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Abstract
We perform classification, ranking and mapping of body sway parameters from static posturography data of patients using 
recent machine-learning and data-mining techniques. Body sway is measured in 293 individuals with the clinical diagnoses 
of acute unilateral vestibulopathy (AVS, n = 49), distal sensory polyneuropathy (PNP, n = 12), anterior lobe cerebellar atro-
phy (CA, n = 48), downbeat nystagmus syndrome (DN, n = 16), primary orthostatic tremor (OT, n = 25), Parkinson’s disease 
(PD, n = 27), phobic postural vertigo (PPV n = 59) and healthy controls (HC, n = 57). We classify disorders and rank sway 
features using supervised machine learning. We compute a continuous, human-interpretable 2D map of stance disorders 
using t-stochastic neighborhood embedding (t-SNE). Classification of eight diagnoses yielded 82.7% accuracy [95% CI 
(80.9%, 84.5%)]. Five (CA, PPV, AVS, HC, OT) were classified with a mean sensitivity and specificity of 88.4% and 97.1%, 
while three (PD, PNP, and DN) achieved a mean sensitivity of 53.7%. The most discriminative stance condition was ranked 
as “standing on foam-rubber, eyes closed”. Mapping of sway path features into 2D space revealed clear clusters among CA, 
PPV, AVS, HC and OT subjects. We confirm previous claims that machine learning can aid in classification of clinical sway 
patterns measured with static posturography. Given a standardized, long-term acquisition of quantitative patient databases, 
modern machine learning and data analysis techniques help in visualizing, understanding and utilizing high-dimensional 
sensor data from clinical routine.
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Abbreviations
ANN  Artificial neural network
AVS  Acute unilateral vestibulopathy
CA  Anterior lobe cerebella atrophy

CI  Confidence interval
DN  Downbeat nystagmus syndrome
kNN  k-Nearest-neighbors
MDI  Mean decrease in impurity
HC  Healthy controls
OT  Primary orthostatic tremor
PCA  Principal component analysis
PD  Parkinson’s disease
PNP  Sensory polyneuropathy
RMS  Root-mean-square
SC  Stacking classifier
SVM  Support vector machine
t-SNE  t-Stochastic neighborhood embedding

Introduction

Postural imbalance is an ambiguous and key symptom of 
various neurological disorders, including acquired loss of 
sensory function (visual, vestibular or somatosensory), 
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cerebellar or extrapyramidal dysfunction due to degenera-
tive brain disorders, or somatoform functional disorders 
[1-3]. Some of these conditions can be easily and reliably 
diagnosed by associated neurological symptoms. Others are 
difficult to differentiate clinically, and require further quan-
titative assessment of stance and gait. To this end, static 
posturography [4-6] records the stance and sway behavior of 
patients under increasingly difficult conditions, while stand-
ing on a force measurement platform. In static posturog-
raphy, body sway (i.e., center-of-pressure displacements) 
is measured and scored based on so-called features, i.e., 
characteristic parameters quantifying sway path amplitude 
and variance, or tremors in various frequency bands using 
Fourier analysis. As shown in our own previous work [7], 
as well as the work of others [8-10], diagnostic classifica-
tion can be computerized using multi-parametric statistical 
analysis [11] or supervised machine-learning algorithms like 
artificial neural networks (ANNs) [7].

Here, we attempt the application of modern machine-
learning and data-mining techniques to 8 subject classes on 
a larger clinical dataset with 293 individuals, recruited from 
our neurology department, as well as our tertiary interdis-
ciplinary outpatient dizziness unit, the Germen Center for 
Vertigo and Balance Disorders. The cohort includes healthy 
controls, and the pathological classes acute unilateral vesti-
bulopathy (former: acute vestibular syndrome, or vestibular 
neuritis) [12], cerebellar disorders (anterior lobe cerebellar 
atrophy [13], downbeat nystagmus syndrome [14]), soma-
tosensory deficits (sensory polyneuropathy) [8], postural 
tremor (orthostatic tremor) [15, 16], extrapyramidal dys-
function (Parkinson’s disease) [17] and functional disorders 
(Persistent Postural-Perceptual Dizziness, in its sub-form 
phobic postural vertigo) [18].

Our analysis of posturographic sway has three objec-
tives: (1) classification of static posturography signal pat-
terns using modern supervised machine-learning techniques, 
towards computerized diagnosis for above-mentioned eight 
classes. Compared to many works classifying only one or 
two types of disorders [8, 9, 19, 20], often against healthy 
controls, we aim at a more general classifier distinguish-
ing the above-mentioned eight classes. (2) We calculate the 

discriminative power and perform a ranking of the 10 pos-
turographic stance conditions and their derived individual 
sway features to better assess the reasonability of the experi-
mental paradigm. (3) We create a mapping of posturographic 
sway patterns of subjects by non-linear projection of high-
dimensional sway patterns into a 2D map. This allows us to 
collectively and visually analyze the distribution of sway 
patterns from all subjects in our cohort. We give explana-
tions and pointers towards improvement of the computerized 
diagnostic scheme in the discussion for routine clinical use.

