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Abstract
Artificial intelligence is increasingly becoming a part of everyday life. This raises the question whether clinical neurology 
can benefit from these novel methods to increase diagnostic accuracy. Several recent studies have used machine learning 
classifiers to predict whether subjects suffer from a neurological disorder. This article discusses whether these methods are 
ready to make their entrance into clinical practice. The underlying principles of classification will be explored, as well as the 
potential pitfalls. Strengths of machine learning methods are that they are unbiased and very sensitive to patterns emerging 
from small changes spread across a large number of variables. Potential pitfalls are that building reliable classifiers requires 
large amounts of well-selected data and extensive validation. Currently, machine learning classifiers offer neurologists a new 
diagnostic tool which can aid in the diagnosis of cases with a high degree of uncertainty.
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Introduction

Machine learning is an increasingly popular technique in 
clinical research, but is there a place for artificial intelligence 
in clinical practice? In Alzheimer’s disease (AD), a seminal 
multicentric study from 2008 demonstrated that classifiers 
based on MRI images performed as well as clinicians [1]. 
Numerous studies have followed since (for reviews in AD, 
which will be used as an illustrative example: see [2, 3]), 
but why hasn’t machine learning found its way to the bed-
side 10 years later? This article discusses the strengths and 
weaknesses of artificial intelligence classifiers. I will focus 
on classifiers used for automated diagnosis, i.e. the clas-
sifier will propose a diagnosis. This goes beyond the use 
of biomarkers for the confirmation of a clinical suspicion, 
where the clinician interprets the result in a specific clinical 
context.

Relevant machine learning principles

Machine learning classifiers perform pattern recognition. 
They use a large number of variables as input, which means 
they are essentially multivariate analysis techniques. The 
classifier “learns” to predict the outcome (or “class”, e.g. 
healthy or AD) based on a large set of variables (e.g. vox-
els of an MRI, age, APOE carrier status, health records…). 
Using a training dataset with a definite diagnosis, the classi-
fier is trained (“learns”) to separate between the two classes 
based on a combination of the input variables (e.g. pattern of 
atrophy, pace of decline…). An important question is which 
gold standard to use for classification of the training set (e.g. 
neuropathology, amyloid PET). Since a bigger training set 
(including disease mimics, healthy controls, …) increases 
reliability, sometimes a tradeoff will be necessary between 
sample size and diagnostic gold standard.

Support vector machines (SVM), currently a popular 
method, can illustrate how machine learning works. The 
subsequent discussion of strengths and limitations can be 
extrapolated to other methods, e.g. neural networks (NN), 
…. SVMs are typically used for binary classification (e.g. 
healthy versus AD) whereas NN map onto a large possible 
number of outcomes. However, multiclass SVMs do exist. 
To illustrate the underlying principles, I will focus on the 
binary SVM case. Theoretically, the input variables of the 
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SVM classifier can be projected to a high-dimensional space, 
in which each dimension represents one variable. For a clas-
sifier trained to separate subjects with AD from healthy con-
trols, input variables such as age, education level, neuropsy-
chological test scores, voxels of the subject’s MRI, lumbar 
puncture results, etc. can be mapped to a high-dimensional 
space, with each of these variables representing one dimen-
sion. In this high-dimensional space, the classifier is the 
hyperplane which separates the data points belonging to the 
2 classes. In two dimensions, this hyperplane can be visual-
ized as a line (Fig. 1). The type of hyperplane is determined 
by the user. Most frequently, SVMs are set to generate lin-
ear hyperplanes (a straight line in 2D—Fig. 1a, or a flat 
surface in 3D). Allowing non-linear solutions can result in 
the generation of oddly shaped hyperplanes (a curvy line in 
2D—Fig. 1b, or a rippled surface in 3D).

Correct validation of the classifier

A reliable classifier needs to generalize to unseen data. The 
capacity to generalize implies that the learned differences 
between the classes in the training dataset are likely due to 
the underlying pathology or disease process. The classifier 
should be tested on data that was not part of the training 
dataset: testing on training data would lead to an overopti-
mistic classification accuracy [4]. Cross validation is a fre-
quently used technique to demonstrate that a classifier can 
generalize to new data. During cross validation, all subjects 
from a given dataset are split up into a number of groups 
(i.e. “folds”, e.g. 5). Each fold is then used once as a test 
dataset, while the training dataset consists of the other folds. 

Classification accuracy is based on the average accuracy 
across the folds.

Along with the classification accuracy, a test of signifi-
cance should be reported, e.g. a p value. This is necessary 
because the absolute value of classification accuracy does 
not provide evidence that the classifier performs better than 
expected by chance. Random permutation labelling can be 
used to calculate a p value: the class labels of the dataset 
are randomly assigned and the classification procedure is 
repeated over and over (e.g. 10,000 times) to generate a dis-
tribution of all theoretically possible accuracies. The true 
classification accuracy is then compared to the distribution 
obtained with random labels to derive a p value. Obviously, 
classifiers used in clinical practice should often perform a 
lot better than merely being better than expected by chance.

