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Abstract
Immune-mediated myelopathies are a heterogeneous group of inflammatory spinal cord disorders including autoimmune 
disorders with known antibodies, e.g. aquaporin-4 IgG channelopathy or anti-myelin oligodendrocyte glycoprotein-associated 
myelitis, myelopathies in the context of multiple sclerosis and systemic autoimmune disorders with myelopathy, as well as 
post-infectious and paraneoplastic myelopathies. Although magnetic resonance imaging of the spinal cord is still challeng-
ing due to the small dimension of the cord cross-section and frequent movement and susceptibility artifacts, recent meth-
odological advances have led to improved diagnostic evaluation and characterization of immune-mediated myelopathies. 
Topography, length and width of the lesion, gadolinium enhancement pattern, and changes in morphology over time help 
in narrowing the broad differential diagnosis. In this review, we give an overview of recent advances in magnetic resonance 
imaging of immune-mediated myelopathies and its role in the differential diagnosis and monitoring of this heterogeneous 
group of disorders.

Keywords  Immune-mediated myelopathies · Autoimmune myelopathies · Myelitis · Magnetic resonance imaging · 
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Introduction

Immune-mediated myelopathies are a heterogeneous group 
of inflammatory spinal cord (SC) disorders including auto-
immune disorders with known pathogenic autoantibodies, 
e.g. aquaporin-4 (AQP4) immunoglobulin (Ig)G positive 
neuromyelitis optica spectrum disorder (NMOSD) and 
myelin oligodendrocyte glycoprotein (MOG) IgG associ-
ated disease, myelopathies that are thought to be immune-
mediated without known specific antibodies (e.g. multiple 
sclerosis), systemic autoimmune disorders with myelopathy 

(e.g. sarcoidosis), as well as post-infectious and paraneoplas-
tic myelopathies.

Clinical presentation varies depending on the location 
and extension of the lesions within the SC and the type of 
cell affected and comprises a wide spectrum ranging from 
subtle symptoms such as isolated Lhermitte phenomenon 
without further sensory or motor deficits to quadriplegia 
with severe autonomic dysfunction. The rapid recognition 
of the underlying cause of the myelopathy is essential since 
the timely initiation of appropriate treatment significantly 
influences long-term outcome.

MR imaging of the SC is challenging due to the inhomo-
geneous magnetic field environment of the cord, its small 
cross-sectional dimensions, and artifacts due to physiologi-
cal motion of the cord and adjacent structures. The appli-
cation of appropriate shimming techniques, the choice of 
suitable pulse sequences and image orientation as well as 
employment of gating techniques can help to address some 
of these challenges [1]. Imaging the spinal cord at higher 
field strength improves the signal to noise, and therefore, 
allows for higher resolution of the small cross-sectional 
dimensions per given scanning time. Whether imaging at 
3 T confers additional diagnostic or prognostic value in 
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immunemediated myelopathies compared to 1.5 T is, how-
ever, still controversial [2–5].

SC MRI can help in differentiating and characterizing 
immune-mediated myelopathies in terms of signal change 
topography, lesion length and width, gadolinium enhance-
ment pattern, and evolution over time to narrow the broad 
differential diagnosis of these myelopathies. The aim of this 
review is to give an overview of recent advances in MR 
imaging of immune-mediated myelopathies and its role in 
the differential diagnosis of this heterogeneous group of 
disorders.

Multiple sclerosis

Multiple sclerosis (MS) is the most common immune-medi-
ated disorder of the central nervous system (CNS) with a 
progressive evolution of demyelinating lesions and atrophy. 
Severe clinical symptoms, e.g. restricted ambulation and 
bladder dysfunction, result mainly from SC involvement. 
More than 80% of patients with newly diagnosed MS show 
T2-hyperintense SC lesions on sagittal MRI. SC lesions due 
to demyelination can usually be differentiated from those that 
are related to other inflammatory disorders or vascular disease, 