Methods

Patient cohorts

For this study, we included a cohort of 293 adults with 
patients (n = 236) and healthy controls (n = 57), who per-
formed posturographic examination under the same exami-
nation protocol. Group statistics are detailed in Table 1. 
Presumptive clinical diagnoses were determined by expert 
physicians from a neurological clinic and policlinic (Dept. of 
Neurology, University of Munich, Germany) and a tertiary 
interdisciplinary outpatient dizziness unit (German Center 
for Vertigo and Balance Disorders, Munich, Germany). 
Patients in the primary orthostatic tremor (OT) group were 
diagnosed according to criteria defined in [21, 22], with a 
focus on a high-frequency body sway (11–19 Hz) present 
already while standing with eyes open on firm ground. 
Downbeat nystagmus (DN) was diagnosed with the aid of 
quantitative video-oculography according to criteria defined 
in [23]. Acute unilateral vestibulopathy (AVS) was diag-
nosed following guidelines in [24]. Parkinson’s disease (PD) 
patients were clinically diagnosed [25] and selected to only 
include patients with a tremor-dominant type (4–8 Hz). 
Anterior lobe cerebellar atrophy (CA) was based on cerebel-
lar symptoms during neurological examination and confir-
mation with MR imaging (atrophy in the vermal and ante-
rior lobe region of the cerebellum). Polyneuropathy (PNP) 
patients presented a distal, symmetric sensorimotor loss, 
according to guidelines in [26]. Patients belonging to the 

Table 1  Details of patient cohorts

Diagnosis Anterior lobe 
cerebellar 
atrophy

Downbeat 
nystagmus

Acute unilat-
eral vestibular 
syndrome

Poly-neurop-
athy

Phobic pos-
tural vertigo

Parkinson’s 
disease

Primary 
orthostatic 
tremor

Healthy control

Diagnosis 
abbreviation

CA DN AVS PNP PPV PD OT HC

N 48 16 49 12 59 27 25 57
Age mean 

(s.d.)
63.0 (10.5) 62.3 (16.1) 54.5 (12.9) 64.7 (9.7) 50.1 (15.7) 61.8 (12.7) 62.8 (10.1) 31.0 (10.8)

Male/female 37/11 8/8 33/16 8/4 22/37 15/12 14/11 31/26
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postural phobic vertigo (PPV) group were recruited earlier 
than 2017, i.e., before the official consensus criteria for Per-
sistent Postural-Perceptual Dizziness (PPPV) were defined 
[3], hence the diagnostic process followed guidelines in [27]. 
For this study, neither disease severity nor comorbidities 
could be considered, instead we represented patients with 
respect to their primary diagnosis. All patients participated 
under written consent, the study was authorized by the eth-
ics committee of the medical faculty, Ludwig-Maximilians-
University, Munich, and conducted in conformity with the 
Declaration of Helsinki.

Instrumentation

Posturographic examination

We followed the posturographic examination protocol of [7]. 
Subjects were examined while standing on a stabilometer 
platform (Type 9261 A; Kistler, Winterthur, Switzerland). 
The protocol consisted of ten trials during which subjects 
had to maintain balance in upright stance, with arms hang-
ing, and under conditions with increasing difficulty. Pos-
turographic stance conditions were: (1) eyes open; (2) eye 
closed; (3) eyes open, head in neck; (4) eyes closed, head 
in neck; (5) eyes open, standing on foam-rubber block; (6) 
eyes closed, foam-rubber block; (7) eyes open, head in neck, 
foam-rubber block; (8) eyes closed, head in neck, foam-rub-
ber block; (9) eyes open, foam-rubber block, tandem stance; 
(10) eyes closed, foam-rubber block, tandem stance.

Signal processing and feature extraction

The posturography sensor hardware records raw data of 
fore-aft (y) and lateral (x) body sway and body weight (z), 
at a sampling frequency of 40 Hz. Each trial was recorded 
for a duration of 30 s. Machine-learning classification was 

performed on a set of discriminative sway features. For each 
trial, recorded as a 3-dimensional time series of x/y/z raw 
data, 18 features were computed [7], which are summarized 
in Table 2. A full examination with 10 trials thus yields a 
180-dimensional feature vector (10 trials with 18 features 
each) for each subject. The features represent accumulated 
sway path in x, y and z directions [28], root-mean square 
values in x, y and z directions [29], and spectral energy 
magnitudes [7] in different frequency bands, which were 
computed after application of a Hamming window, followed 
by discrete Fourier analysis (MATLAB, MathWorks Inc., 
USA). Feature abbreviations, descriptions, and formulae are 
summarized in Table 2.

Classification using supervised machine learning

Our procedure for supervised machine learning consists of 
data pre-processing, cross-validation and classification. Pre-
processing is performed by normalization of the data range 
for each sway feature. Normalization applied a transforma-
tion to zero-mean (μ = 0) and unit-variance (σ2 = 1) distribu-
tion for each sway feature. For assessment of classification 
robustness, we utilized a stratified k-fold cross-validation, 
which provides training- and test-set splits that compen-
sate for the class imbalance of our dataset. To obtain robust 
cross-validation statistics, we utilized k = 50 randomized and 
stratified splits at 90% training vs. 10% test data for each 
class.

