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Abstract
Cerebrospinal fluid (CSF) neurofilament light chain (NfL) has emerged as putative diagnostic biomarker in amyotrophic 
lateral sclerosis (ALS), but it remains a matter of debate, whether CSF total tau (ttau), tau phosphorylated at threonine 181 
(ptau) and the ptau/ttau ratio could serve as diagnostic biomarker in ALS as well. Moreover, the relationship between CSF 
NfL and tau measures to further axonal and (neuro)degeneration markers still needs to be elucidated. Our analysis included 
89 ALS patients [median (range) age 63 (33–83) years, 61% male, disease duration 10 (0.2–190) months] and 33 age- and 
sex-matched disease controls [60 (32–76), 49%]. NfL was higher and the ptau/ttau ratio was lower in ALS compared to 
controls [8343 (1795–35,945) pg/ml vs. 1193 (612–2616), H(1) = 70.8, p < 0.001; mean (SD) 0.17 (0.04) vs. 0.2 (0.03), 
F(1) = 14.3, p < 0.001], as well as in upper motor neuron dominant (UMND, n = 10) compared to classic (n = 46) or lower 
motor neuron dominant ALS [n = 31; for NfL: 16,076 (7447–35,945) vs. 8205 (2651–35,138) vs. 8057 (1795–34,951)], 
Z ≥ 2.5, p ≤ 0.01; for the ptau/ttau ratio: [0.13 (0.04) vs. 0.17 (0.04) vs. 0.18 (0.03), p ≤ 0.02]. In ALS, NfL and the ptau/ttau 
ratio were related to corticospinal tract (CST) fractional anisotropy (FA) and radial diffusivity (ROI-based approach and 
whole-brain voxelwise analysis). Factor analysis of mixed data revealed a co-variance pattern between NfL (factor load − 0.6), 
the ptau/ttau ratio (0.7), CST FA (0.8) and UMND ALS phenotype (− 2.8). NfL did not relate to any further neuroaxonal 
injury marker (brain volumes, precentral gyrus thickness, peripheral motor amplitudes, sonographic cross-sectional nerve 
area), but a lower ptau/ttau ratio was associated with whole-brain gray matter atrophy and widespread white matter integrity 
loss. Higher NfL baseline levels were associated with greater UMN disease burden, more rapid disease progression, a twofold 
to threefold greater hazard of death and shorter survival times. The findings that higher CSF NfL levels and a reduced ptau/
ttau ratio are more associated with clinical UMN involvement and with reduced CST FA offer strong converging evidence 
that both are markers of central motor degeneration. Furthermore, NfL is a marker of poor prognosis, while a low ptau/ttau 
ratio indicates extramotor pathology in ALS.
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Introduction

Cerebrospinal fluid (CSF) neurofilament light chain (NfL) 
has emerged as putative diagnostic biomarker in several neu-
rodegenerative conditions [1, 2], such as amyotrophic lateral 

sclerosis (ALS), and ALS patients reveal significantly higher 
levels compared to controls or disease mimics [3–9]. CSF 
neurofilaments seem also to aid as a prognostic biomarker [4, 
5, 8–11] and have been found to be higher in ALS patients 
with dominant upper motor neuron (UMN) involvement [4, 
5, 12]. In the meanwhile, several studies have also taken 
account of serum NfL which has additionally proven great 
potential to discriminate between ALS and controls or dis-
ease mimics [7, 13, 14]. Compared to CSF, serum neurofila-
ment might, however, be less sensitive towards clinical and 
electrophysiological measures of motor neuron degeneration 
[9, 15], emphasizing the pivotal role of CSF neurofilaments 
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when taking account of the extent of neuroaxonal damage 
despite less convenient sampling. With the exception of few 
studies focusing on the corticospinal tract’s (CST) integrity 
applying diffusion tensor imaging (DTI) there is, however, 
nearly no data available how CSF neurofilaments relate to 
other biomarkers of peripheral (PNS) and central nervous 
system (CNS) neuroaxonal injury in ALS [6, 16]. Under-
standing their certain biomarker associations would indeed 
even improve the leading candidate role of CSF neurofila-
ments to aid as a promising outcome measure in future ALS 
therapeutic trials [17].

