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Abstract
ATP8A2-related disorders are autosomal recessive conditions that associate encephalopathy with or without hypotonia, 
psychomotor delay, abnormal movements, chorea, tremor, optic atrophy and cerebellar atrophy (CARMQ4). Through a multi-
centric collaboration, we identified six point mutations (one splice site and five missense mutations) involving ATP8A2 in 
six individuals from five families. Two patients from one family with the homozygous p.Gly585Val mutation had a milder 
presentation without encephalopathy. Expression and functional studies of the missense mutations demonstrated that protein 
levels of four of the five missense variants were very low and lacked phosphatidylserine-activated ATPase activity. One 
variant p.Ile215Leu, however, expressed at normal levels and displayed phospholipid-activated ATPase activity similar to 
the non-mutated protein. We therefore expand for the first time the phenotype related to ATP8A2 mutations to less severe 
forms characterized by cerebellar ataxia without encephalopathy and suggest that ATP8A2 should be analyzed for all cases 
of syndromic or non-syndromic recessive or sporadic ataxia.
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Introduction

The cerebellar ataxia, mental retardation, and disequilibrium 
syndrome (CAMRQ) is a heterogeneous group of genetic 
disorders of autosomal recessive inheritance [1]. Several 
genes responsible for the condition have been identified to 
date, namely VLDLR (MIM: 224050) [2], WDR81 (MIM: 
610185) [3] and CA8 (MIM: 613227) [4] causing, respec-
tively, CAMRQ1, CAMRQ2, and CAMRQ3.

More recently, disease-causing mutations in ATP8A2 
have been identified in CAMRQ4 patients. The initial 
CAMRQ4 report identified a single ATP8A2 missense muta-
tion segregating in four patients of a large, multigenerational 
consanguineous family [5]. Since then, a total of 26 patients 
with CAMRQ4 have been described, confirming the involve-
ment of the ATP8A2 in severe early-onset hypotonia with 
psychomotor delay, abnormal movements, tremor, mental 
retardation, optic and cerebellar atrophy [6–8].

We report five additional patients from four families and 
we describe for the first time two patients presenting with a 
novel ATP8A2 phenotype characterized by mild cerebellar 
ataxia.
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Subjects and methods

Genetic studies and ethics statement

Human genetic studies conducted in research laboratories 
were approved by local ethics committees from participat-
ing centers (Montpellier, France; Baltimore, USA; Padova-
Bergamo, Italy; Ankara, Turkey). Written informed consent 
was obtained from all study participants. All five affected 
individuals underwent extensive clinical examination by 
at least one expert in the ataxia field. Either whole-exome 
(individuals 1-A, 1-B, 3 and 4), mini-exome (individual 2) 
or neuromuscular gene panel (individual 5) sequencing and 
data analysis were performed according to previously pub-
lished protocols [5, 7, 9–11].

Generation of human ATP8A2 mutant constructs

Human ATP8A2 constructs (NCBI NM_016529.6) contain-
ing encoding a C-terminal 9 amino acid 1D4 tag in pcDNA 
3.1 have been described previously [12]. Disease-associ-
ated missense mutations were generated using the Q5 site-
directed mutagenesis kit (NEB, #E0552S—New England 
Biolabs, Whitby, ON) with primers specific to each point 
mutation (Supplementary Table S2). The mutant plasmids 
were verified by Sanger sequencing of the entire coding and 
promoter region.