Classification with supervised machine learning 
and ensemble models

As classifiers, we used different machine-learning algo-
rithms which are often applied in high-dimensional data 
analysis [30]. Additionally, we compare the selected algo-
rithms’ performance on our new dataset to the previously 

Table 2  List of spatial and 
spectral features extracted from 
posturographic raw data

Feature abbreviation Description Formula (if applicable)

swaypath_x Accumulated sway path distance in x-direction spx =
∑n−1

i=1

√

(xi+1 − xi)
2

swaypath_y Accumulated sway path distance in y-direction spy =
∑n−1

i=1

√

(yi+1 − yi)
2

swaypath_z Accumulated sway path distance in z-direction spz =
∑n−1

i=1

√

(zi+1 − zi)
2

rms_x Root-mean-square in x-direction
RMSx =

�

1∕n
∑n

i=1
x2
i

rms_y Root-mean-square in y-direction
RMSy =

�

1∕n
∑n

i=1
y2
i

rms_z Root-mean-square in z-direction
RMSz =

�

1∕n
∑n

i=1
z2
i

fft_x/y/z_01_24 Fourier spectral energy integrals in frequency band:
0.1–2.4 Hz

FFT of x/y/z series

fft_x/y/z_24_35 2.4–3.5 Hz FFT of x/y/z series
fft_x/y/z_35_8 3.5–8.0 Hz FFT of x/y/z series
fft_x/y/z_11_19 11.0–19.0 Hz FFT of x/y/z series
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proposed artificial neural network (ANN) configuration from 
[7]. We compare logistic regression (LogRegr) [31], k-near-
est-neighbors (kNN) [32], a single-hidden-layer perceptron 
ANN (ANNsingle [7]), a deeper multi-layer perceptron 
ANN with three hidden layers (ANNmulti) [33], support 
vector machines (SVM) [34], random forests (RandForest 
[35]), and extra-randomized trees (ExtraForest [36]). For 
our experiments, we used implementations provided in the 
scikit-learn framework for pre-processing, cross-validation 
and classification [37]. In addition to regular classifiers, we 
employed an ensemble-learning technique called Stacking 
Classifier (SC [38]), which combines probabilistic classifica-
tions of all above-mentioned classifiers into a stronger and 
more robust meta-classifier, with logistic regression as the 
meta-learning algorithm.

Evaluation scores

Cross-validation results are evaluated according to accuracy, 
which summarizes the multi-class classification in a single 
scalar according to the following formula:

where ctrue is the true class of a sample, cpred is the predicted 
class, and 1(x) is the indicator function. Furthermore, we 
report confusion matrices with detailed (mis-)classification 
rates, as well as sensitivities and specificities in results.

Ranking of stance conditions and sway feature importance

Analyses on feature importance and embedding were 
performed using the ExtraForest algorithm [36]. Feature 
importance was calculated according to Mean Decrease 
in Impurity (MDI [39]). In MDI, each feature importance 
is computed as the number of splits that involve the fea-
ture, summed over all decision trees in the ensemble, and 
weighted by the number of samples that were split by the 
feature. We rank the discriminative power of the ten stance 
conditions and of the extracted sway features by comput-
ing relative MDI coefficients, scaled by the most important 
feature in each group.

Mapping disorders of stance using posturography

We calculate a 2D map of the sway pattern distribution 
in our cohort using t-Stochastic Neighborhood Embed-
ding (t-SNE [40]) a dimensionality reduction technique 
designed for visualization of high-dimensional datasets. 
Unlike, e.g., Principal Component Analysis (PCA), t-SNE 
performs a non-linear projection of the 180-dimensional 
feature vectors of each subject into the 2D plane for 

Acc(ctrue, cpred) =
1

nsamples

∑nsamples

i=1
1(ci,true = ci,pred),

visualization. The projection preserves the stochastic dis-
tribution of data points in high-dimensional space into the 
low-dimensional (2D) space, by aligning their respective 
distributions. Alignment is achieved by maximization of 
Kullback–Leibler divergence [40]. The 2D map allows for 
simultaneous assessment of the relative sway similarity 
of all subjects in our dataset, along with the distribution 
of their diagnostic classes. Two main parameters, dimen-
sions and perplexity, affect the layout of the resulting 2D 
map. As discussed in the original paper, t-SNE is relatively 
robust to these parameters, we hence use a standard para-
metrization (see “Results”).

Statistical analysis

Data were analyzed using the Python programming lan-
guage and open-source modules for scientific comput-
ing, in particular scipy-stats [41] for statistical testing 
and scikit-learn [37] for machine-learning experiments. 
Comparison between the best- and second-best performing 
classifiers (SC vs. ExtraForest) was performed using Wil-
coxon signed-rank test, the level of significance was set at 
p < 0.05. Sensitivities and specificities of diagnostic clas-
sification were calculated based on 50-fold randomized, 
stratified cross-validation, the best-performing algorithm’s 
accuracy is reported with 95% confidence intervals.

Results

Supervised machine learning for classification 
and feature ranking

Classification results

Classification accuracy is evaluated with 50 randomized 
folds of stratified cross-validation (90% training vs. 10% 
test data). Mean classification accuracies for single clas-
sifiers range from 64.5% (kNN) to 80.7% (ExtraForest). 
Across the 50 cross-validation runs per algorithm, the 
maximum accuracy ranges from 76.7% (kNN) to 93.3% 
(ANNMulti, RandForest, ExtraForest).