since meningeal involvement, vertically spreading lesions over 
several segments and horizontally spreading lesions involving 
a significant part of the SC are atypical for MS [6]. MS lesions 
are typically short (less than 3 vertebral segments), multifo-
cal and primarily located in the cervical cord (Fig. 1a–c) [7, 
8]. However, involvement of the thoracolumbar region can be 
seen in up to 40% of cases [6, 8, 9]. MS-related SC lesions are 
mostly located in the dorsal or lateral columns, present rather 
asymmetrically and do not respect the gray and white matter 
boundaries [10]. Recommendations of the magnetic resonance 
imaging in MS (MAGNIMS) Consortium suggest to perform 
two sets of sagittal images with different contrasts (e.g. dual-
echo T2/Proton density or short tau inversion recovery) of the 
whole cord at a minimum field strength of 1.5 T as part of the 
diagnostic work-up [2]. An additional axial plane should be 
added to increase diagnostic certainty when T2-hyperinten-
sities in the sagittal plane are inconclusive [2, 8, 9]. In par-
ticular, diffuse hyperintensities, a common feature in patients 
with primary progressive disease type, are well depicted in the 
center of the cord cross-section [8, 11, 12]. Ring-like gado-
linium enhancement may be present in lesions; however, gado-
linium enhancement is also often associated with clinical MS 
symptoms and cord swelling [13]. Therefore, the application 
of contrast media in disease monitoring of MS cord changes 

Fig. 1   a–c Example of an MS-related myelitis in a 28-year-old 
patient. a Circumscribed, round T2-hyperintense lesion at the level 
C4 (arrow). b focal contrast enhancement (arrow). c Asymmetric 
and eccentric location on axial T2-w images. d–g LETM in a 76-year 
old patient with AQP4-positive NMOSD. d Diffuse longitudinal T2- 
hyperintensity and swelling of the SC between C4 and T5 accentu-
ated at the levels T3-5. e The axial view of the SC at the interverte-
bral disc level T3/T4 shows central cord involvement with (f) contrast 
enhancement. g Six months follow-up MRI with signs of pronounced 
SC atrophy, most prominent at the levels T2–4 (arrow). h–j Exam-

ple of a 66-year old woman with AQP4-positive NMOSD in the con-
text of Sjögren’s syndrome and SLE. h Irregularly shaped longitudi-
nal T2-hyperintense lesions in the thoracic cord with i and j. bright 
spotty lesions on axial T2-w images. k–n Example of a sarcoidosis-
associated myelitis in a 48-year-old patient with longitudinally exten-
sive SC lesions. l, k Longitudinally extensive lesions in the medulla, 
cervical and thoracic SC with subependymal contrast enhancement 
(k, arrows). m, n. dorsal subependymal gadolinium enhancement and 
enhancement of the central canal (n, arrow)
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is a matter of debate. Yet, in the work-up of differential diag-
noses (see below) a 2D or 3D T1-weighted (T1-w) scan after 
contrast media is still mandatory [2, 14]. For a long time, the 
frequency of focal T1-hypointensities in the SC of MS patients 
has been underestimated [15]. However, higher field strength 
and better resolution of 3D images now enable improved 
detection of chronic T1-hypointense lesions within the cervi-
cal cord particularly in patients with progressive MS, with 
moderate correlation between T1-hypointense lesion count and 
disability [5]. MRI of the SC shows prognostic value in MS 
as well. While the presence of SC lesions may be associated 
with a worse prognosis in relapsing-remitting MS (RRMS) 
[16–18], in radiologically or clinically isolated syndromes the 
presence of cord lesions predicts the conversion into definite 
MS [19–21]. Nevertheless, the correlation between focal cord 
demyelination and disability is weak. A more promising bio-
marker could be SC atrophy that can be easily assessed on 
conventional 3D T1-w scans. SC atrophy can be detected in all 
stages of the disease [22]. In patients with RRMS, SC volume 
loss correlates with the number of relapses [23]. In progres-
sive cases the evaluation of SC atrophy seems to be especially 
meaningful [24–26] with smaller upper cervical cord area 
(UCCA) and faster atrophy rates in progressive versus relapse-
onset patients. Moreover, in patients with progressive MS the 
extent of atrophy correlates with clinical impairment and acts 
as an independent predictor of disease progression [25–27]. 
Conventional MRI unfortunately only allows for the quantifi-
cation of overall SC volume or cross-sectional area [28–31]. 
Novel, advanced magnetic imaging techniques, such as phase-
sensitive inversion recovery (PSIR) imaging [32] and aver-
aged magnetization inversion recovery acquisition (AMIRA) 
imaging [33] now allow for improved contrast between gray 
and white matter in the SC. Application of the former revealed 
cervical SC gray matter atrophy in MS patients even if signs 
of white matter atrophy were missing. SC gray matter atro-
phy correlates well with clinical disability and disease course 
[34, 35]. Furthermore, quantitative MRI techniques including 
the measurement of the myelin water fraction and the myelin 
thickness may give additional information about the disease 
severity and progression [36, 37]. While SC imaging in MS is 
currently used for diagnostic work-up at disease onset [2], the 
value of monitoring disease using it at regular intervals is still 
debated [38, 39]. In particular, measurements of SC atrophy 
have the potential to be part of future clinical care and monitor-
ing of disease progression [23].

