (PD) vs. 1.44 ± 0.15 
(PAF) vs. 1.42 ± 0.22 (DLB), p = 0.09; WR, 32.42 ± 5.74 
(iRBD) vs. 29.94 ± 6.60 (PD) vs. 33.55 ± 10.66 (PAF) vs. 
33.73 ± 5.36 (DLB), p = 0.08] (Fig. 3d–f). However, when 
compared between iRBD and LBDs, the early H/M ratio and 
delayed H/M ratios were significantly lower in iRBD than 
in LBDs [early, 1.56 ± 0.30 (iRBD) vs. 1.76 ± 0.43 (LBDs), 
p = 0.04; delayed, 1.39 ± 0.24 (iRBD) vs. 1.62 ± 0.44 
(LBDs), p = 0.02] but WR were not significantly different 
[32.42 ± 5.74 (iRBD) vs. 30.50 ± 6.68 (LBDs), p = 0.10]. 
Among diseases other than LBDs and iRBD, the early H/M 
ratio, delayed H/M ratio, and WR were similar between 
each disease [early, 2.60 ± 0.52 (MSA) vs. 2.48 ± 0.13 (PSP) 
vs. 2.48 ± 0.43 (CBS) vs. 2.14 ± 0.15 (AD) vs. 2.10 ± 0.59 
(drug-induced) vs. 2.06 ± 0.27 (iNPH) vs. 2.25 ± 0.21 
(ET) vs. 2.70 ± 0.57 (psychogenic) vs. 2.4 ± 0.29 (OSAS), 
p = 0.15; delayed, 2.71 ± 0.46 (MSA) vs. 2.43 ± 0.11 (PSP) 
vs. 2.47 ± 0.38 (CBS) vs. 2.18 ± 0.12 (AD) vs. 2.08 ± 0.58 
(drug-induced) vs. 2.18 ± 0.39 (iNPH) vs. 2.24 ± 0.33 (ET) 
vs. 2.54 ± 0.39 (psychogenic) vs. 2.32 ± 0.16 (OSAS), 
p = 0.32; WR, 18.56 ± 3.50 (MSA) vs. 18.33 ± 1.11 (PSP) vs. 
20.49 ± 4.84 (CBS) vs. 20.58 ± 0.97 (AD) vs. 23.01 ± 5.12 

Fig. 1   Study flowchart. 
123I-MIBG 123I-metaiodoben-
zylguanidine, LBDs Lewy 
body diseases, PD Parkinson’s 
disease, PAF pure autonomic 
failure, DLB dementia with 
Lewy bodies, iRBD idiopathic 
REM sleep behavior disorder, 
PSP progressive supranuclear 
palsy, MSA multiple system 
atrophy, CBS corticobasal syn-
drome, iNPH idiopathic normal 
pressure hydrocephalus, AD 
Alzheimer disease, ET essential 
tremor, OSAS obstructive sleep 
apnea syndrome

Consecutive patients who underwent 123I-MIBG myocardial scintigraphy
from May 2013 to February 2019 at the Department of Neurology and 
Center for Sleep-related disorders of Kansai Electric Power Hospital

(n = 157)

Excluded (n = 18)
Diabetes (n = 6)
Heart failure (n = 3)
Peripheral autonomic neuropathy (n = 2)
Obscure final diagnosis (n = 7)

Finally included in the analysis
(n = 139)

Patients with other diseases (n = 33)
PSP (n = 4)
MSA (n = 3)
CBS (n = 4)
Drug-induced (n = 4)
iNPH (n = 5)
AD (n = 5)
ET (n = 2)
Psychogenic (n = 2)
OSAS (n = 4)