The application of a Stacked Classifier (SC) increases 
the confidence and robustness of the classification fur-
ther, raising the mean classification accuracy from 80.7% 
(ExtraForest) to 82.7% (95% CI: [80.9%, 84.5%]). The 
difference of paired accuracies between the SC and the 
second-best performing method (ExtraForest) is statisti-
cally significant (p = 0.015, Wilcoxon signed-rank test). A 
box-plot of classification accuracies is depicted in Fig. 1.
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Confusion matrices

To better analyze class separation, we compute normalized 
confusion matrices, highlighting true labels vs. predicted 
labels and the respective percentages. While the mean accu-
racy of the Stacked Classifier (SC) in the 8-class setup yields 
an overall accuracy of 82.7% (95% CI: [80.9%, 84.5%]), con-
fusion matrices reveal three classes with true positive rates 
below 70%, namely DN, PD and PNP (cf. Fig. 1, left panel).

We additionally compare the Stacking Classifier, our 
best-performing method, to the classification scenario in 
[7], using five classes CA/AVS/NC/PPV/OT only. Figure 2 
depicts the confusion matrix. Given five classes only, SC 
classification yields a comparable overall specificity of 
97.4%, compared to 98.4% in [7]. Sensitivity, however, 
fairs slightly lower at 89.5%, compared to 93.4% in [7], 
mainly due to lower sensitivity for OT (80.0%, compared 
to 100%).

Fig. 1  Cross-validated results from different supervised classification 
algorithms, evaluated on the entire dataset. Classification accuracies 
(denoted in %/100) are sorted by mean value in ascending order, with 
box plots indicating confidence intervals over 50 stratified random-
split cross-validation with 10% hold-out test data. The most accurate 

classifier (Stacked Classifier, SC) shows significantly better perfor-
mance than the second-best algorithm RandForest (p = 0.015, Wil-
coxon signed-rank test). Detailed classification results of SC on indi-
vidual diagnostic classes are depicted in Fig. 2

Fig. 2  Confusion matrices (true label vs. predicted label) of the 
Stacking Classifier algorithm for the 8-class, (left panel) and 5-class 
(right panel) Stacking Classifier (see Table 1 for abbreviations of dis-
orders). Classes CA/VN/NC/PPV/OT show consistently high classifi-

cation accuracy (see main diagonal of confusion matrices) with sen-
sitivities above 80%, while classes DN/PNP/PD are more challenging 
to classify (left panel: classification accuracies below 70%)
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Ranking of stance conditions and feature 
importance

Altogether, 18 features from 10 trials (180 features total) are 
ranked by their discriminative power derived from the MDI 
criterion in the ExtraForest classifier. We marginalize their 
importance by stance condition, and by feature type, and 
visualize their relative feature importance in Fig. 3.

As seen in Fig. 3, left panel, trial 6 (eyes closed, fron-
tal stance on foam-rubber block) is evaluated with high-
est accumulated importance. The next two most important 
experiments are trials 5 (eyes open, foam-rubber block) and 
trial 7 (eyes open, backward head extension, foam-rubber 
block). Furthermore, features from two of the presumably 
most difficult trials 8 (eyes closed, backward head exten-
sion, foam-rubber block) and 10 (eyes closed, foam-rubber 
block, tandem stance) are ranked comparatively low (< 50% 
of importance of trial 6).

As seen in Fig. 3, right panel, the highest ranked features 
are accumulated swaypath lengths in x/y/z direction. The 
next important feature is rms_z, i.e., vertical (weight) vari-
ation. Among spectral features, horizontal x/y energies in 
the bands 0.1–2.4 Hz and 2.4–3.5 Hz are most influential, 
along with vertical tremor energy in the band 3.5–8 Hz. In 

the high-frequency band 11–19 Hz, lateral (x) and vertical 
(z) tremor energies are more central to classification than 
fore-aft sway tremor energy.

Mapping sway path features using t‑SNE

Computation of t-SNE dimensionality reduction and 2D 
mapping [40] is performed with a configuration initial 
dimension i = 20 and perplexity p = 25. The resulting 2D 
map of posturographic sway behavior can be seen in Fig. 4 
in form of one comprehensive plot with color coded class 
distributions, as well as one-vs-all colorings for each diag-
nostic class.

As seen in the colored visualization, and highlighted in 
the one-vs-all colored subpanels, the well-classified patient 
groups of CA, AVS, NC and PPV form well-defined clusters 
in the 2D embedding space. Compared to these, classes DN, 
PNP and PD are not grouped together and sparsely scattered 
across the 2D space. Implications of these observation are 
discussed below.

Discussion

Classification results of various stance disorders 
using supervised machine learning

In the separation of five diagnostic classes, supervised clas-
sification with Stacked Classifier meta-learning yielded con-
sistently good classification of CA, AVS, NC and PPV and 
OT. A mean sensitivity and specificity of 88.4% and 97.1% 
for all five conditions was obtained, which is comparable 
with previously published classification accuracies [7] and 
on the order of inter-observer variability across expert raters 
(0.86) [20]. Given that these results stem from a three times 
larger dataset than before and a statistically more robust 
50-fold stratified random cross-validation [7], we see this 
study as a solid confirmation that supervised learning tech-
niques can be used to “differentiate postural sway patterns 
typical of several distinct clinical balance disorders with suf-
ficiently high sensitivity and specificity for clinical use” [7].