In contrast to CSF NfL, it is a matter of debate whether 
CSF total tau (ttau) and tau phosphorylated at threonine 181 
(ptau) could serve as diagnostic biomarker in ALS as well, 
and there are just as many studies reporting elevated (abnor-
mal) or normal levels in ALS when compared to controls 
[12, 18–25]. Two studies further proposed a reduction of the 
ptau/ttau ratio in ALS [23, 24]. While CSF tau seems not to 
universally correlate with disease progression in ALS [12, 
19, 21, 26], few studies indeed found a relationship between 
higher CSF ttau or ptau at baseline and worse motor function 
[6, 23]. Moreover, as for CSF NfL, with the exception of two 
DTI studies reporting an association between CST integrity 
and the ptau/ttau ratio, but not with ttau or ptau, there are no 
data available how tau measures relate to further neuroax-
onal injury markers in ALS [6, 23]. Continuing studies are 
thus indeed needed to determine the biomarker role of ttau 
and ptau in ALS.

We thus here conducted several analyses taking espe-
cially into account how CSF NfL, ttau, ptau and the ptau/
ttau ratio distribute within certain ALS subgroups, relate 
to further axonal and (neuro)degeneration markers such as 
motor amplitudes or precentral gyrus thickness and the ALS 
patients’ long-term outcome using a retrospective approach.

Methods

ALS sample

Our study comprised 89 ALS patients recruited from the 
Departments of Neurology, Otto-von-Guericke University, 
Magdeburg and Hannover Medical School, Hannover, Ger-
many. Patients were diagnosed by one of two experienced 
neurologists (S. V., S. P.) according to the revised El Escorial 
criteria comprising the assessment of the number of regions 
(bulbar, thoracic, upper limb, lower limb) with UMN (clini-
cally) or lower motor neuron (LMN) involvement (clinically 
or via electromyography) [27]. Similar to previous studies, 
we also included patients presenting with LMN signs only 
(“suspected ALS”) [14]. The Penn UMN score was recorded 
to assess the UMN disease burden in the bulbar segment as 
well as in each of the four limbs [28] (see Supplemental). 

ALS clinical phenotypes were classified in line with opera-
tional definitions as specified previously [29, 30] (see Sup-
plemental). At baseline, patients underwent a clinical and 
diagnostic workup (ALS functional rating scale (ALSFRS-
R) total score, genetic testing, CSF measures of NfL, ttau, 
ptau, total protein and the CSF albumin/serum albumin 
ratio (Qalb ×  10−3); for methodological details regarding 
CSF measurements and the performance of the NfL assay 
see Supplemental and Supplemental Table 1). Measures of 
neuroaxonal injury comprised those PNS and CNS markers 
commonly found to be altered in ALS: median and ulnar 
nerve compound motor action potential (CMAP) amplitudes 
[31, 32] and sonographic cross-sectional nerve area (CSA) 
[29, 33] (for methodological details of PNS measures see 
[29]), precentral gyrus thickness, cortical and subcortical 
cerebral gray matter (GM) volumes and CST DTI metrics 
[e.g., fractional anisotropy (FA)] [34–37]. Disease dura-
tion was the time in months between symptom onset and a 
patient’s baseline visit. Disease progression rate (DPR) was 
determined as (48-ALSFRS-R)/disease duration (points per 
month). Patients underwent follow-up ALSFRS-R measure-
ments within a mean (SD) time interval of 6 (8) months. 
Please see the Supplemental and Supplemental Fig. 1 for the 
detailed demonstration of the availability of all measures.

Controls

Cross-sectional CSF NfL, ttau and ptau measures were addi-
tionally conducted in a hospital-based cohort of 33 neuro-
logic patients (non-motor neuron disease controls), com-
prising cases with non-specific complaints who underwent 
lumbar puncture in terms of a diagnostic workup to rule out 
any neurologic condition. None of those disease controls 
suffered from any neuromuscular disorders (i.e., peripheral 
polyneuropathies, muscle or motor neuron disease) nor did 
they display any specific abnormalities on the neurological 
exam. CSF NfL data were available in all subjects, while 
tau measures have been conducted in 16 out of the 33 con-
trol cases only (please see Supplemental Table 2 for further 
details).

Standard protocol approvals, registrations, 
and patient consents

The study was approved by the local ethics committee (No. 
150/09, No. 07/17, No. 16/17), and all subjects gave written 
informed consent.