Patients with LBDs and iRBD (n = 106)
PD (n = 63)
PAF (n = 3)
DLB (n = 8)
iRBD (n = 32)
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(drug-induced) vs. 19.98 ± 6.26 (iNPH) vs. 15.47 ± 1.20 (ET) 
vs. 21.59 ± 0.85 (psychogenic) vs. 20.03 ± 3.31 (OSAS), 
p = 0.31] (Supplementary Fig. 1). Both in PD and iRBD, the 
early and delayed H/M ratios had significant negative cor-
relations with the disease duration (PD, early, Rs = − 0.33, 
p < 0.01; PD, delayed, Rs = − 0.28, p = 0.02; iRBD, early, 
Rs = − 0.37, p = 0.04; iRBD, delayed, Rs = − 0.46, p < 0.01) 
(Supplementary Fig. 2A and 2B). It was also observed that 
the early and delayed H/M ratios were significantly reduced 
in PD patients with DEB than in those without DEB [early, 
1.44 ± 0.28 (PD with DEB) vs. 1.88 ± 0.47 (PD without 
DEB), p < 0.01; delayed, 1.33 ± 0.28 (PD with DEB) vs. 
1.75 ± 0.47 (PD without DEB), p < 0.01] (Supplementary 
Fig. 3A and 3B) but WR were not significantly different 
[31.11 ± 6.19 (PD with DEB) vs. 29.45 ± 7.06 (PD without 
DEB), p = 0.29]. The Hoehn-Yahr stage and initial motor 
symptom (tremor or not) were not associated with the early 
or delayed H/M ratio in PD patients.

AUCs were 0.86 [95% confidence interval (CI) 0.79–0.92] 
for the early H/M ratio, 0.90 (95% CI 0.84–0.96) for the 
delayed H/M ratio, and 0.93 (95% CI 0.87–0.97) for WR 
(Fig. 4a). No statistically significant differences were found 
among these 3 AUCs [early vs. delayed, p = 0.34; early vs. 
WR, p = 0.11; delayed vs. WR, p = 0.35]. ROCs also demon-
strated that pre-determined institutional cut-offs for the early 
H/M ratio (2.0), delayed H/M ratio (2.0), and WR (23.0) 
were reasonable (Fig. 4a). Using these cut-offs, sensitiv-
ity and specificity of the early H/M ratio for the diagnosis 
of LBD and iRBD were 0.77 and 0.94, respectively, of the 
delayed H/M ratio were 0.82 and 0.94, respectively, and of 
WR were 0.89 and 0.91, respectively (Fig. 4a, b). No statisti-
cally significant differences in sensitivity or specificity were 
found among the early H/M ratio, delayed H/M ratio, and 

WR [sensitivity and specificity, p = 0.54 and p = 1.00 (early 
vs. delayed); p = 0.07 and p = 1.00 (early vs. WR); p = 0.28 
and p = 1.00 (delayed vs. WR)]. When patients were consid-
ered positive if at least either the early H/M ratio was ≤ 2.0 
or WR was ≥ 23.0 (combined assessment), the sensitivity 
became significantly higher than individual assessments 
[0.97, p < 0.01 (vs. the early H/M ratio), p < 0.01 (vs. the 
delayed H/M ratio), p = 0.04 (vs. WR)] whereas the speci-
ficity remained similar [0.91, p = 1.00 (vs. the early H/M 
ratio), p = 1.00 (vs. the delayed H/M ratio), p = 1.00 (vs. 
WR)] (Fig. 4b).