Neuromyelitis optica spectrum disorders

NMOSD represent an evolving group of relapsing or mono-
phasic demyelinating inflammatory diseases of the CNS, 
which are distinct from MS. They are recognized as an 
astrocytopathy [40] that classically involves the SC and 

optic nerve, but can also affect the circumventricular organs, 
the diencephalon and other brain regions [41]. AQP4-IgG 
is a pathogenic antibody that targets the astrocytic water 
channel aquaporin-4 and can be detected in the majority of 
patients fulfilling the current diagnostic criteria for NMOSD 
[42–46].

An increasing subgroup of patients diagnosed with 
NMOSD has, however, a negative AQP4-IgG status, chal-
lenging a unified classification of the NMOSD entity [47].

AQP4‑positive NMOSD/autoimmune aquaporin‑4 
channelopathy

AQP4 has been shown to be highly expressed at the astro-
cyte end-feet in the optic nerve and the SC compared to 
other compartments of the CNS, explaining the character-
istic distribution of NMOSD lesions with predilection sites 
in the SC, optic nerve, area postrema, brainstem, and dien-
cephalon [42, 48].

One of the classical manifestations of the disease is lon-
gitudinal extensive transverse myelitis (LETM), with high 
risk of recurrence in patients with AQP4-IgG antibodies [49, 
50]. In contrast to MS, NMOSD lesions extend over three or 
more vertebral segments (Fig. 1 D) [42, 51]. Takahashi et al. 
reported a positive correlation between the length of the SC 
lesion and the serum level of AQP4-antibodies [52]. The 
length of the lesion visible on MRI crucially depends on the 
timing of the imaging study. Short segment myelitis has been 
described to be present in 14% of antibody-positive patients 
early in the course of LETM [53] or during recovery. After 
treatment with steroids, LETM has been shown to change in 
morphology with the appearance of several shorter lesions 
in about a quarter of patients [54].

NMOSD SC lesions are predominantly located in the cer-
vical cord, with frequent extension into the thoracic cord or 
into the brainstem. About 30% of patients show thoracic cord 
lesions [54]. 60–70% of SC lesions observed in NMOSD 
occupy more than half of the cord area (Fig. 1e, f). Given 
the high expression of AQP4 around the central canal and 
in SC gray matter, lesions predominantly involve the central 
gray matter [55] (Fig. 1e, f), but frequently extend to the pial 
surface on axial images [56]. Bright spotty lesions on axial 
T2-w images are a relatively specific finding in NMOSD [57, 
58], and help differentiating NMOSD from MS (Fig. 1i, j). 
Central hypointensities on T1-w images, cord expansion due 
to swelling, and gadolinium enhancement are also frequently 
observed in NMOSD [58, 59]. Ring-like enhancement of 
lesions (as frequently observed in MS) can be seen in about 
30% of patients with NMOSD myelitis [60] and therefore, 
does not allow for the differentiation between these disor-
ders. In contrast to MS, asymptomatic SC lesions are only 
rarely reported in NMOSD with a frequency suspected to be 
less than 5% [61, 62].
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Focal or generalized atrophy is seen in up to 50–60% of 
NMOSD patients with history of myelitis on follow-up MRI 
[54, 59] (Fig. 1g) and is of high relevance, as SC atrophy 
correlates well with disability and number of relapses [63]. 
SC atrophy is even reported in patients with AQP4-IgG posi-
tive NMOSD without prior myelitis or SC lesions [64].