3T MRI measures of the brain

All MRI sessions were performed on the same Siemens 
Verio 3 T system (Siemens Medical Systems, Erlangen, 
Germany) at the same site (Magdeburg), and all patients 
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underwent exactly the same MRI protocol. 3D MPRAGE 
images were acquired [for bilateral precentral gyrus thick-
ness, GM (GMV) and white matter (WMV) and total brain 
(TBV) volumes]. Diffusion MRI data were used to compute 
the maps of DTI scalars [FA, mean diffusivity (MD), radial 
diffusivity (RD), axial diffusivity (AD)]. Applying tract-
based spatial statistics [38] whole-brain regression analysis 
with white matter hyperintensities (WMH) as covariate of 
no interest (assessed in a T2-weighted FLASH sequence 
according to the Fazekas scale [39]) was conducted (with 
the Randomise tool version 2.9 available in FSL, 5000 per-
mutations, threshold-free cluster enhancement (TFCE), 
2D optimization for tract-based DTI analysis). Individual 
median values of bilateral CST DTI scalars were addition-
ally extracted (region of interest (ROI) analysis). For the 
in-depth demonstration of all imaging analyses see the 
Supplemental.

Statistics

Gaussian distribution of data was assessed using the Shap-
iro–Wilk test. For group comparisons, for non-normally dis-
tributed data Kruskal–Wallis one-way analysis of variance 
(ANOVA) with post hoc pairwise Mann–Whitney U testing, 
and for normally distributed data ANOVA with Bonferroni 
post hoc testing was conducted. Relationship between dis-
tinct variables was calculated using bivariate correlations. 
Left- and right-sided CMAP amplitude and CSA measures 
were averaged, as there were no side differences. Compared 
to the left side, the right motor cortex was significantly thin-
ner (Z = − 5.0, p < 0.001, Wilcoxon signed-rank test), which 
is a common finding in ALS [40]; left- and right-sided meas-
ures were thus considered separately.

We then applied a factor analysis for mixed (quantitative 
and qualitative) data (FAMD) using FactoMineR version 
1.27 [41] to capture co-variance patterns between distinct 
measures related to CSF NfL. We included CSF NfL, the 
ptau/ttau ratio, CST FA (which is the most sensitive DTI 
metrics in ALS [42]) and ALS phenotype into that model 
and extracted 1 component with an eigenvalue > 1, which 
explained 40% of the variance in the data.

Random intercept mixed effects linear models with CSF 
NfL (ttau, ptau, ptau/ttau ratio) median-split (main effect) 
and time (disease duration) in months (main effect) were cal-
culated to assess CSF NfL (ttau, ptau, ptau/ttau ratio) × time 
interaction effects on longitudinal ALSFRS-R total score, 
and estimates (e) are given. In addition, Kruskal–Wal-
lis one-way ANOVA or ANOVA was calculated to assess 
group effects of slow (averaged ALSFRS-R points lost per 
month < 0.4 from disease onset to last available ALSFRS-R), 
intermediate (≥ 0.4, ≤ 1.4) and fast (> 1.4) disease progres-
sors [43] on baseline CSF NfL (ttau, ptau, ptau/ttau ratio).

Cox proportional hazard models giving the hazard ratio 
[Exp(B)] and Kaplan–Meier analysis using a pairwise log 
rank test were conducted to compare survival rates and times 
between ALS patients revealing low, medium or high CSF 
NfL (ttau, ptau, ptau/ttau ratio) levels (terciles) at baseline, 
and censoring was done at the date of the last follow-up.

p values < 0.05 were deemed to be statistically significant. 
Analyses were performed using the IBM SPSS Statistics 
23.0 software.

Results

Sample

Table 1 demonstrates the demographics and the clinical 
data of the whole sample. Supplemental Table 3 depicts 
the demographics and clinical data separately for the ALS 
phenotypes.

CSF NfL, ttau, ptau and ptau/ttau ratio in controls 
and ALS

CSF NfL lacked symmetry [controls: D(33) = 0.9, p = 0.02; 
ALS: D(89) = 0.9, p < 0.001] but revealing a significant posi-
tive skew distribution instead with most measures cluster-
ing at the lower end of the scale (controls: zskewness = 2.6, 
p < 0.01; ALS: zskewness = 5.6, p < 0.001; Fig. 1a). In ALS, 
distribution was the same for CSF ttau and ptau [ttau: 
D(88) = 0.9, p < 0.001, zskewness  =  4.4, p < 0.001; ptau: 
D(88) = 0.9, p < 0.001, zskewness = 4.1, p < 0.001], while 
the ptau/ttau ratio was normally distributed [D(88) = 1.0, 
p = 0.4, zskewness = 1.5, p > 0.05]. In controls, all CSF tau 
measures were normally distributed [ttau: D(14) = 0.9, 
p = 0.5, zskewness = − 0.7, p > 0.05; ptau: D(14) = 1.0, p = 1.0, 
zskewness = − 0.04, p > 0.05; ptau/ttau ratio: D(14) = 0.9, 
p = 0.3, zskewness = 1.3, p > 0.05] (Fig. 1b).