Expression of ATP8A2 constructs

HEK293T cells (American type culture collection, Manas-
sas, VA) were transfected in 10 cm plates at 80% confluency 
with 5 µg of human ATP8A2-1D4 and 5 µg of CDC50A 
plasmids using 30 µg of the transfection agent polyethylen-
imine (PEI). Cells were harvested 24 h post-transfection and 
lysed in 4% SDS with stirring. Samples were centrifuged at 
40,000 rpm for 10 min and supernatant was quantified for 
total protein. Protein expression was analyzed on western 
blots labeled for ATP8A2 and tubulin as a loading control. 
Briefly, SDS-PAGE gels were transferred onto immobilon 
FL membranes (millipore) and blocked for 30 min in 1% 
milk/PBS. ATP8A2 expression was determined using an in-
house Rho-1D4 antibody (1/500 dilution, 1 h labeling) and 
goat anti-mouse Ig secondary antibody coupled to IR dye 
680 (1/40,000, 40 min labeling). Anti-β-tubulin antibody 
(Abcam, ab15568) was used to detect β-tubulin together 
with donkey anti-rabbit Ig secondary antibody coupled to IR 
dye 800. Membranes were washed in between antibody incu-
bations with PBS containing 0.5% Tween 20. Imaging of 
blots was carried out on the LI-COR Odyssey infrared imag-
ing system. Band intensities of both Rho1D4 and β-tubulin 

labeling were quantified and the ratio of 1D4/β-tubulin was 
calculated and plotted for each ATP8A2 variant. All experi-
ments were done at least three times.

The ATP8A2-CDC50A variants were purified on a Rho 
1D4-Sepharose immunoaffinity matrix as described previ-
ously [13]. For more details, see the supplementary method 
in Appendix A.

ATPase activity assay

1,2-Dioleoyl-sn-glycero-3-phosphocholine (DOPC) and 
1,2-dioleoyl-sn-glycero-3-phosphoserine (DOPS) (Avanti 
Polar Lipids, Alabaster, AL) were dried at a concentra-
tion of 50 mg/ml under N2 gas and resuspended in ATPase 
Assay buffer (50 mM HEPES–NaOH pH 7.5, 150 mM NaCl, 
12.5 mM MgCl2, 1 mM DTT, and 10 mM CHAPS) to make 
a final concentration of 5 mg/ml. Each protein eluate was 
diluted in ATPase Assay buffer at 0.4 ng/µl. Resuspended 
lipids contained either 100% DOPC or 84% DOPC and 
16% DOPS. Each reaction contained 12.5 µl of 5 mg/ml 
lipids, 10 µl of 1.25 mM ATP in assay buffer, and 2.5 µl of 
diluted protein. Controls contained 25 µl of 12% SDS and 
each sample was done in triplicate. All samples were incu-
bated at 37 C for 30 min to stimulate the ATPase reaction. 
Twenty-five microliter of 12% SDS was added to each sam-
ple (except controls) to terminate the reaction. The amount 
of hydrolyzed phosphate was measured using a colorimetric 
assay previously described [14]. Absorbance measurements 
were compared to those of known phosphate standards car-
ried out in parallel. The specific activity (µmol Pi released 
per min per mg protein) was calculated. Data were analyzed 
for n = 2 for 100% PC and n = 3 for 84%PC/16%PS with 
error bars (SD) or as indicated.

Results

Identification of point mutation variants disrupting 
ATP8A2

Through a multi-centric collaboration, we identified six 
point mutations (one splice site and five missense mutations) 
involving ATP8A2 in six individuals from five families.

Because of parental consanguinity, we investigated all 
homozygous variants found by whole exome (individuals 
1-A, 1-B, 3), mini-exome (individual 2) or neuromuscu-
lar panel (individual 5) sequencing analysis. We identified 
three homozygous non-conservative missense changes: 
c.1754G > T, p.Gly585Val (G585V) in individuals 1-A and 
1-B, c.1762C > T, p.Arg588Trp (R588W) in individual 2 
and c.1312A > G, p.Met438Val (M438V) in individual 5, 
all located in the catalytic cytoplasmic domain [amino acids 
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364–877] of ATP8A2 (NM_016529.4) and predicted to be 
pathogenic (Fig. 1b, c).

In individual 3, WES revealed a homozygous point 
mutation, c.1057 + 5G > C, affecting the splice donor site 
of intron 11. Human splicing finder 3.1 (https​://www.umd.
be/HSF/index​.html) predicts a reduction of the splice site 
score from 92 (wild type) to 65 (mutant), most probably 
affecting splicing.