While detailed MRI imaging features have been incorpo-
rated into the diagnostic criteria of NMOSD [42], an offi-
cial consensus on imaging protocols for the diagnosis and 
monitoring of this evolving disease spectrum is still lacking.

AQP4‑negative NMO

An increasing subgroup of patients with the typical clinical 
presentation of neuromyelitis optica have been found to be 
AQP4-IgG seronegative. Wingerchuk et al. [42] defined clin-
ical and imaging requirements for the diagnosis of NMOSD 
in these seronegative patients with myelitis.

NMOSD patients lacking antibodies against AQP4 show 
similar lengths of the SC lesions [50]. Similar to AQP4-IgG 
positive NMOSD, lesions are most frequently located in the 
cervical cord [65]. The absence of AQP4-IgG antibodies has 
been associated with a reduced risk of LETM recurrence 
compared to seropositive patients [66].

Novel autoantibody‑positive disorders with myelitis

Recently, in a subgroup of AQP4-negative patients, a new 
antibody against the myelin oligodendrocytes glycoprotein 
(MOG) was detected, binding to the outer surface of the 
oligodendrocytes [67]. Not only does the clinical course 
of these patients differ from the classical NMO syndrome 
as they may have a more favorable outcome, but also the 
magnetic images of the SC show distinct characteristics 
[68]. Longitudinally extensive SC lesions occur frequently, 
but short lesions have been observed in 44% of cases [69]. 
In MOG-positive myelitis, SC lesions frequently occur in 
the thoracolumbar region [65, 70] and can predominantly 
involve the gray matter [71]. Necrosis, cavitation and atro-
phy of the SC are rarely present [72]. The recurrence of 
LETM seems to be infrequent [66]. Recently, extended 
MRI brain and SC lesion criteria were published and help 
to further differentiate between AQP4 and MOG-positive 
NMOSD from MS with a 100% sensitivity and 80–90% 
specificity [73].

Another novel autoimmune neurologic disorder with anti-
bodies against the glial fibrillary acidic protein (GFAP) has 
been described lately. The GFAP α isoform is considered to 
be a pan-astrocytic marker, whereas the ε and κ isoforms are 
found only in neural progenitor cells and immature astrocytes, 
primarily located in the periventricular region, the hippocam-
pus, and in the central area of the SC [74, 75]. 22% of the 
patients with GFAP-antibodies showed signs of myelitis or 

encephalomyelitis [75]. The SC involvement is mostly longi-
tudinal; however, lesions have been observed to be hazier with 
a thin and linear enhancement along the central canal. The 
minority of these patients have co-existing AQP4 antibodies 
[75]. Since an underlying malignant disease was shown to be 
present in 25% of patients with involvement of the nervous 
system, the presence of GFAP-antibody may indicate a para-
neoplastic autoimmune origin in a subgroup of patients.

Infection‑associated autoimmune myelitis

Post-infectious myelitis develops as a delayed immune-medi-
ated response occurring within 4 weeks of a microbial infec-
tion in or mostly outside the CNS. Several mechanisms have 
been postulated to be relevant in the pathophysiology of post-
infectious myelitis, such as molecular mimicry, bystander acti-
vation and super-antigens, which trigger the immune-mediated 
attack against SC tissue [76].