In ALS compared to controls, NfL was higher [median 
(range) 8343 (1795–35,945) pg/ml vs. 1193 (612–2616), 
H(1) = 70.8, p < 0.001] and the ptau/ttau ratio was lower 
[mean (SD) 0.17 (0.04) vs. 0.2 (0.03), F(1) = 14.3, p < 0.001; 
Fig. 1a, b]. There were no group differences for ttau and 
ptau [ALS vs. controls, ttau: 236 (96–666) pg/ml vs. 260 
(122–373), ptau: 40 (17–99) pg/ml vs. 53 (20–80)].

In ALS, NfL was related to Qalb (rho = 0.2, p = 0.04), 
and ttau and ptau were related to age (rho = 0.4, p < 0.001, 
respectively). There was no association with sex, disease 
duration, or onset site; NfL did relate to the ptau/ttau ratio 
(rho = − 0.4, p < 0.001; Fig. 1c), but not to ttau and ptau.

There was a significant effect of clinical pheno-
type on CSF NfL [H(2) = 7.9, p = 0.02] and on the CSF 
ptau/ttau ratio [F(2) = 6.6, p = 0.002]. Pairwise com-
parisons revealed group differences between classic and 
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upper motor neuron dominant (UMND) (NfL: Z = 2.5, 
p = 0.01; ptau/ttau ratio: p = 0.02) or lower motor neu-
ron dominant (LMND) and UMND ALS (NfL: Z = 2.6, 
p = 0.008; ptau/ttau ratio: p = 0.001), with UMND com-
pared to classic or LMND patients displaying higher NfL 
[16,076 (7447–35,945) vs. 8205 (2651–35,138) vs. 8057 
(1795–34,951); Fig. 2a] and a lower ptau/ttau ratio [0.13 
(0.04) vs. 0.17 (0.04) vs. 0.18 (0.03); Fig. 2c]. In PLS, NfL 
was lower than in ALS [7043 (6454–7632)], and the ptau/
ttau ratio was rather similar to the ratio in classic/LMND, 
but higher than in UMND ALS [0.16 (0.02)]; as there were 
only two PLS cases (Table 1), they were, however, not 
considered for group and pairwise subgroup comparisons.

There was, moreover, a significant relationship 
between higher NfL or a lower ptau/ttau ratio and greater 

UMN disease burden according to the Penn UMN score 
(rho = 0.4, p < 0.001, rho = − 0.2, p = 0.03; Fig. 2b, d).

Ttau and ptau did not differ across ALS phenotypes, and 
did not relate to the Penn UMN score.

CSF NfL, ttau, ptau, the ptau/ttau ratio 
and biomarkers of neuroaxonal injury in ALS

There was a medium-effect size relationship between NfL 
and median CST FA, MD and RD (ROI-based approach, 
rho = − 0.5, p = 0.001, rho = 0.3, p = 0.02, rho = 0.5, 
p < 0.001; Fig. 3a, c). Correlations between NfL and median 
CST FA and RD remained significant when solely consider-
ing the classic ALS patients (rho = − 0.4, p = 0.03, rho = 0.4, 
p = 0.05; please see the Supplemental and Supplemental 

Table 1  Demographics and clinical data of the sample under investigation

Unless otherwise reported, medians and (ranges) are given
p values < 0.05 were deemed to be statistically significant
ALS, amyotrophic lateral sclerosis; ALSFRS-R, revised ALS functional rating scale; LMND, lower motor neuron dominant; na, not applicable; 
PLS, primary lateral sclerosis; UMND, upper motor neuron dominant
a Familial ALS comprised two cases with C9orf72 positivity and four patients with SOD1 positivity
b Mann–Whitney U test
c χ2 τεστ

ALS (n = 89) Controls (n = 33) p value

Age, in years 63 (33–83) 60 (32–76)b 0.06
Male sex, n (%) 54 (61) 16 (49)c 0.3
Sporadic ALS/familial ALS, n (%) 63 (91)/6 (9)a

El Escorial na/suspected/possible/probable/definite, n (%) 1 (1)/24 (27)/34 (38)/15 (17)/15 (17)
Clinical phenotypes classic/LMND/UMND/PLS, n (%) 46 (52)/31 (35)/10 (11)/2 (2)
Disease onset bulbar/limb, n (%) 29 (33)/60 (67)
Disease duration, in months 10 (0.2–190)
Disease progression rate, in 1/months 0.7 (0.04–3.3)
ALSFRS-R total score/48, baseline 41 (4–48)
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Fig. 1  Quantile function of CSF NfL values and the ptau/ttau ratio 
within the samples under investigation. Graph demonstrates CSF NfL 
concentrations (a) and the ptau/ttau ratio (b) in controls (CON) and 
ALS. ALS patients compared to controls revealed significantly higher 