In comparison, regarding the classification into eight 
diagnostic groups, the three classes DN, PNP and PD have 
significantly lower true-positive classification rates at 44%, 
50% and 67%, respectively (cf. Fig. 2 , left). We conclude 
that the choices of classifiers and their parametrization are 
not the decisive factor for low classification accuracy of 
classes DN, PD or PNP. Instead, we argue that while the 
extracted sway features are sufficient to discriminate the 
main classes, they still fail to provide enough saliency to 
distinguish classes such as DN, PD or PNP.

Fig. 3  Relative accumulated importance of stance conditions 1–10 
(top panel) and of posturographic feature types (bottom panel)
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Ranking of stance conditions and feature 
importance

In our study, each patient is represented as a 180-dimen-
sional feature vector. While all these are derived from 
extensive expert knowledge [7, 8, 10], they do not carry the 
same discriminative power. Figure 3 showed relative feature 
importance of the ten stance conditions and 18 feature cat-
egories (see Table 2). Concerning features, swaypath_x/y/z 
and spectral energies in lower bands, in particular 2.4–3.5 Hz 
are most relevant. Concerning stance conditions, the five 
most important conditions are 6, 5, 7, 3 and 9. Four of these 
are acquired during trials with the condition “eyes open”, or 
while standing on foam-rubber block. Despite their lower 
importance, trials 8 and 10 still contribute to classification 
performance, and should only be left out of the diagnostic 
protocol if examination time needs to be strictly reduced.

Mapping of sway patterns using t‑SNE 
for visualization of disease specific data clustering

The non-linear projection of 180-dimensional features into 
a 2D map via t-SNE allows us for the first time to assess 
the distribution of posturographic sway patterns for close to 
300 subjects simultaneously in one plot. The resulting 2D 
map reveals naturally occurring clusters of stance disorders 
in our cohort. It should be noted that t-SNE achieves this 
mapping in an entirely unsupervised fashion, i.e., without 

a-priori knowledge of specific symptoms or disorders of the 
tested individuals.

Class distributions in t-SNE space, visualized in Fig. 4, 
reveal clusters for the well-detectable disorders NC, CA, 
PPV, AVS and a subset of OT. Disease classes get grouped 
together solely based on the stochastic similarity of sway 
patterns, which confirms their high discriminative power. 
In contrast, classes DN, PNP and PD are sparsely scattered 
across the 2D map, indicating a low similarity of patients 
with respect to their sway path feature representation. In 
high-dimensional feature space, patients from these classes 
are similarly scattered, which is the reason why supervised 
classification algorithms fail to find sufficiently separating 
boundaries between diagnoses, regardless of the concrete 
classifier type.

An interesting special case is class OT, where classifica-
tion sensitivity dropped from 100 to 80% compared to [7]. In 
Fig. 4, half of subjects in class OT (n = 13) are well clustered 
in the lower left of the data plane, while remaining OT sub-
jects (n = 12) are more scattered. This coincides with find-
ings in [16], where up to 50% of OT subjects were identified 
to lack characteristic discharges at OT-typical peak frequen-
cies of 13 Hz [15]. Furthermore, most of the off-cluster OT 
subjects reside close to subjects from class CA. Interestingly, 
a recent study [42] found evidence for cerebellar origins of 
orthostatic tremor, which is further discussed and explained 
in [16]. Multimodal analysis based on PET imaging, electro-
myography and posturography revealed pathological ponto-
cerebello-thalamo-cortical activations in primary orthostatic 

Fig. 4  Distribution of high-dimensional sway features for all study 
subjects, projected into 2D space via t-SNE (x-/y-axes represent rela-
tive similarity between subjects by proximity, and are unit-less). Left 
panel: color coding of eight diseases reveal clear clustering of disor-

ders CA, AVS, NC, PPV. Right subpanels: one-vs-all color coding for 
all eight classes highlight weak clustering in disorders DN, PD and 
PNP
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tremor during lying and stance. Similarity of posturographic 
sway patterns between subjects in classes OT and CA may, 
therefore, be due to comorbidity, which was not considered 
in our diagnostic categorization.

Limitations and clinical implications

One limitation of this study is the large age difference 
between the HC group and the seven disease groups. The 
high classification accuracy of HC is thus partly explain-
able by age difference, as aging effects can cause a decline 
in biomechanical or sensory function, and as such have been 
shown to considerably affect static postural function [43, 
44]. Therefore, a control group with a higher age average 
would probably lead to a slight decrease in classification 
accuracy. From a clinical perspective, however, the main 
classification goal is the differentiation of disease groups, 
and a relatively high separation of HC to the rest has little 
consequence on the inter-class separability of the remaining 
groups. As such, it is safe to assume that the main conclu-
sions of this study are not affected by the age difference. In 
future work, demographic differences such as age, gender, as 
well as basic clinical scores could be incorporated into the 
classification to analyze their effect on differential diagnosis 
across disease groups.

Apart from HC, our results indicate that not all disorders 
of stance and gait can be classified with an equally high 
sensitivity and specificity. We see several potential reasons 
for this.

