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Abstract Vestibular cognition is a growing field of interest

and relatively little is known about the underlying mech-

anisms. We tested the effect of prior beliefs about the

relative probability (50:50 vs. 80:20) of motion direction

(yaw rotation) using a direction discrimination task. We

analyzed choices individually with a logistic regression

model and together with response times using a cognitive

process model. The results show that self-motion percep-

tion is altered by prior belief, leading to a shift of the

psychometric function, without a loss of sensitivity. Hier-

archical drift diffusion analysis showed that at the group

level, prior belief manifests itself as an offset to the drift

criterion. However, individual model fits revealed that

participants vary in how they use cognitive information in

perceptual decision making. At the individual level, the

response bias induced by a prior belief resulted either in a

change in starting point (prior to evidence accumulation) or

drift rate (during evidence accumulation). Participants

incorporate prior belief in a self-motion discrimination

task, albeit in different ways.

Keywords Vestibular cognition � Anticipation � Bias �
Direction recognition � Drift diffusion model �
Expectation � Perceptual decision making

Introduction

Whole body motion perception involves vestibular sensory

information. While earlier studies on motion thresholds

focused on sensory transduction processes [1], it became

clear that perceptual thresholds do not reflect low-level

sensory processes alone. Perception involves non-sensory

components, and recently, Merfeld and colleagues [2]

introduced a high-pass filtering mechanism as an important

feature of decision making. Based on computational

modeling studies, it has become clear that the vestibular

system performs sophisticated processing based on internal

models [3]. A major component of such internal models is

prior beliefs. To investigate the effect of prior beliefs on

vestibular perception, we focused on biased perceptual

decision making. A bias can be introduced by the ability to

anticipate upcoming stimuli and can be based on prior

beliefs and knowledge about stimulus frequency [4]. To

date, there is still relatively scarce evidence of biased

perceptual decision making in the vestibular modality. A

notable exception is the study by Wertheim and colleagues

[5], showing that passive self-motion perception reported

by participants depends on their prior knowledge about

possible motion trajectories. Participants usually see the

device before they take part in the experiment, and this

knowledge alters the perceptual experience they report

when exposed to vestibular stimuli. While those authors [5]

collected verbal reports after linear passive self-motion, we

measured binary choices and response times (RTs) to tap

into underlying mechanisms involving prior belief.

Participants performed a yaw rotation discrimination

task in two conditions. In the unbiased condition, partici-

pants were told that each motion direction was equally

likely to occur; in the biased condition, participants were

instructed that rightward rotations were more likely. This
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manipulation was intended to introduce a response bias.

This bias manifests itself as a shift of the psychometric

function, without a substantial loss of sensitivity [6]. Pre-

vious research in the visual domain has also yielded faster

RTs to more frequently occurring stimuli when compared

to RTs to stimuli that are shown less frequently [4].

Accuracy is also increased for more frequent stimuli. In

psychophysics, it is still common to analyze choices

exclusively. If RTs are collected, they are considered

independently of choices; however, this approach is inad-

equate, since it is difficult to detect potential trade-offs. For

instance, a participant may increase his probability of

giving a correct answer by taking more time. Therefore,

data analysis in perceptual decision making requires a joint

consideration of choices and RTs.

A common model used for joint analysis of choices and

RTs is the drift diffusion model (DDM) [7]. In this model,

the decision-making process is based on the accumulation

of noisy sensory evidence. A decision for either of the two

choice alternatives is made when a lower or upper bound is

reached. The rate of evidence accumulation is known as the

drift rate, and the distance between the two choice alter-

natives is known as the boundary separation. Sensory and

motor processing not directly related to the decision-mak-

ing process is taken into account by the inclusion of a non-

decision time. The final parameter is the starting point of

the evidence accumulation process. For unbiased decision

making, this lies halfway between the two alternatives; in

the case of biased decision making, the starting point may

be shifted toward either boundary.