CSF NfL concentrations and a significantly lower ptau/ttau ratio. c 
demonstrates the significant relationship between CSF NfL and the 
ptau/ttau ratio in ALS. **p≤0.001
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Fig.  2). For the whole ALS cohort, strong correlation 
between NfL and FA along the cortical spinal pathway addi-
tionally emerged from an unbiased whole-brain analysis and 
it was statistically significant at the stringent threshold of 
p < 0.05 FWE corrected (Fig. 3b). At the same statistical 
threshold, the regression analysis revealed also a positive 
correlation between NfL and RD which spatially overlapped 
with the distribution of the significant results in the FA anal-
ysis (Fig. 3d).

Likewise, there was a medium-effect size relationship 
between the ptau/ttau ratio and median CST FA and RD 
(ROI-based approach, rho = 0.4, p = 0.01, rho = − 0.3, 
p = 0.03; Fig. 4a, c). Considering the whole-brain analysis, 
the correlation between the ptau/ttau ratio and DTI metrics 
survived the stringent FWE correction for multiple com-
parison (p < 0.05) and partially overlapped with the results 
of the correlation analysis between NfL level and DTI 

metrics (Figs. 3b, d, 4b, d). In both cases, the CST was 
involved (please see also the results of the ROI analysis, 
Figs. 3a, c, 4a, c), but the whole-brain analysis revealed 
that the ptau/ttau ratio was also related to a FA decrease 
in the genu of the corpus callosum, in the anterior portion 
of the corona radiata (bilateral), in the anterior portion of 
the cingulum WM (right), in the external capsule (left) 
and in anterior limb of the internal capsule (left) (Fig. 4b). 
The ptau/ttau ratio was also correlated with increased RD 
values in all sections of the corpus callosum (Fig. 4d).

There was no relationship between NfL, ttau, ptau and 
the ptau/ttau ratio and WMH.

FAMD revealed a co-variance pattern between CSF 
NfL (factor load − 0.6), the ptau/ttau ratio (0.7), CST FA 
(0.8) and UMND ALS phenotype (− 2.7), which has to be 
interpreted this way, that high NfL together with a lower 
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Fig. 2  CSF NfL concentrations and the ptau/ttau ratio across the ALS 
disease spectrum. When compared to classic and lower motor neu-
ron dominant (LMND) ALS, upper motor neuron dominant (UMND) 
ALS phenotype was related to significantly higher CSF NfL concen-

trations (a) and a significantly lower ptau/ttau ratio (c). Higher CSF 
NfL levels and a smaller ptau/ttau ratio were, moreover, associated 
with a greater UMN disease burden as assessed by the Penn UMN 
score (b, d). *p ≤ 0.05, **p ≤ 0.001
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ptau/ttau ratio and CST FA decrease is found in patients 
with dominant UMN involvement.

A lower ptau/ttau ratio was, moreover, related to smaller 
GMV (r = 0.3, p = 0.02). There was no association between 
CSF NfL, ptau, ttau and the ptau/ttau ratio and any further 
PNS and CNS axonal or (neuro)degeneration ALS marker 
(e.g., nerve CSA, CMAP amplitudes, cortical thickness of 
the precentral gyrus).

CSF NfL, ttau, ptau and the ptau/ttau ratio 
and long‑term prognosis in ALS

There was a small-effect size inverse relationship between 
NfL and baseline ALSFRS-R total score (rho = − 0.2, 
p = 0.03): ALS patients with higher compared to lower 
NfL (median-split) revealed lower ALSFRS-R total scores 
[H(1) = 4.6, p = 0.03].

Mixed effects linear models displayed a significant NfL 
main effect on longitudinal ALSFRS-R total score (e = − 4.9, 

p = 0.01), while there was no significant NfL × time interac-
tion effect. This means that when averaging the ALSFRS-R 
total score across all available time points, ALS patients with 
higher compared to lower baseline NfL (median-split) show 
a − 4.9 points lower mean value.

There was a trend-level group effect of slow, intermedi-
ate and fast progressors on baseline CSF NfL [H(2) = 5.0, 
p = 0.08]. Post hoc analysis revealed that fast compared 
to intermediate progressors displayed significantly higher 
NfL (Z = 2.3, p = 0.02) (Fig. 5a). In line with this, there 
was a small-effect size correlation between NfL and DPR 
(rho = 0.2, p = 0.07, trend-level).