To further assess the physiological background of the 
improvement in sensitivity with this combined assess-
ment, we conducted serial subgroup analyses. First, the 
disease duration was compared between LBDs and iRBD 
patients with a normal early H/M ratio but an enhanced 
WR (subgroup 1–1), and those with a reduced early H/M 
ratio and an enhanced WR (subgroup 1–2) (Supplemen-
tary Fig.  4A). The disease duration was significantly 
shorter in subgroup 1–1 compared with subgroup 1–2 
[2.71 ± 1.01 (subgroup 1–1) vs 5.58 ± 3.72 (subgroup 
1–2) years, p < 0.01] (Supplementary Fig.  4B), sug-
gesting that WR enhancement precedes early H/M ratio 
reduction. Restricting the analysis only to PD patients did 
not alter the result [2.63 ± 1.01 (PD in subgroup 1–1) vs 
3.86 ± 1.01 (PD in subgroup 1–2) years, p < 0.01]. Next, 
the disease duration was compared between LBDs and 
iRBD patients with a normal delayed H/M ratio but an 
enhanced WR (subgroup 2–1), and those with a reduced 
delayed H/M ratio and an enhanced WR (subgroup 2–2) 
(Fig. 5a). The disease duration was significantly shorter 
in subgroup 2–1 than in subgroup 2–2 [2.87 ± 1.13 (sub-
group 2–1) vs. 5.33 ± 3.68 (subgroup 2–2) years, p < 0.01] 

Table 1   Characteristics of the enrolled subjects

Data are expressed as mean ± standard deviation or number (percentage)
PD Parkinson’s disease, PAF pure autonomic failure, DLB dementia with Lewy bodies, iRBD idiopathic REM sleep behavior disorder
A Kruskal–Wallis test
B Fisher’s exact test
a Fisher’s exact test with Bonferroni correction revealed that the percentage of male participants were significantly higher in iRBD patients than 
in PD patients
b Tukey–Kramer test revealed that disease duration was significantly longer in iRBD patients than in PD, DLB, and other disease patients
c The presence of dream enactment behavior was unclear in 9 PD patients

PD (n = 63) PAF (n = 3) DLB (n = 8) iRBD (n = 32) Other diseases 
(n = 33)

p value

Age (years) 73.1 ± 8.4 71.7 ± 1.53 68.6 ± 9.3 70.1 ± 7.8 54.8 ± 7.0 0.05A

Male 22 (35%) 3 (100%) 6 (75%) 25 (78%) 19 (58%) < 0.01Ba

Disease duration (years) 3.5 ± 1.8 4.7 ± 1.5 3.9 ± 1.4 7.7 ± 4.4 4.5 ± 7.0 < 0.01A,b

Tremor-onset 28 (44%) – – – – –
Hoen-Yahr stage 2.3 ± 0.6 – – – – –
Dream enactment behavior 14 (26%)c – – – – –
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(Fig. 5b), suggesting that WR enhancement even precedes 
delayed H/M ratio reduction. Restricting the analysis only 
to PD patients did not alter the result [2.77 ± 1.17 (PD 
in subgroup 2–1) vs 3.65 ± 1.88 (PD in subgroup 2–2) 
years, p = 0.04]. Finally, the early H/M ratio was com-
pared between LBDs and iRBD patients with a reduced 
early H/M ratio and an enhanced WR (subgroup 3–1), 
and those with a reduced early H/M ratio but a normal 
WR (subgroup 3–2) (Fig. 5c). The early H/M ratio was 
significantly reduced in subgroup 3–2 than in subgroup 
3–1 [1.53 ± 0.23 (group 3–1) vs. 1.34 ± 0.14 (group 3–2), 
p < 0.01] (Fig. 5d), showing that WR can return to normal 
value in patients with severe cardiac sympathetic nerve 
denervation supposedly because of the floor effect in 
123I-MIBG uptake.

Discussion

In this study, we have shown that the combined early H/M 
ratio and WR assessments yielded significantly higher 
sensitivity than individual assessments of the early H/M 
ratio, delayed H/M ratio, and WR without an associated 
reduction in specificity. Furthermore, our subgroup analy-
ses revealed that temporal precedence of WR enhancement 
over H/M ratio reduction and the floor effect in 123I-MIBG 
uptake may underlie the sensitivity improvement in our 
combined assessment.