In individual 4 who was born to unrelated parents from 
Italian origin, WES revealed two segregating variants pre-
dicted to be pathogenic: c.643A > T, p.Ile215Leu (I215L) 
located in the actuator domain of ATP8A2 and c.1916A > G, 
p.Tyr639Cys (Y639C) located in the phosphorylation 
domain (Fig. 1b, c, Table 1).

Clinical features of individuals with ATP8A2 variants

The five affected individuals in our cohort display devel-
opmental delay of differing severity ranging from delayed 
walking with ataxia to severe encephalopathy with no ambu-
lation and severe intellectual disability (Table 1).

Two siblings (individual 1-A and 1-B) born from first-
degree consanguineous parents of Turkish origin were 
affected by 2 years of age with head titubation, ataxic gait 
and tremor. Both siblings have borderline intellectual func-
tioning with IQ ranging from 70 to 80. Cerebral magnetic 
resonance imaging (MRI) revealed very mild vermian atro-
phy in the brother at 4 years (Fig. 1a). Both patients were 
still ambulant, with unilateral aid, by ages ranging from 8 
to 11 years.

In the second family from Algeria, a girl (individual 2) 
was affected by a transient encephalopathy with brutal post 
measles coma at around 15 months of age. She experienced 
delayed walking, disequilibrium, severe hypotonia, dysme-
tria, multidirectional nystagmus and dysarthria. During a 
short stay in France, this child progressed very significantly: 
she became able to stand alone with support and to do three 
consecutive walking steps with aid.

Individual 3 is an 8 year old female with Caucasian origin 
who was adopted at 4 years of age. She has encephalopa-
thy, developmental delay, hypotonia, muscle weakness, sei-
zures, chorea, dystonia, mild/moderate intellectual disability, 
microcephaly, optic atrophy and no ambulation. She is able 
to say 20–30 words with dysarthria and is G-tube-depend-
ent. She had several EEGs around the ages of 5–6 which 
revealed nonspecific background slowing, and subsequently 
right occipital spike wave discharges and occasional right 
central spikes.

Individual 4 is a 28 year old female with Italian origin 
who is wheelchair-bound. She presents with a similar phe-
notype to that of individual 3 but with severe intellectual 
disability, anarthria, strabismus and without optic atro-
phy. EEGs were normal up to the age of 17 years, and then 

revealed focal paroxysms and slow wave activity. MRI at the 
age of 5 years and 11 years showed microcephaly, oligogyria 
with few shallow sulci, bilateral moderate thinning of white 
matter, mild thinning of the corpus callosum and normal 
cerebellum.

Individual 5 is a 2 year old boy from Turkey who pre-
sents with developmental delay, intellectual disability, severe 
hypotonia, muscle weakness, chorea, dystonia, facial dyski-
nesia, strabismus, severe ptosis, ophthalmoplegia, hearing 
impairment and bilateral frontal atrophy on brain MRI. At 
24 months, he experienced generalized febrile seizures. Two 
routine EEGs obtained at different timepoints showed no 
epileptiform abnormality. He also has feeding difficulties.

Expression and functional analysis

To determine the effect of the missense mutations on 
ATP8A2, HEK293T cells were co-transfected with plasmids 
containing the ATP8A2 variant and CDC50A (also known as 
TMEM30A). The expression of the ATP8A2 variants relative 
to the non-mutated protein was examined on Western blots 
(Fig. 2). The I215L variant expressed at levels comparable to 
control ATP8A2, whereas the four other variants expressed 
at levels less than 15% of control ATP8A2.

The ATPase activity of immunoaffinity purified ATP8A2 
and the I215L variant was measured in the presence of 100% 
phosphatidylcholine and 84% phosphatidylcholine-16% 
phosphatidylserine. As shown in Fig. 3, the ATPase activ-
ity of the I215L variant, like control ATP8A2, was strongly 
activated by increasing concentrations of phosphatidyl-
serine. The M438V, G585V, R588W, and Y639C variants 
expressed at very low levels making ATPase activity meas-
urements difficult. However, by increasing the number of 
transfected cells, we were able to obtain sufficient protein to 
assess the ATPase activity of the G585V and M438V vari-
ants. As shown in Fig. 3, neither variant displayed significant 
phosphatidylserine-activated ATPase.