Another important measure of the diagnostic ability of a 
classifier is the Area Under the Curve (AUC) of the receiver 
operating characteristic (ROC) curve of the classifier. This is 
particularly relevant for rare diseases. Recall that the ROC 
curve plots the false positive rate (= 1 − specificity) versus 
the true positive rate (= sensitivity). A bad classifier might 
fail to detect the few true positive cases of a rare disease and 
label them as negative. This classifier would then have a high 
accuracy (low absolute number of misclassified cases), but 
a low sensitivity and small AUC.

A high classification accuracy combined with a sig-
nificant p value and a large AUC is only one of the basic 
requirements which determine whether a classifier can 
generalize to the extent that it can be used in clinical prac-
tice. Often, cross validation implies that the test dataset is 
closely related to the training dataset (same scanner, same 
population, …). Ideally, the test dataset should be acquired 

Fig. 1  Linear versus non-linear binary SVMs. The hyperplane (dotted 
line) visualizes how the classifier separates healthy subjects from AD 
patients in an example with only 2 input variables (1 variable could 

be age, 1 voxel of an MRI, a neuropsychological test score, …). The 
separation can be either (a) linear, which is visualized as a straight 
line in 2 dimensions or (b) non-linear
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in another center, to demonstrate reliable classification per-
formance. The SVM’s settings can also influence generali-
zation: if a non-linear hyperplane is allowed (Fig. 1b), the 
risk of overfitting is increased. Overfitting means that during 
training, a solution is found which can optimize classifica-
tion in the training dataset but cannot generalize to unseen 
data. Intuitively, one can imagine that the use of non-linear 
hyperplanes can lead to solutions that are idiosyncratic to the 
training dataset (Fig. 1b: the hyperplane is locally curved to 
perfectly separate all data points).

What classifiers can learn

Once a classifier is built which can classify unseen data from 
another study center or population, can one reliably use it in 
clinical practice? I would argue against this, and rather seize 
the opportunity to dissect the classifier. A machine learning 
classifier becomes more trustworthy if the internal work-
ings, i.e. which variables lead to successful classification, 
are clear. For instance, age is a risk factor for AD, so it is 
reasonable to include age as a contributing variable. How-
ever, the weight assigned to age cannot be excessively high: 
even in the case that classification would reach significance 
based solely on age, this is clearly undesirable. For SVMs, 
the weight each variable contributes to the classification of 
the training set can be determined. Similar strategies exist 
for other machine learning methods, although some are less 
straightforward, e.g. Deep Taylor decomposition for NN [5]. 
Scientifically, the inspection of the weights is an opportu-
nity to discover new contributing variables and to discard 
others. Misclassified cases should be examined: systematic 
errors (e.g. classification of all subjects under 60 years old 
as not having AD) are a cause for concern. Misclassification 
can also reveal that critical input variables are missing. For 
instance, an amnestic syndrome with hyperacute onset has 
a low probability to arise due to AD, but misclassification 
might occur if a “speed of onset” variable is not included.

What neurologists can learn from classifiers

Human supervision is obviously still required to generate a 
reliable diagnostic classifier. Next, several scenarios are con-
ceivable where missing data undermine the use of the classi-
fier: e.g. a subject who cannot have an MRI scan, an illiterate 
subject unable to perform certain cognitive tests etc. Does this 
mean that it is still too premature to implement machine learn-
ing classifiers into clinical practice? No, since classifiers can 
provide useful additional information to the clinical neurolo-
gist. A strength of machine learning is its sensitivity to pick 
up patterns arising from a combination of small effects spread 
across a high number of variables. Such patterns can be hard 

to detect for a human observer. Classifiers might facilitate deci-
sion making when a neurologist is faced with a high degree of 
uncertainty, e.g. a suspicion of in AD in a patient with comor-
bidities in the absence of CSF/PET biomarkers. In such a situ-
ation, a classifier might be useful to translate the clinician’s 
suspicion into objective measures by quantifying the presence 
or absence of variables contributing to a diagnosis. For clinical 
research purposes, studies often report contributing variables 
and their respective weights from the training dataset. For 
implementation in clinical practice, it would be very useful to 
have the classifier explicitly list which contributing variables 
are driving classification for the index patient. Second, humans 
are inherently prone to a certain amount of bias, which does 
not affect artificial intelligence. Relevant to diagnostics is the 
concept of “confirmation bias”, i.e. the tendency to interpret 
new findings (for instance the result of a diagnostic test) in a 
way that confirms one’s hypothesis [6].

Conclusion

Machine learning classifiers are ready to be developed as a tool 
which can assist clinical neurologists to make a diagnosis, but 
they cannot replace clinical judgement. If clinicians were to 
introduce classifiers to aid them in decision making, they are 
advised to examine the validation method and internal work-
ings of the classifier to judge its reliability. An important step 
in quality control entails elucidating which input variables 
drive classification. Currently, the lack of large multicentric 
samples and the required amount of validation are slowing 
down the introduction of classifiers in everyday clinical prac-
tice. However, in combination with the advancement in data 
mining of electronic health records, the diagnostic accuracies 
of classifiers will continue to rise in the next decade. Taking 
everything into account, machine learning techniques have the 
potential to become very powerful diagnostic tools and reliable 
aids to clinical neurologists.
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