Cox proportional hazard modeling depicted a twofold 
to threefold greater hazard of death for patients with high 
CSF NfL compared to patients having medium or low NfL 
[Exp(B) (95% CI) = 0.5 (0.3, 0.9), p = 0.01, Exp(B) (95% 
CI) = 0.3 (0.1, 0.9), p = 0.02]. Hazard remained after model 
adjustment for age, sex, onset site, sporadic vs. familial 
ALS and baseline ALSFRS-R total score [Exp(B) (95% 
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Fig. 3  Relationship between CSF NfL and DTI metrics in ALS. The 
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displayed following the radiological convention
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Fig. 5  Disease progression and survival as a function of baseline 
CSF NfL values in ALS. Fast disease progression (averaged ALS-
FRS-R points lost per month > 1.4) was related to higher baseline 
CSF NfL levels (a). b Depicts predicted survival curves after covari-
ate adjustment (age, sex, onset site, sporadic vs. familial ALS, base-
line ALSFRS-R total score) for CSF NfL terciles (Cox proportional 
hazard modeling). ALS patients with high (third tercile) compared 

to medium (second tercile) and low (first tercile) baseline NfL lev-
els display a twofold to threefold greater hazard of death. c demon-
strates Kaplan–Meier analysis; median survival time was significantly 
shorter in ALS patients exhibiting baseline CSF NfL levels within the 
upper (third) tercile compared to patients revealing baseline CSF NfL 
concentrations within the medium (second) or lower tercile (first). 
*p < 0.05



2640 Journal of Neurology (2018) 265:2633–2645

1 3

CI) = 0.4 (0.2, 0.8), p = 0.007, Exp(B) (95% CI) = 0.3 (0.1, 
0.9), p = 0.03; Fig. 5b].

Kaplan–Meier analysis was in line with those results, dis-
playing significantly shorter median (SE) survival times of 
patients showing high [upper tercile, 34 (3) months] com-
pared to medium [medium tercile, 48 (3), χ2 = 6.1, p = 0.01] 
or low baseline NfL [lower tercile, 45 (22), χ2  =  5.1, 
p = 0.02; Fig. 5c].

There was no relationship between ttau, ptau or the ptau/
ttau ratio and the patients’ functional scoring (ALSFRS-R), 
disease progression and survival.

Discussion

Our analysis argues that CSF NfL and the ptau/ttau ratio 
act as diagnostic biomarkers which at once relate to one 
another, to UMN involvement and DTI white matter signa-
ture of cerebral CST degeneration. A smaller ptau/ttau ratio 
was further indicative of whole-brain gray matter atrophy 
and widespread microstructural white matter pathology. 
Neither NfL nor CSF tau measures were related to periph-
eral motor axon involvement. Our results, moreover, dem-
onstrate a particular relationship between higher baseline 
CSF NfL and greater disease severity, more rapid disease 
progression, greater hazard of death and shorter survival in 
ALS. These findings suggest that elevated CSF NfL and a 
lower ptau/ttau ratio are particularly biomarkers of central 
motor degeneration that together with measures emerging 
from microstructural white matter neuroimaging could be 
used to stratify ALS patients and to monitor their disease 
progression presumably allowing to assess the efficacy of 
future neuroprotective therapies.

Irrespective of ALS pathophysiology, neurofilaments 
are structural constituents of the neuroaxonal cytoskeleton 
and integral components of synapses; they are essential for 
axonal growth, transport and signaling pathways. Neuro-
filaments are highly abundant in the large Betz cells of the 
motor cortex and in large-caliber myelinated axons, e.g., of 
the CST [44–47]. White matter and cortical injury is related 
to elevated CSF NfL that represents a downstream effect of 
neuroaxonal loss [48–51]. Tau is a microtubule-associated 
protein that is highly expressed in neuronal axons, e.g., in 
thin unmyelinated axons of the neocortical gray matter, 
providing axonal transport and maintenance of the neurons’ 
structure/morphology [52, 53]. Neuroaxonal degeneration 
results in increased release of tau from the brain into the 
interstitial fluid/CSF; and—like CSF NfL—elevation of CSF 
ttau likely reflects unspecific neuronal and axonal damage, 
as observed in many chronic neurodegenerative diseases 
[54]. High CSF ptau, however, specifically relates to the 
occurrence of neurofibrillary tangle formations and is one 

hallmark diagnostic biomarker of Alzheimer’s disease (AD) 
[55].