Discussion

Through a multi-centric collaboration, we identified five 
patients from four unrelated families who presented in child-
hood with neurological deficits distinguished by ataxia and/
or developmental delay of differing severities that were 
caused by mutations in ATP8A2.

To date, 26 patients from thirteen families have been 
described in the literature: six families have homozygous or 
compound heterozygous truncating mutations, one sporadic 
case has a presumed dominant de novo balanced transloca-
tion of chromosomes 10 and 13 disrupting the ATP8A2 cod-
ing sequence, while the six remaining families have homozy-
gous or compound heterozygous missense mutations, almost 

https://www.umd.be/HSF/index.html
https://www.umd.be/HSF/index.html
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all located in the catalytic cytoplasmic domain and adjacent 
transmembrane segment VI [amino acids 364–877] of the 
phospholipid-transporting ATP8A2 (6/7 mutations).

Mutations in genes coding for flippases are globally rare 
and are often responsible for severe early onset encephalopa-
thy. In the initial report of CAMRQ4, p.Ile376Met homozy-
gous mutation was predicted to change the secondary struc-
ture of the ATP8A2 protein. The patients with p.Ile376Met 
presented with encephalopathy, developmental delay, hypo-
tonia, quadrupedal gait, truncal ataxia and dysarthric speech.

Since then, 22 additional cases have been described 
and presented with an even more severe phenotype with 
absence of ambulation, non-verbal or absent language and 
feeding difficulties. Among them, nine individuals also 
experienced optic atrophy [6–8, 15] (see Supplementary 
clinical data Table S1).

In this report we expand the phenotype of ATP8A2 
mutations describing for the first time two patients with a 
less severe form characterized by cerebellar ataxia without 
encephalopathy (individuals 1-A and 1-B).

Remarkably, individual 2 who presented at birth with 
encephalopathy, clearly improved with physiotherapy and 
had a relatively mild presentation at 10 years. As individu-
als 1-A and 1-B, she was able to walk with unilateral aid 
and could speak with dysarthria.

In our study, the pathogenicity of the missense mutations 
was evaluated by analysis of the ATP8A2 variants expressed 
in culture cells. Four variants (M438V, G585V, R588W, and 
Y639C) expressed at exceedingly low levels compared to 
control ATP8A2. The low expression of these variants har-
boring missense mutations in the catalytic domains is likely 
caused by significant misfolding of the protein together with 
proteasomal degradation. Interestingly, the I215L variant 
harboring a relatively conserved isoleucine to leucine substi-
tution displayed a level of expression and phosphatidylserine 
(PS)-activated ATPase activity comparable to non-mutated 
control ATP8A2. It is unclear why this variant is associated 
with the severe disease phenotype in patient 4 also harbor-
ing the severe p.Y639C mutation. It is possible that there is 
an additional mutation in the introns or promoter regions, 
or a gene rearrangement (which could not be ruled out from 
exome analysis) of the allele encoding the I215L variant or 
alternatively this mutation affects a property of ATP8A2 not 
reproduced in the heterologous expression system used here. 
Likewise, it is unclear why patients 1 and 2 homozygous 
for the G585V mutation display a mild disease phenotype 
despite the finding that this variant expresses at low levels 
and is devoid of ATPase activity. It is possible that other 
genetic modifiers or P4-ATPases may compensate for the 
loss in expression/activity of this variant.

In the central nervous system, apoptosis plays an impor-
tant role during development and is a primary pathogenic 
mechanism in several adult neurodegenerative diseases. Ta

bl
e 

1  
(c

on
tin

ue
d)

C
oh

or
t

M
cM

ill
an

 e
t a

l. 
[7

] a
nd

 M
ar

tin
-H

er
na

de
z 

et
 a

l. 
[6

]
A

ls
ah

li 
et

 a
l. 