First, Fig.  4 showed that while certain disorders are 
well-clustered (CA/AVS/NC/PPV), the less distinguish-
able diagnoses (DN, PNP, PD) are distributed sparsely and 
interleaved with other classes. We hypothesize that there 
is room for classification improvement, if a more specific 
feature representation or additional stance conditions (e.g., 
leaning forward or backward; balancing on one foot) can 
be found for these diagnoses. Simply put, the number and 
type of features and conditions might not yet be sufficient to 
optimally distinguish certain disorders. Spatial sway features 
(swaypath, RMS) and spectral coefficients (FFT energy inte-
grals) considered in this and previous work are global scalars 
computed over the entire 30 s examination window for each 
trial, while the temporal dynamics of motion might be of 
relevance, such as characteristic sway dynamics under pro-
prioceptive blocks during the foam-rubber block condition. 
Further features might be required to model external factors, 
such as the number of holds of a patient by the examiner 
during examination, to avoid falls, which are particularly 
frequent in elderly patients and patients with PD [9, 17]. 
The number of holds, if not well documented by examina-
tion staff, could be extracted from the z-amplitude, since a 
fall-avoiding hold causes a dip in body weight.

Second, as mentioned in the patient cohort description, 
we neither considered disease severity nor comorbidity in 
this study. In particular, for those disease groups with low 
classification accuracy (i.e., DN, PD, and OT), clinically 
known heterogeneity might explain why they do not clus-
ter as well as the other classes. For example, OT might be 
caused by a cerebellar pathology and thus linked to CA, as 
evidenced by multi-modal data with nuclear imaging [42] 
and longitudinal posturographic examination [45]. Further, 
there is evidence for a deficit in lower limb somatosensation 
in OT [46, 47]. Dichotomous classification, as applied in 
this study, might thus be too simple an assumption for future 
studies and for application in the clinic. Instead, a guideline 
for incorporation of machine learning into clinical routine 
would be to rely on probabilistic outputs of classifiers rather 
than hard labels and investigation of multi-class, probabilis-
tic prediction for modeling of cases with comorbidity.

Third, a straightforward limitation is that supervised 
classification in this study is solely determined by a single 
modality, i.e., features extracted purely from static posturog-
raphy. As discussed above, balance maintenance in humans 
is dependent on an interplay of highly multi-modal body 
sensors and brain functions, which should be matched by 
a multi-modal examination paradigm. Dynamic posturog-
raphy [19] for example considers force platform stabilom-
etry, under simultaneous monitor-based visual stimuli and 
external foot support actuation for balance manipulation. 
Further modalities can be thought of, such as demographics, 
questionnaires, video-oculography [48] and medical imag-
ing [49]. Combination of static and dynamic posturography 
with ANN-based gait analysis [50] is most promising, since 
patients with postural imbalance also suffer from impair-
ment of gait. As demonstrated in this work, as soon as dis-
criminative feature extraction schemes are in place for each 
modality, modern supervised machine-learning algorithms 
such as randomized forests and meta-learners are capable 
of identifying discriminative patterns in high-dimensional 
clinical sensor data, for breakthrough performance in com-
puterized diagnosis.

Conclusion

In this study, we performed supervised classification experi-
ments on posturographic sway features from a large clinical 
cohort of patients with various vertigo, balance and move-
ment disorders. For a subset of classes considered in this 
study, namely cerebellar ataxia, functional phobic postural 
vertigo, acute unilateral vestibulopathy, orthostatic tremor 
and healthy controls, we consider quantitative static pos-
turography as a useful tool for computer-aided diagnosis in 
clinical routine. Other stance disorders remain a challenge, 
which may be addressed by extraction of more meaningful 
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features, incorporation of further stance conditions, and 
inclusion of, e.g., video oculography, gait analysis, ques-
tionnaire data, demographics or medical imaging into a 
multi-modal examination paradigm. Importantly, modern 
methods from the fields of machine learning and data mining 
have reached a high level of maturity. A mapping of high-
dimensional clinical data into a low-dimensional 2D-space 
can provide an informative visualization approach for the 
analyzed data. In particular, it allows to clinically interpret 
shortcomings of the automated classification routines with 
respect to, e.g., heterogeneous disease groups. Overall, 
machine learning and data science can help in visualizing, 
understanding, and utilizing high-dimensional clinical data, 
towards a computerized and more “objective” evaluation of 
balance disorders.

Acknowledgements The study was supported by the German Federal 
Ministry of Education and Research (BMBF) in connection with the 
foundation of the German Center for Vertigo and Balance Disorders 
(DSGZ) (Grant number 01 EO 0901).

Compliance with ethical standards 

Conflicts of interest None of the authors have potential conflicts of 
interest to be disclosed.