This work replicates the results of several studies show-
ing significantly higher CSF NfL levels in ALS compared 
to controls (e.g., [4, 6, 14]). Our findings, moreover, sup-
port recent data that ALS relates to a lower ptau/ttau ratio, 
indicating a shifted proportion of ttau and ptau which might 
be based on three constellations: ALS patients compared to 
controls reveal (1) higher CSF ttau, or (2) lower CSF ptau, 
or both—(3) higher CSF ttau together with lower CSF ptau. 
Recent studies reporting a reduced ptau/ttau ratio in ALS 
or ALS with frontotemporal dementia (ALS-FTD), either 
disclosed higher CSF ttau [24, 56, 57] or lower ptau [23]. 
Because phosphorylation of tau occurs mainly in AD and 
not so much in other neurodegenerative disorders, one may 
suspect that a lower ptau/ttau ratio probably reflects severe 
neuroaxonal damage in rapidly progressive diseases favor-
ing the hypothesis of increased CSF ttau rather than a ptau 
reduction [57]. In our ALS sample, however, both ttau and 
ptau were unaltered, indicating that the ptau/ttau ratio seems 
to be a more sensitive candidate biomarker in ALS than CSF 
ttau or ptau alone.

As shown before, in ALS CSF NfL is skewed towards 
lower levels, leaving the pivotal question what drives the 
substantial CSF NfL increase found in a certain ALS sub-
group. Our data reveal that in ALS the variability of NfL 
depends on cerebral CST degeneration and UMN involve-
ment, extending the findings of previous studies [4, 5, 16] 
by showing for the first time that those variables co-vary, 
implying that they are altered together in the same patient. 
This is supported by the fact that in ALS the strong DTI 
white matter signature in terms of CST FA decrease also 
relates to UMN pathology [28, 34, 58–60]. Constellation 
of high CSF NfL, CST degeneration and dominant UMN 
involvement additionally goes along with a lower ptau/ttau 
ratio. Supposing that a smaller ptau/ttau ratio indicates neu-
roaxonal injury, our findings emphasize that CSF NfL and 
the ptau/ttau ratio together stand for the extent and the sever-
ity of upper motor neuron degeneration in ALS. However, in 
contrast to NfL, a reduced ptau/ttau ratio further indicates 
gray matter atrophy and white matter integrity loss beyond 
upper motor neuron pathology. This suggests that the ratio 
could also serve as a marker for extramotor involvement in 
ALS, which needs to be elucidated within future studies.

In our sample, CSF NfL and the ptau/ttau ratio were not 
only related to FA, but also to various DTI metrics (MD, 
RD). FA and RD alterations seem to be sensitive against 
demyelination, Wallerian-type myelin degeneration and 
axonal integrity loss, especially in chronic diseases with 
extended axonal damage; MD changes have, moreover, been 
speculated to relate to augmented cellularity (e.g., due to 
the loss of large myelinated axons) [61, 62]. As the biologi-
cal underpinnings of differences in DTI variables are still 
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unclear, especially in terms of co-existing underlying pathol-
ogies (i.e., axonal injury, demyelination, inflammation) [62, 
63], we prefer to refrain from further interpretations of those 
particular findings.

Our results are in line with two recent studies relating 
higher CSF NfL and a lower ptau/ttau ratio to altered DTI 
metrics in ALS [16, 23]. They, however, contradict another 
ALS study that did not find any relationship between CSF 
NfL and DTI CST integrity [6]. Steinacker et al. therein 
combine participants scanned on two different MRI systems 
and with two different field strengths (2/3 underwent a 1.5T 
MRI, 1/3 underwent a 3 T MRI). The authors have shown 
that the data obtained from the two systems were compara-
ble and they thus combined all the DTI values in a single 
analysis. A lower field strength (1.5 T compared to 3 T) 
inherently entails a lower signal-to-noise ratio that could, 
potentially, mask the presence of an effect like the relation-
ship between FA values and NfL levels. Our study, as well 
as the aforementioned study of Menke and colleagues [16], 
which also reported a correlation between both FA and RD 
values and levels of NfL in ALS patients, is based on data 
acquired on a single 3T scanner employing only one proto-
col. This kind of design is likely to enhance the sensitivity of 
the study to detect effects that could, otherwise, be masked 
by noise.

One might have expected to find an association between 
motor cortex thickness denoting UMN pathology and CSF 
NfL and the ptau/ttau ratio. As Betz cells and their gray mat-
ter axons just represent a small fraction of the motor cortex 
their degeneration seems to be better mirrored by NfL levels 
or the ptau/ttau ratio instead of affecting the overall number/
density of motor neurons/gray matter neuropil or precentral 
gyrus thickness, accounting for the absent relationship [42, 
64].