MIBG, an analog of guanethidine, behaves similarly 
to noradrenaline in terms of uptake and storage by the 
cardiac sympathetic nerve endings, and radiolabeling of 

Early Delayed

H/M = 1.50 
H/M = 1.27 
WR = 45.77 

Early Delayed

H/M = 1.40 
H/M = 1.23 
WR = 39.85 

iRBD
Early Delayed

H/M = 1.40 
H/M = 1.25 
WR = 40.84 

PAF
Early Delayed

H/M = 1.70 
H/M = 1.30 
WR = 34.08 

DLB

Other disases (PSP)

Early Delayed

H/M = 2.60 
H/M = 2.55 
WR = 17.63 

PD

Fig. 2   Representative 123I-metaiodobenzylguanidine myocardial 
scintigraphy images in each disease. H/M ratio heart-to-mediasti-
num ratio, WR washout rate, iRBD idiopathic REM sleep behavior 

disorder, PD Parkinson’s disease, PAF pure autonomic failure, DLB 
dementia with Lewy bodies, PSP progressive supranuclear palsy
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MIBG with iodine-123 enables us to clinically evaluate the 
integrity of the cardiac sympathetic nervous system. Origi-
nally, in the 1980s, 123I-MIBG myocardial scintigraphy 
was shown to have a prognostic value in heart failure [35, 
36]. Subsequently, in the 1990s, 123I-MIBG myocardial 
scintigraphy was applied to LBDs and shown to have a 
diagnostic value for LBDs [7, 8]. Evidences have accu-
mulated from then on, and a meta-analysis revealed that 
pooled sensitivity and specificity were 82.6% and 89.2%, 
respectively, for the early H/M ratio, and 89.7% and 
82.6%, respectively, for the delayed H/M ratio to differen-
tiate PD from other neurodegenerative parkinsonian syn-
dromes [11]. Another meta-analysis revealed that pooled 
sensitivity and specificity were 98% and 94%, respectively, 
for the delayed H/M ratio to differentiate DLB from other 
types of dementia [37]. Patients with iRBD, a large pro-
portion of whom eventually developed LBDs [38], have 
also been shown to demonstrate reduced 123I-MIBG uptake 
[9, 39–44]; therefore, reduced 123I-MIBG uptake has been 
considered as a good biomarker to support the diagno-
ses of LBDs and iRBD. Previous studies revealed that 
independent assessments of the early H/M ratio, delayed 
H/M ratio, and WR produce a similar diagnostic accuracy 
[45]; however, considering the reported fact that reduced 
123I-MIBG uptake usually begins in the delayed phase and 
progresses longitudinally [22], the delayed H/M ratio is 
empirically preferred for the diagnostic purpose. It have 

also been observed that WR enhancement could precede 
delayed H/M ratio reduction [19]; however, supposedly 
because of a paradoxical normal WR in severely dener-
vated patients which was observed in our study, WR is 
usually avoided for diagnoses of LBDs and iRBD. Our 
combinational assessment is therefore a totally reasonable 
approach to overcome this disadvantage of WR and should 
be preferred in clinical practice to raise the diagnostic 
accuracy of 123I-MIBG myocardial scintigraphy.

Although beyond the scope of this study, our study also 
revealed that both early and delayed H/M ratios were signifi-
cantly reduced in iRBD than in LBDs, and in PD patients 
with DEB than in those without DEB. Although an earli-
est study reported that the magnitude of 123I-MIBG uptake 
reduction was similar between iRBD and PD [9], subsequent 
reports showed that iRBD patients display significantly 
lower 123I-MIBG uptake than PD patients [40, 42]. Further-
more, previous studies with small participants also revealed 
that PD patients with clinical symptoms of RBD display 
significantly lower 123I-MIBG uptake than those without 
clinical symptoms of RBD [43, 46]. Therefore, our data and 
those previous data altogether suggest that the lesion respon-
sible for RBD links closely to the cardiac sympathetic dener-
vation and that the presence of RBD only mirrors a distinct 
pathological subtype in PD. This hypothesis is important 
especially because iRBD recently gathers a lot of atten-
tion as prodromal PD for developing a disease modification 