In essence, the DDM offers two possibilities for intro-

ducing a bias [7]: (1) by adjusting the starting point toward

the decision boundary of the more likely option or (2) by

increasing the drift rate for the more likely option. Both

mechanisms can account for potential influences of prior

belief. A change in starting point can be interpreted as a

bias prior to the accumulation of sensory evidence, which

may reflect a strategic response bias, while the altered drift

rate exerts its effect during the process of evidence accu-

mulation [8].

The goal of this study is to investigate whether and how

prior belief exerts an effect on passive whole body motion

discrimination, similar to that found in other sensory

modalities. Specifically, the question is whether partici-

pants can introduce a bias by changing their response cri-

terion, and if so, which cognitive processes are involved.

To achieve this goal, we analyzed choices using a multi-

level logistic regression model, and jointly analyzed choi-

ces and RTs using a hierarchical drift diffusion model, in a

simple direction discrimination task.

Methods

Subjects

Six healthy volunteers (three female/three male, aged

between 22 and 29) took part in this study. Informed

consent was obtained from all participants. Ethical

approval was obtained from the Ethics Committee of the

University of Bern.

Motion stimuli

Motion stimuli were generated using a six degree of free-

dom motion platform (6DOF2000E, MOOG Inc., East

Aurora, NY). We used single cycle sinusoidal acceleration

motion profiles with a frequency of 1 Hz. This type of yaw

rotation is similar to active head movements and has been

used to study passive self-motion perception [9]. Partici-

pants wore a blindfold and they were seated on a chair

mounted on the motion platform. Peak velocity was indi-

vidually adjusted to each participant.

Experimental procedure

The study consisted of a direction discrimination task using

passive whole body yaw rotation. A high-pitched tone

indicated the onset of motion. Participants were instructed

to push one of two buttons to indicate their perceived

motion direction as quickly as possible. In case of uncer-

tainty, participants were instructed to guess.

Before starting the experiment, 24 practice trials with

supra-threshold peak velocity were administered to allow

familiarization with the task. To ensure that performance

was comparable between participants, each participant’s

threshold [10] was determined. The main experiment

consisted of 4 blocks of the same direction discrimination

task, with 5 intensity levels for leftward and rightward

motion, administered 12 times, resulting in 120 trials per

block.

Manipulation of response bias

In the unbiased condition, participants were instructed that

leftward and rightward rotations were equally likely. In the

biased condition, participants were told that 80% of motion

stimuli would be to the right and 20% of stimuli to the left.

The conditions differed only in the instructions received; in

both conditions, leftward and rightward rotations were

equally likely to occur. The order of the two conditions was

counterbalanced across participants.
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Data analysis

Participants’ choices were analyzed using a Bayesian

hierarchical logistic regression model incorporating two

additional parameters to account for attentional lapses and

guesses [11]. We quantified a response bias as an additive

effect of the biased condition on the parameter of the linear

predictor. Choices and RTs were then jointly analyzed

using a Bayesian hierarchical drift diffusion model [12].

All models were estimated using the brms [13] and rstan

[14] R packages. We estimated several models allowing for

an effect of response bias on the DDM parameters, and

selected the best model based on the leave-one-out cross-

validation (LOO) method [15].

Results

Probability of rightward responses

Figure 1a shows participants’ proportion of rightward

responses as a function of motion intensity, separately for

the two instruction conditions. Motion intensity is shown as

positive for rightward motion and negative for leftward

motion. The scale represents the standardized peak veloc-

ity. Verbal instructions led to an overall increase in the

proportion of rightward responses. This increase in right-

ward response probability represents a bias in perceptual

decision making. Only participant 1 seems to have intro-

duced a bias toward rightward responses at the expense of

the ability to successfully discriminate between left and

right; the probability of giving a rightward response is high

even for trials with high leftward velocity. It is noteworthy

that performance of this participant in the unbiased con-

dition is absolutely comparable to the other participants.