We failed to find a relationship between CSF NfL or the 
ptau/ttau ratio, clinical LMN involvement and LMN bio-
markers of axonal injury (e.g., reduced CMAP amplitudes 
or nerve CSA indicating muscle and nerve atrophy, respec-
tively). However, patients with LMND clinical phenotype 
presenting isolated LMN signs, likewisely displayed ele-
vated NfL concentrations or a reduced ptau/ttau ratio within 
the range of classic ALS. ALS disease mimics with sole 
LMN involvement, e.g., Kennedy’s disease or spinal mus-
cular atrophy, do contrary not show abnormal neurofilament 
levels [5, 14]. Our findings of significant NfL increase across 
all clinical phenotypes are in line with previous observations 
in early symptom onset ALS [14], strengthening the role of 
NfL and ptau/ttau as biomarkers which enhance the diagnos-
tic accuracy of ALS, especially in patients with predominant 
or isolated LMN signs.

Corroborating previous findings, these analyses also indi-
cate that in ALS higher CSF NfL refers to greater disease 
severity at baseline and longitudinal follow-up. It conversely 

remains vague whether higher baseline NfL also relates to a 
steeper decline or a steady trajectory of overall motor func-
tion (group effect of slow, intermediate and fast progressors 
on NfL vs. non-significant time × median-split baseline NfL 
interaction effect on longitudinal ALSFRS-R total score). 
Considering the latter, it might be possible that a certain 
ALS subject just comes into the disease with an already 
determined signature of functional performance and related 
CSF NfL levels. This would be in line with recent analysis 
demonstrating no or just minimal change of CSF and highly 
related serum neurofilament concentrations over the course 
of disease [7, 11, 13]. Especially at the lower end of CSF 
NfL levels in ALS, there might be a continuous turnover of 
neurofilaments as a result of an equilibrium between neu-
rodegeneration and -regeneration, with the latter depending 
on individual variables [e.g., genetics, resilience, exposure 
to environmental (epigenetic) factors throughout life [43]]. 
Due to such individual circumstances a certain ALS sub-
group abandons that equilibrium (supposedly at an already 
preclinical state or rather suddenly indicating the onset of 
irreversible neuroaxonal damage [5, 65]), passing the thresh-
old for disease development and CSF NfL increase which 
in turn relates to shorter survival. This model especially 
holds true for the ALS conversion of asymptomatic famil-
ial cases revealing normal CSF NfL at presymptomatic but 
highly elevated levels at symptomatic disease stages [4, 11, 
65]. We, however, refrained from comparing NfL between 
sporadic and familial ALS, because of the small number of 
genetic variants. Impact of CSF NfL on long-term prog-
nosis remains significant after the adjustment for several 
disease-modifying variables, replicating previous findings 
[4, 7] and suggesting NfL to aid as an independent prognos-
tic biomarker.

The association of the same biomarker with both UMND 
ALS and worse prognosis is somewhat puzzling, as the 
UMND phenotype compared to classic ALS usually has a 
slower functional decline. Our results may thereby point to 
the existence of distinct groups displaying high CSF NfL: 
UMND ALS with longer survival despite high CSF NfL 
and ALS patients with combined UMN and LMN pathol-
ogy (classic disease phenotype), high CSF NfL and worse 
prognosis [4] (see follow-up analysis in the Supplemental 
and Supplemental Fig. 3). Further studies are indeed needed 
to disentangle the existence of such subgroups.

The strength of our study is the availability of a consid-
erable set of locally well-established imaging biomarkers 
used to understand the co-variance patterns between CSF 
NfL, CSF tau measures and further measures of PNS and 
CNS neuroaxonal damage in ALS. Limitations comprise: 
(1) our cross-sectional and retrospective approach, (2) the 
relatively small sample size of distinct clinical ALS sub-
groups (especially of UMND ALS, making up only 11% of 
our patient cohort), which kept us from performing extensive 
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phenotype-wise analysis (of e.g., the relationship between 
CSF measures and neuroaxonal injury markers), as well as 
(3) the absence of measures of serum NfL and phosphoryl-
ated neurofilament heavy chain (pNFH) (e.g., to investigate 
the superiority of one marker to reflect disease severity and 
biomarker neuroaxonal injury). An additional limitation of 
the study is the heterogeneity among the number of patients 
who underwent each assessment (Supplemental Fig. 1).

Nevertheless our findings overall strengthen the idea that 
combining CSF NfL, the ptau/ttau ratio, CST DTI metrics 
and clinical measures (of e.g., UMN pathology) improve 
the diagnostic accuracy and prognostic assessment in ALS.
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