References

 1. Dieterich M, Brandt T (2015) The bilateral central vestibular sys-
tem: Its pathways, functions, and disorders. Ann N Y Acad Sci. 
1343:10–26

 2. Brandt T, Dieterich M (2017) The dizzy patient: don’t forget disor-
ders of the central vestibular system. Nat Rev Neurol. 13:352–362

 3. Staab JP, Eckhardt-Henn A, Horii A, Jacob R, Strupp M, Brandt 
T et al (2017) Diagnostic criteria for persistent postural-percep-
tual dizziness (PPPD): consensus document of the committee for 
the classification of vestibular disorders of the Bárány Society. J 
Vestib Res. 27:191–208

 4. Black FO (2001) What can posturography tell us about vestibular 
function? Ann N Y Acad Sci. 942:446–464

 5. de Waele C. Vestibular tests: static and dynamic posturography 
BT—encyclopedia of neuroscience. In: Binder MD, Hirokawa N, 
Windhorst U (eds) Springer, Berlin. 2009;4217–8.

 6. Monsell EM, Furman JM, Herdman SJ, Konrad HR, Shepard NT 
(1997) Computerized dynamic platform posturography. Otolar-
yngol Head Neck Surg 117:394–398

 7. Krafczyk S, Tietze S, Swoboda W, Valkovi P, Brandt T (2006) 
Artificial neural network: a new diagnostic posturographic tool 
for disorders of stance. Clin Neurophysiol. 117:1692–1698

 8. Fioretti S, Scocco M, Ladislao L, Ghetti G, Rabini RA (2010) 
Identification of peripheral neuropathy in type-2 diabetic subjects 
by static posturography and linear discriminant analysis. Gait Pos-
ture. 32:317–320

 9. Howcroft J, Lemaire ED, Kofman J, McIlroy WE (2017) Elderly 
fall risk prediction using static posturography. PLoS One 12:1–13

 10. Saripalle SK, Paiva GC, Derakhshani RR, King GW, Lovelace CT 
(2014) Classification of body movements based on posturographic 
data. Hum Mov Sci. 33:238–250

 11. Vonk J, Horlings CGC, Allum JHJ (2010) Differentiating malin-
gering balance disorder patients from healthy controls, compen-
sated unilateral vestibular loss, and whiplash patients using stance 
and gait posturography. Audiol Neurotol. 15:261–272

 12. Redfern MS, Furman JM (1994) Postural sway of patients with 
vestibular disorders during optic flow. J Vestib Res. 4:221–230

 13. Diener HC, Dichgans J, Bacher M, Gompf B (1984) Quantifi-
cation of postural sway in normals and patients with cerebellar 
diseases. Clin Neurophysiol. Elsevier 57:134–142

 14. Helmchen C, Kirchhoff J-B, Göttlich M, Sprenger A (2017) Pos-
tural ataxia in cerebellar downbeat nystagmus: its relation to vis-
ual, proprioceptive and vestibular signals and cerebellar atrophy. 
PLoS One 12:e0168808

 15. Rigby HB, Rigby MH, Caviness JN (2015) Orthostatic tremor: a 
spectrum of fast and slow frequencies or distinct entities? Tremor 
Other Hyperkinet Mov (N Y). 5:324

 16. Schöberl F, Feil K, Xiong G, Bartenstein P, la Fougére C, Jahn K 
et al (2017) Pathological ponto-cerebello-thalamo-cortical activa-
tions in primary orthostatic tremor during lying and stance. Brain 
140:83–97

 17. Ickenstein GW, Ambach H, Klöditz A, Koch H, Isenmann S, 
Reichmann H et al (2012) Static posturography in aging and Par-
kinson’s disease. Front Aging Neurosci. 4:20

 18. Brandt T, Strupp M, Novozhilov S, Krafczyk S. Artificial neural 
network posturography detects the transition of vestibular neuritis 
to phobic postural vertigo. J. Neurol. 2012. p. 182–4.

 19. Allum JHJ, Bloem BR, Carpenter MG, Honegger F (2001) Dif-
ferential diagnosis of proprioceptive and vestibular deficits using 
dynamic support-surface posturography. Gait Posture. 14:217–226

 20. Schwesig R, Fischer D, Becker S, Lauenroth A (2014) Intrao-
bserver reliability of posturography in patients with vestibular 
neuritis. Somatosens Mot Res. 31:28–34

 21. Bronstein AM, Guerraz M (1999) Visual-vestibular control of 
posture and gait: physiological mechanisms and disorders. Curr 
Opin Neurol. 12:5–11

 22. Deuschl G, Bain P, Brin M (1998) Consensus statement of the 
movement disorder society on tremor. Ad Hoc Scientific Com-
mittee. Mov Disord. 13:2–23

 23. Strupp M, Hufner K, Sandmann R, Zwergal A, Dieterich M, Jahn 
K et al (2011) Central oculomotor disturbances and nystagmus: 
a window into the brainstem and cerebellum. Dtsch Arztebl Int. 
108:197–204

 24. Strupp M, Brandt T (1999) Vestibular neuritis. Adv Otorhi-
nolaryngol. 55:111–136

 25. Gelb DJ, Oliver E, Gilman S (1999) Diagnostic criteria for Par-
kinson disease. Arch Neurol. 56:33–39

 26. Richardson JK, Thies S, Ashton-Miller JA (2008) An exploration 
of step time variability on smooth and irregular surfaces in older 
persons with neuropathy. Clin Biomech. 23:349–356

 27. Brandt T (1996) Phobic postural vertigo. Neurology. 
46:1515–1519

 28. Hufschmidt A, Dichgans J, Mauritz K-H, Hufschmidt M (1980) 
Some methods and parameters of body sway quantification 
and their neurological applications. Arch Psychiatr Nervenkr. 
228:135–150

 29. Brandt T, Krafczyk S, Malsbenden I (1981) Postural imbalance 
with head extension: improvement by training as a model for 
ataxia therapy. Ann N Y Acad Sci. 374:636–649

 30. Caruana R, Karampatziakis N, Yessenalina A. An empirical evalu-
ation of supervised learning in high dimensions. Proc 25th Int 
Conf Mach Learn-ICML ’08. 2008. p. 96–103.