Figure 1b shows the group-level parameter estimates of

the logistic fit. The fixed effect for the intercept in the

unbiased condition (unbiased crit) reveals that participants

did not favor either of the directions, and the fixed effect of

motion intensity (sensitivity) shows that stronger motion

intensity increased the probability of giving a rightward

response. The third and fourth parameters represent addi-

tive effects for the intercept (D biased crit) and slope of

motion intensity (D biased sensitivity) in the biased con-

dition. The additive effect on the intercept represents a shift

of the psychometric curve along the x-axis, as shown in

Fig. 1c. The fact that the 95% credible region lies to the

right of zero means that in the biased condition, the

probability of giving a rightward response was greatly

increased, independently of the motion intensity. The fact

that the additive effect on the slope is centered at zero

means that on average, participants’ altered decision cri-

terion was not accompanied by a loss of sensitivity,

resulting in similarly shaped curves in Fig. 1c. Therefore,

we conclude that participants were able to incorporate the

information given in the instructions into their decision-

making process by shifting their decision criterion, without

losing the ability to discriminate between motion

directions.

Drift diffusion analysis

We next assessed whether the criterion shift shown in

Fig. 1 was due to a shifted starting point or a shifted drift

criterion. We estimated several DDM models, including

models that allowed for an effect of the instruction con-

dition on the boundary separation and non-decision time.

Based on the LOO information criterion, we selected a

model that allowed for a change in both starting point and

drift rate as a function of instruction conditions. In addi-

tion, the drift rate could vary as a function of motion

intensity. These were estimated as fixed effects, with ran-

dom participant effects. We then compared this model,

which alleviates the problem of over-fitting individual

parameter estimates (partial pooling model) [12] to a non-

pooling model, which estimates all parameters for each

participant separately. These models were not distin-

guishable based on LOO. We, therefore, report parameter

estimates from both models; the group-level estimates

(fixed effects) are from the partial pooling model, and the

individual estimates are from the no-pooling model. Fig-

ure 2a shows the estimated fixed effects for the drift rate

and the starting point. The parameters are described in

Table 1.

The intercept for the drift rate in the unbiased condition

in Fig. 2a is slightly above zero, indicating a slightly

increased probability of reaching the upper boundary. This

parameter represents the amount of evidence that is accu-

mulated independently of the motion intensity; the effect of

this becomes important at low motion intensities. The

additive effect on this intercept in the biased condition is

greater than zero, with the 95% credible region excluding

0; this means that, at the group level, participants’ drift

rates for rightward motion were increased due to the

instruction favoring one direction of motion. The effect of

motion intensity is positive, indicating that participants

incorporated information about the stimulus into their drift

rates. Notably, the fixed additive effect of the biased con-

dition on the motion intensity parameter is effectively zero.

Therefore, at the group level, the biased condition does not

result in altered processing of motion intensity. The starting

point in the unbiased condition is zero; participants did not

favor either motion direction prior to evidence accumula-

tion. The additive effect in the biased condition is also

zero, meaning that, on average, the biased condition did not

result in an altered starting point.
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Figure 2b shows the standard deviations of the random

participant effects. Large standard deviation means that there

were large inter-individual differences between participants.

While the standard deviation of the additive effect on the

intercept in the biased condition is relatively small, indicating

that this effect is consistently found across all participants,

Fig. 2b reveals that there is considerable variability between

participants for both the slope of motion intensity in the

unbiased condition and the additive effect on the slope in the

biased condition. Since the additive effect on the slope is

centered at zero, a large standard deviation indicates that there

are positive and negative effects at the individual level. Any

effects at the individual level may cancel out. Therefore, we

report parameter estimates for each participant individually.

The results are shown in Fig. 3.

The individual estimates reveal the source of variability

of the effect of condition on the slope of motion intensity.

Participant 1 shows a noticeable negative effect on the

slope in the biased condition, resulting in a small

cumulative effect of motion intensity in the biased condi-

tion; this participant does not seem to incorporate infor-

mation about motion direction into the decision-making

process; and this is particularly evident for leftward

motion. Rather, the slight bias toward rightward responses

is explained by the model as an offset to the drift rate. This

offset is not visible in the unbiased condition, as the par-

ticipant takes the motion intensity into account. A similar

decrease in stimulus processing is visible in participant 2.