Following an infection or vaccination, acute LETM 
can occur as part of acute disseminated encephalomyelitis 
(ADEM), a predominantly monophasic inflammatory disorder 
with multifocal perivascular demyelinating lesions most com-
monly seen in children with an incidence of 0.4–0.8/100,000 
[77]. Typically, it occurs after a preceding mild infection of the 
upper respiratory tract or an unspecific febrile state, though 
many viral and bacterial pathogens have been described in 
association with ADEM [77]. The involvement of the SC with 
the development of an extensive SC lesion has been reported 
to occur in about one-third of ADEM cases, sharing similar 
MRI-characteristics with patients having NMOSD [78, 79]. 
Rarely, ADEM is followed by the occurrence of NMO (defined 
as ADEM-NMO) [78]. Interestingly, in children with ADEM, 
MOG-antibodies were shown to be present in about 25–40% 
[80] and the prevalence of LETM in this group of patients 
reached 90% [72]. Postvaccinal ADEM is usually monopha-
sic; however, some patients with MOG-positive postvaccinal 
ADEM follow a relapsing course [69].

Similarly, although spatially more confined than ADEM, 
NMOSD can occur in association with preceding infections 
in up to 30% of the cases [81]. Most commonly it is linked 
to viral infections caused by varicella zoster, or if bacterial, 
often caused by Mycobacterium tuberculosis [82]. Typically, 
it presents as LETM and shows gadolinium enhancement in 
the cervicothoracic region of the SC.
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Myelitis associated with rheumatological 
diseases/systemic diseases

Myelitis associated with systemic lupus 
erythematodes

Systemic lupus erythematosus (SLE) is a systemic auto-
immune connective tissue disease that may affect the car-
diovascular and pulmonary system, the skin, joints, liver, 
kidneys, and nervous system. Transverse myelitis among 
SLE patients is rare with a prevalence of about 0.9-2%, but 
can be potentially serious [83–85]. The immunopathologi-
cal features of SLE associated myelitis are not well char-
acterized with only few pathological reports of fulminant 
cases available [86, 87] highlighting marked SC vasculitis, 
secondary infarction and necrosis. However, myelitis can 
occur in patients with otherwise clinically inactive SLE 
[88], suggesting that SC disease may be due to an inflam-
matory demyelinating process rather than a vascular event. 
The co-existence of SLE and NMOSD has been observed 
in several cohorts [89]. Given the pathogenicity and high 
specificity of the AQP4 antibody, AQP4-IgG seroposi-
tivity in myelitis patients with SLE indicates a different 
pathogenesis, which is, however, based on a SLE intrinsic 
B cell hyperreactivity [42, 89].

Spinal MRI in SLE associated myelitis typically shows 
LETM accompanied by cord swelling [90]. The cervi-
cal–mid-lower thoracic segments are most frequently 
involved [91]. In severe cases, the lesion may involve 
the entire SC and spread into the medulla [86, 92]. SLE-
associated myelitis may be further differentiated into two 
groups: gray matter myelitis (defined clinically by flac-
cidity and hyporeflexia) with a devastating, mostly mono-
phasic course with prominent cord swelling on MRI; and 
white matter myelitis (defined by spasticity and hyperre-
flexia) with a less drastic, more frequently recurrent course 
[93]. 81% of SLE patients with white matter myelitis in 
this study fulfilled the revised 2006 diagnostic criteria for 
NMO [94] or presented as NMOSD [89], while only 18% 
of the patients with gray matter myelitis did. In line with 
this, AQP4-IgG positivity was observed in only 12.5% 
with gray matter myelitis. Importantly, gray matter myeli-
tis occurred in the context of SLE disease activity, which 
was less frequently observed in white matter myelitis [93]. 
Oiwa and colleagues [95] confirmed in a systematic review 
(including the cases of Birnbaum and colleagues) a higher 
rate of AQP4-antibodies in white matter and a higher rate 
of anti-ds-DNA antibodies in gray matter myelitis, propos-
ing that white matter myelitis may be a complication of 
NMOSD in a subset of patient, while gray matter myelitis 
might be a more direct consequence of SLE [95].

Myelitis associated with antiphospholipid syndrome

Antiphospholipid syndrome (APS) is an autoimmune-
mediated syndrome characterized by venous and/or arterial 
thrombosis, recurrent miscarriages and the persistent pres-
ence of antiphospholipid antibodies. APS can occur as a 
primary disease or secondary to other, mostly autoimmune 
diseases (e.g. SLE). The most common neurological com-
plications are strokes and transient ischemic attacks due to 
hypercoagulopathy that rarely also involve the SC [96].