 31. Yu H-F, Huang F-L, Lin C-J (2011) Dual coordinate descent 
methods for logistic regression and maximum entropy models. 
Mach Learn. 85:41–75

 32. Altman NS (1992) An Introduction to Kernel and Nearest-Neigh-
bor Nonparametric Regression. Am Stat. 46:175–185



S117Journal of Neurology (2019) 266 (Suppl 1):S108–S117 

1 3

 33. Hinton GE (1989) Connectionist learning procedures. Artif Intell. 
40:185–234

 34. Smola AJ, Sch B, Schölkopf B (2004) A tutorial on support vector 
regression. Stat Comput. 14:199–222

 35. Criminisi, A, Konukoglu E, Shotton J (2011) Decision forests for 
classification, regression, density estimation manifold learning 
and semi-supervised learning microsoft technical report

 36. Geurts P, Ernst D, Wehenkel L (2006) Extremely randomized 
trees. Mach Learn. 63:3–42

 37. Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, 
Grisel O et al (2011) Scikit-learn: machine learning in python. J 
Mach Learn Res. 12:2825–2830

 38. Wolpert DH (1992) Stacked generalization. Neural Netw. 
5:241–259

 39. Breiman L, Friedman JH, Olshen RA, Stone CJ. Classification and 
Regression Trees. ed. 1. Wadsworth Stat. Ser. Chapman and Hall/
CRC; 1984.

 40. van der Maaten L, Hinton GE (2008) Visualizing high-dimen-
sional data using t-SNE. J Mach Learn Res. 9:2579–2605

 41. Jones E, Oliphant T, Peterson P, others. SciPy: Open source sci-
entific tools for Python [Internet]. 2001. https ://www.scipy .org/

 42. Gallea C, Popa T, García-Lorenzo D, Valabregue R, Legrand AP, 
Apartis E et al (2016) Orthostatic tremor: a cerebellar pathology? 
Brain 139:2182–2197

 43. Hageman PA, Leibowitz JM, Blanke D (1995) Age and gender 
effects on postural control measures. Arch Phys Med Rehabil. 
76:961–965

 44. Gill J, Allum JHJ, Carpenter MG, Held-Ziolkowska M, Adkin AL, 
Honegger F et al (2001) Trunk sway measures of postural stability 
during clinical balance tests: effects of age. J Gerontol Ser A Biol 
Sci Med Sci. 56:438–447

 45. Feil K, Böttcher N, Guri F, Krafczyk S, Schöberl F, Zwergal A 
et al (2015) Long-term course of orthostatic tremor in serial pos-
turographic measurement. Park Relat Disord. 21:905–910

 46. Fung VSC, Sauner D, Day BL (2001) A dissociation between sub-
jective and objective unsteadiness in primary orthostatic tremor. 
Brain 124:322–330

 47. Wuehr M, Schlick C, Möhwald K, Schniepp R (2018) Walking in 
orthostatic tremor modulates tremor features and is characterized 
by impaired gait stability. Sci Rep. 8:14152

 48. Kumar N, Kohlbecher S, Schneider E. A novel approach to 
video-based pupil tracking. Conf Proc—IEEE Int Conf Syst Man 
Cybern. 2009. pp 1255–62.

 49. Kirsch V, Keeser D, Hergenroeder T, Erat O, Ertl-Wagner B, 
Brandt T et al (2016) Structural and functional connectivity map-
ping of the vestibular circuitry from human brainstem to cortex. 
Brain Struct Funct. 221:1291–1308

 50. Pradhan C, Wuehr M, Akrami F, Neuhaeusser M, Huth S, Brandt 
T et al (2015) Automated classification of neurological disorders 
of gait using spatio-temporal gait parameters. J Electromyogr 
Kinesiol. 25:413–422

https://www.scipy.org/

	Towards computerized diagnosis of neurological stance disorders: data mining and machine learning of posturography and sway
	Abstract
	Introduction
	Methods
	Patient cohorts
	Instrumentation
	Posturographic examination
	Signal processing and feature extraction

	Classification using supervised machine learning
	Classification with supervised machine learning and ensemble models
	Evaluation scores
	Ranking of stance conditions and sway feature importance

	Mapping disorders of stance using posturography
	Statistical analysis

	Results
	Supervised machine learning for classification and feature ranking
	Classification results

	Confusion matrices
	Ranking of stance conditions and feature importance
	Mapping sway path features using t-SNE

	Discussion
	Classification results of various stance disorders using supervised machine learning
	Ranking of stance conditions and feature importance
	Mapping of sway patterns using t-SNE for visualization of disease specific data clustering
	Limitations and clinical implications

	Conclusion
	Acknowledgements 
	References