[8
]

C
ac

ci
ag

li 
et

 a
l. 

[1
5]

O
na

t e
t a

l. 
[5

]

Pa
tie

nt
10

11
F1

-3
F2

-3
F3

-2
A

B
-1

G
en

de
r

F
F

M
F

F
M

M

A
no

m
al

ie
s o

n 
br

ai
n 

im
ag

in
g

D
el

ay
ed

 m
ye

lin
at

io
n 

fo
r a

ge
; m

ild
 c

er
eb

ra
l 

at
ro

ph
y,

 th
in

 c
or

pu
s 

ca
llo

su
m

D
el

ay
ed

 m
ye

lin
at

io
n 

in
 

te
m

po
ra

l l
ob

es
N

or
m

al
N

or
m

al
N

or
m

al
N

or
m

al
M

ild
 c

er
eb

el
la

r a
nd

 c
er

-
eb

ra
l a

tro
ph

y

O
ph

ta
lm

op
le

gi
a

Ye
s

Ye
s

N
o

Ye
s

Ye
s

N
o

N
A

N
ys

ta
gm

us
N

o
N

o
N

o
N

o
Ye

s
N

o
N

A
O

pt
ic

 a
tro

ph
y

Ye
s

Ye
s

N
o

Ye
s

Ye
s

N
o

N
A

H
ea

rin
g 

im
pa

irm
en

t
N

o
N

o
N

o
N

o
N

o
N

o
N

A
Pe

s-
pl

an
us

N
A

N
A

N
A

N
A

N
A

N
A

N
A

Fe
ed

in
g 

di
ffi

cu
lti

es
Ye

s
Ye

s
Ye

s
Ye

s
Ye

s
N

A
N

A

NA
 d

at
a 

no
t a

va
ila

bl
e,

 S
D

 st
an

da
rd

 d
ev

ia
tio

n,
 F

 fe
m

al
e,

 M
 m

al
e,

 N
A 

no
t a

va
ila

bl
e,

 N
D

 n
ot

 d
et

er
m

in
ed

*N
om

en
cl

at
ur

e 
H

G
V

S 
V

2.
0 

ac
co

rd
in

g 
to

 m
R

N
A

 re
fe

re
nc

e 
se

qu
en

ce
 N

M
_0

16
52

9.
4.

 N
uc

le
ot

id
e 

nu
m

be
rin

g 
us

es
 +

 1 
as

 th
e 
A 

of
 th

e 
A

TG
 tr

an
sl

at
io

n 
in

iti
at

io
n 

co
do

n 
in

 th
e 

re
fe

re
nc

e 
se

qu
en

ce
, 

w
ith

 th
e 

in
iti

at
io

n 
co

do
n 

as
 c

od
on

 1
. A

ll 
m

ut
at

io
ns

 a
re

 h
om

oz
yg

ou
s u

nl
es

s n
ot

ed
 c

om
po

un
d 

he
te

ro
zy

go
us

 o
r h

et
er

oz
yg

ou
s



211Journal of Neurology (2020) 267:203–213	

1 3

Among apoptotic signaling pathways, the PS pathway 
appears to have a crucial and unique role [16]. P4-ATPase 
ATP8A2 is a 1188-amino-acid protein involved in the main-
tenance of transbilayer lipid asymmetry by actively trans-
porting specific phospholipids such as PS across cell mem-
branes [17]. ATP8A2-encoded flippase is strongly expressed 
in the brain, cerebellum, retina and testis [5, 15]. ATP8A2 
partial loss of function contributes to PS exposure and possi-
ble initiation of the early phase of apoptosis. On the surface 
of cells, PS is recognized by macrophages through PtdSerR, 
a phosphatidylserine receptor used for specific induction of 
phagocytosis. The lack of genotype/phenotype correlation 
in ATP8A2-related disorders suggests that variability of 

macrophage activation may also be an important contribu-
tor to clinical severity.