Table 2   Summary of the 123I-MIBG myocardial scintigraphy results in this study

Data are expressed as mean ± standard deviation
LBDs Lewy body diseases, PD Parkinson’s disease, PAF pure autonomic failure, DLB dementia with Lewy bodies, iRBD idiopathic REM sleep 
behavior disorder, H/M heart-to-mediastinum, WR, washout rate
a Mann–Whitney U test
b Kruskal–Wallis test

LBDs (n = 74)

PD (n = 63) PAF (n = 3) DLB (n = 8) iRBD (n = 32) Other diseases (n = 33) p value

LBDs and iRBD vs. other diseases
The early H/M ratio 1.70 ± 0.41 2.32 ± 0.38 < 0.01a

The delayed H/M ratio 1.55 ± 0.40 2.32 ± 0.35 < 0.01a

WR 31.08 ± 6.44 20.00 ± 3.85 < 0.01a

iRBD vs. LBDs
The early H/M ratio 1.76 ± 0.43 1.56 ± 0.30 – 0.04a

The delayed H/M ratio 1.62 ± 0.44 1.39 ± 0.24 – 0.02a

WR 30.50 ± 6.68 32.42 ± 5.74 – 0.10a

Among LBDs
The early H/M ratio 1.77 ± 0.46 1.73 ± 0.06 1.65 ± 0.27 – – 0.87b

The delayed H/M ratio 1.65 ± 0.46 1.44 ± 0.15 1.42 ± 0.22 – – 0.48b

WR 29.94 ± 6.60 33.55 ± 10.66 33.73 ± 5.36 – – 0.17b

PD with DEB vs. PD without DEB
The early H/M ratio 1.44 ± 0.28 vs. – – – – < 0.01a

1.88 ± 0.47
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Fig. 3   Box plots with dot plots showing the early heart-to-mediasti-
num (H/M) ratio, delayed H/M ratio, and washout rate (WR). The 
early (a) and delayed (b) heart-to-mediastinum (H/M) ratios were 
significantly reduced in Lewy body diseases (LBDs) and idiopathic 
REM sleep behavior disorder (iRBD). WR (c) was significantly 
enhanced in LBDs and iRBD. Among LBDs and iRBD, there were 

no statistically significant differences between each disease in the 
early H/M ratio (d), delayed H/M ratio (e), and WR (f); however, 
when compared between iRBD and LBDs, the early H/M ratio and 
the delayed H/M ratios were significantly lower in iRBD than in 
LBDs. PAF pure autonomic failure, DLB dementia with Lewy bodies. 
**p < 0.01, *p < 0.05

Fig. 4   Diagnostic accuracy of 
our combined assessment. a 
Receiver operating characteris-
tic (ROC) analysis of individual 
assessments of the early heart-
to-mediastinum (H/M) ratio, 
delayed H/M ratio, and washout 
rate (WR). Sensitivity (Sen) 
and specificity (Spe) obtained 
from our pre-determined cut-off 
values were also presented. b 
Bar plots showing the signifi-
cant improvement in sensitivity 
with our combined assessment. 
AUC​ area under the ROC curve. 
**p < 0.01, *p < 0.05
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therapy [47]; therefore, future studies with larger cohorts are 
definitely warranted to examine this hypothesis.

There are several limitations to this study. First, although 
we took a long follow-up period, it would be unfeasible to 
totally eliminate a diagnostic bias due to the established use-
fulness of 123I-MIBG myocardial scintigraphy for the diag-
nosis of LBDs [1, 17]. Second, only the clinical diagnosis 
was employed as a reference standard. Finally, the number 
of patients without LBDs and iRBD was relatively small. 
Nevertheless, our study has a high clinical relevance in that 
we proposed a reasonable, easily-feasible approach of com-
bined early H/M ratio and WR assessments, which showed 
significantly higher sensitivity without an associated reduc-
tion of specificity.
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