Transverse myelitis is a rare complication reported in 
less than 1% of patients with antiphospholipid syndrome 
[97], and its pathogenesis is still poorly understood. Lesions 
most commonly occur in the thoracic cord [98, 99] and may 
show patchy T2-hyperintensity and white matter degenera-
tion as well as cord swelling [100]. In a recent study, 46% 
of patients with LETM and 100% of patients with recur-
rent LETM fulfilling the revised criteria of APS were found 
to be AQP4-IgG seropositive [101, 102]. Given the high 
specificity of AQP4-IgG, these results suggest concomitant 
NMOSD as the primary cause of the myelitis and thus the 
need of NMOSD specific treatment in these patients [102].

Myelitis associated with Behçet disease

Behçet disease (BD) is a systemic vasculitis that affects 
both arteries and veins of all vessel sizes and causes venous 
thrombosis [103]. Myelitis is a rare complication of BD, typ-
ically presenting as LETM, sometimes involving the entire 
length of the SC [104]. Cord swelling and T2-hyperintense 
lesions are typically present in the acute phase [105]. Con-
trast enhancement is not a typical feature, being present in 
some but not all patients. On axial MR images, a central 
lesion with a hypointense core and hyperintense rim with or 
without gadolinium contrast enhancement may be observed: 
the “bagel sign”[106]. Neuro-Behçet may take a relapsing 
remitting or a progressive course. In patients with progres-
sive BD, SC atrophy is common [107].

Sjögren‑associated myelitis

Sjögren’s syndrome (SS) is a systemic autoimmune-medi-
ated disorder that primarily affects the salivary and lacri-
mal glands through mononuclear infiltration and destruc-
tion, causing the typical sicca symptoms. SC involvement 
is reported in 20–35% of SS patients and may present as 
acute myelitis or chronic progressing myelopathy [108–110]. 
In about 36% of cases with initial neurological manifesta-
tions, myelitis was the presenting symptom [110]. Lesions 
are typically longitudinally extensive and are located in 
the cervical cord. Some patients additionally present with 
optic neuritis and/or cerebral lesions and fulfil the diagnos-
tic criteria of concomitant MS [110]. Similarly to SLE, the 
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association of SS and NMOSD has been reported in various 
publications: the clinical diagnosis of SS may coexist with 
NMOSD clinical syndromes in AQP4-IgG positive patients 
(Fig. 1h–j) [89, 111–113].

Sarcoidosis‑associated myelitis

Sarcoidosis is a multisystemic granulomatous non-caseous 
disorder that most commonly affects the respiratory system, 
skin and lymph nodes. 5–10% of patients show an involve-
ment of the peripheral and/or CNS [114, 115]. Autopsy 
studies show a high rate of subclinical neurosarcoidosis in 
10–27% of cases [116, 117]. Neurosarcoidosis is most com-
monly associated with granulomatous infiltrates involving 
the meninges, hypothalamus, pituitary gland and cranial 
nerves. SC sarcoidosis is relatively rare and can result in 
intramedullary lesions, intradural extramedullary or extra-
dural lesions, cauda equina syndrome or arachnoiditis [118].

Sarcoidosis-associated myelitis often presents as a LETM 
that can affect both the cervical and thoracic cord in isola-
tion or as panmyelitis [119, 120]. The typical MRI finding 
of sarcoidosis-associated myelitis is a longitudinal extensive 
T2-hyperintense lesion, most commonly located in the dorsal 
and centrodorsal cord (Fig. 1l). Dorsal subpial enhancement 
[121] (Fig. 1k) in combination with central canal enhance-
ment (Fig. 1n) can result in a “trident sign” on axial images 
[122] (Fig. 1m) and can help distinguishing sarcoidosis 
myelitis lesions from NMOSD lesions [123]. Moreover, an 
anterior and posterior leptomeningeal enhancement pattern 
has been described [124]. Spreading to the Virchow–Robin 
spaces results in parenchymal involvement, which appears 
as diffuse cord enlargement in MRI [125].