On the basis of amino acid sequence alignment, the 
P4-ATPase ATP8A2 is predicted to possess a transmem-
brane domain with 10 helices and three cytoplasmic 
domains: P (phosphorylation) that contains the phosphoryl-
ated canonical aspartic acid residue, N (nucleotide binding) 
that contains the ATP-binding pocket, and A (actuator) that 
serves to dephosphorylate the phosphorylated P domain as 
part of the reaction cycle of the P4-ATPase (Fig. 1b) [18]. P 
and N belong to the haloacid dehalogenase domain shared by 
a superfamily of enzymes that include phosphatases, phos-
phonatases, P-type ATPases, beta-phosphoglucomutases, 

Fig. 2   Effect of disease-causing mutations on ATP8A2 protein 
expression. HEK293T cells co-expressing ATP8A2 variants and 
CDC50A were solubilized in SDS and analyzed on western blots 
labeled for the ATP8A2 variants with the Rho 1D4 antibody. Left: 
example of a western blot of SDS-solubilized non-mutated ATP8A2, 

and the I215L, M438V, G585V, R588W, and Y639C variants and 
anti-tubulin as a loading control. Right: quantification of expression 
levels normalized to non-mutated ATP8A2. Values are the mean ± SD 
for n = 3 independent experiments

Fig. 3   The ATPase activity of ATP8A2 disease-associated variants. a 
Effect of increasing phosphatidylserine concentration on the ATPase 
activity of non-mutated ATP8A2 and the I215L variant. b ATPase 
activity of ATP8A2 variants in the presence of 100% phosphatidyl-

choline (PC) and 84% phosphatidylcholine-16% phosphatidylser-
ine (PS). Data were normalized to the phosphatidylserine-activated 
ATPase activity of non-mutated ATP8A2. n = 3 for ATP8A2 and the 
I215L variant. n = 1 for M438V and G585V variants
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phosphomannomutases, and dehalogenases. Interestingly, 
both missense mutations associated with the mildest pheno-
types (G585V, individuals 1-A, 1-B and R588W, individual 
2) are located in the N domain (Fig. 1b). The three other 
missense mutations identified in individuals with the classic 
severe phenotype (individual 4 and 5) were located in the A 
(I215L) and P (M438V, Y639C) domains.

Mild cerebellar ataxia without encephalopathy has never 
been reported in ATP8A2 disorders. The present report 
underscores the strikingly variable clinical presentations 
resulting from ATP8A2 mutations, ranging from early-onset 
severe epileptic encephalopathy with cerebello-ocular syn-
drome to isolated ataxia. Since the detection of these milder 
and new phenotypes is now possible by next generation 
sequencing techniques (NGS), ATP8A2 should be included 
in NGS screening panels for the diagnosis of syndromic and 
non-syndromic inherited ataxias.

Several classifications of inherited ataxias have been pro-
posed. Only the latest classifications, resulting from consen-
sus among panels of international experts, attempt to grasp 
the complexity and phenotypic and genotypic heterogeneity 
of ataxias that result from the explosion of gene identifica-
tion. In these classifications, ATP8A2-related disorders are 
classified in the group of “other metabolic or complex auto-
somal recessive disorders that have ataxia as an associated 
feature [19] or that have only occasional ataxia presenta-
tion [20]. Our report of novel patients is in agreement with 
this classification since, for most ATP8A2 patients, ataxia 
remains an associated feature.

The huge functional diversity of affected proteins in 
autosomal recessive ataxia impedes their exhaustive clas-
sification according to physiopathological mechanisms. On 
the contrary, current knowledge about autosomal recessive 
ataxias indicates that no particular pathophysiological path-
way explains the occurrence of this symptom, which results 
rather from an extreme sensitivity of cerebellar, spinocer-
ebellar and sensory neurons to mild metabolic disturbances 
[21] often by partial loss of function [22–25].
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