Adequate therapy can lead to improvement of SC lesions 
[126], however, improvement on imaging may lag behind 
clinical improvement. SC enhancement often takes sev-
eral months up to years to resolve, which may also help 
distinguishing lesions from MS/NMOSD lesions [121]. In 
untreated cases, repetitive inflammation can result in SC 
atrophy [125, 126].

Paraneoplastic myelitis

Paraneoplastic neurological disorders are thought to result 
from an immune response against tumor antigens that are 
also present in mature cells of the nervous system, includ-
ing neurons and glia, either intracellularly or in the plasma 
membrane on the cell surface. While paraneoplastic antibod-
ies targeting cell-surface antigens are thought to be directly 
pathogenic, the role of antibodies targeting intracellular anti-
gens is less clear [127].

Paraneoplastic myelopathy, though very rare, occurs 
with various malignancies, most frequently breast and lung 
cancers [128]. Detection of neural-specific auto-antibodies 
confirms the diagnosis and helps guide the cancer search. 
Among the most commonly detected antibodies in paraneo-
plastic myelopathies are amphiphysin-IgG, anti-neuronal 
nuclear antibodies (ANNA)-2, -3 and collapsin response 
mediator protein-5-IgG (CRMP5/anti-CV2) [129]. More 
recently, paraneoplastic myelopathy has also been recog-
nized in the context of AQP4-IgG antibodies. In a large 
cohort of AQP4-IgG positive NMOSD, 3.2% showed asso-
ciated malignancies, the majority being adenocarcinoma of 
the lung or breast cancer [130]. Female patients and those 
over the age of 50 years seem to be particular at risk for a 
paraneoplastic form of NMOSD [131, 132].

SC MRI in paraneoplastic myelitis shows characteristic 
symmetric, tract-specific T2-hyperintense lesions that extend 
often over multiple vertebral segments and can be seen 
best on axial images. Gadolinium enhancement is frequent 
[127]. Most commonly affected are the lateral columns, but 
a dorsal column and gray matter involvement has also been 
described [129]. The symmetric tract-specific and gray mat-
ter involvement can sometimes mimic the “owl eye” appear-
ance observed in ischemic lesions [129]. In paraneoplastic 
anti-AQP4 antibody myelitis, lesions may present as typical 
NMO LETM lesions with patchy gadolinium enhancement 
[131]. Tract-specific MRI changes also occur in nutritional 
deficiencies, (e.g. vitamin B 12 deficiency), however, usually 
do not show contrast enhancement. Myelopathy can occur 
simultaneously with the neoplasia or precede any tumor-
related symptoms.

Conclusion

The term “immune-mediated myelopathies” comprises a 
heterogeneous group of evolving disease entities. Recently, 
several pathogenic autoantibodies have been discovered 
that can cause longitudinal transverse myelitis along with 
a spectrum of other CNS manifestations, challenging the 
traditional concept of syndrome-based disease classification 
in this field. The novel disease entities that evolve out of 
these discoveries still need further clinical and paraclinical 
characterization.

Magnetic resonance imaging is an important tool in the 
paraclinical in-vivo morphological description of these 
novel disease entities and helps, together with CSF data 
and autoantibody markers in the diagnostic work-up and 
classification of these diseases including those without 
known pathognomonic antibodies. Moreover, MR imaging 
is necessary to exclude alternative diagnoses. Table 1 sum-
marizes our current understanding of the morphological 
MR hallmarks regarding SC lesion location, lesion length 
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and shape, tract involvement, and contrast enhancement 
pattern of the most common immune-mediated spinal cord 
disease entities. While for some disease entities distinctive 
radiographic signs have been proposed, such as, e.g. the 
Bagel sign in Behcet disease [106] and the trident sign 
in neurosarcoidosis [122], for the majority of diseases, 
not one pathognomic sign, but rather a pattern of differ-
ent morphological characteristics is postulated. Though 
the different entities might share some similarities on SC 
MRI despite their distinct origin; numerous unique imag-
ing characteristics remain that help to narrow down the 
eligible differential diagnoses (Fig. 2). The diagnostic 
sensitivity and specificity, as well as pathological valida-
tion of these radiographic patterns, however, still require 
further study.
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