The response bias in this participant is explained by an

altered starting point in the biased condition. In contrast,

participants 3, 5, and to a lesser extent 4 show an increased

slope of motion intensity in the biased condition, coupled

with an increased drift rate independent of the motion

intensity. This results in both more efficient evidence

accumulation for large motion intensities and a biased drift

criterion toward rightward responses. Finally, participant 6

shows no effect on stimulus processing and a decreased

offset in the drift rate in the biased condition. Similar to

Fig. 1 Response data and hierarchical logistic regression model.

a Proportion of rightward responses as a function of standardized

motion intensity in biased and unbiased condition for all participants.

b Median, 50 and 95% credible regions of group-level parameter

estimates for the logistic fit. c Estimated psychometric curves for

biased and unbiased condition at group level. Parameters: Unbiased

crit = intercept for the unbiased condition. Sensitivity = slope

parameter for the unbiased condition. D biased crit = additive effect

on intercept for biased condition. D biased sensitivity = Additive

effect on sensitivity for biased condition
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Fig. 2 Parameter estimates of partial pooling DDM fits. aMedian, 50

and 95% credible regions of group-level parameter estimates for

effects on the drift rate and the starting point. b Standard deviations of

the random participant effects. Large standard deviation indicates

large inter-individual differences between participants. Parameters:

Drift rate intercept = Offset in the drift rate in the unbiased

condition. D biased intercept = Additive effect of biased condition

on the drift rate offset. Drift rate motion intensity = Effect of motion

intensity on the drift rate in the unbiased condition. D biased motion

intensity = Additive effect of biased condition on the effect of

motion intensity on the drift rate. Starting point = Starting point for

evidence accumulation in the unbiased condition. D biased starting

point = Additive effect of biased condition on the starting point

Table 1 Drift diffusion parameter estimates

Parameter Description

Drift rate intercept Offset in the drift rate in the unbiased condition. This represents the tendency to accumulate evidence for a given motion

direction, independently of motion intensity

D biased intercept Additive effect of biased condition on the drift rate offset

Drift rate motion

intensity

Effect of motion intensity on the drift rate in the unbiased condition. Higher motion intensities lead to a larger drift rate.

This indicates how well the motion intensity is processed, and is roughly analogous to the sensitivity in the

psychometric function

D biased motion

intensity

Additive effect of biased condition on the effect of motion intensity on the drift rate. Negative values thus indicate

decreased performance in the biased condition, whereas positive values indicate better performance

Starting point Starting point for evidence accumulation in the unbiased condition. Positive values indicate that the starting point is

shifted toward the upper boundary (rightward responses), whereas negative values indicate a shift toward the lower

boundary

D biased starting

point

Additive effect of biased condition on the starting point. Positive values indicate a shift toward the upper boundary,

relative to the unbiased condition
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participant 2, the model explains the biased responses as an

increased starting point in the evidence accumulation

process, indicated by the positive additive effect on the

starting point parameter. The other participant to show an

increased starting point is participant 5.

In summary, our results show that participants can

incorporate a prior belief about motion direction into their

decision-making process, and this results in a shift of the

psychometric function without loss of sensitivity. In terms

of the DDM, the prior belief manifests itself as either a

change in starting point or drift rate. Participants adopt

different strategies, resulting in different combinations of

parameters of the drift diffusion model.

Discussion

Both behavioral data and modeling demonstrate the

importance of considering prior beliefs in sensory pro-

cessing of dynamic vestibular stimuli. In this study, we

assessed the effect of prior beliefs about the relative

probability of motion direction using a cognitive process

model. A joint analysis of both choices and RTs allows the

extraction of richer information than is available from

analyzing either choices or RTs independently. While the

application of cognitive process models has been used in

other sensory modalities [16, 17], this is not true for

vestibular sensory processing. In comparison with other

sensory systems, however, the vestibular system is com-

paratively well understood in terms of the sensory

dynamics, making it an ideal candidate for furthering our

understanding of perceptual decision making and, in par-

ticular, cognitive effects on decision making. Recently,

Merfeld and colleagues [2] discussed perceptual decision

making in the context of Bayesian processing of dynamic

sensory information, and proposed a high-pass filtering

mechanism. Furthermore, detailed computational models

of vestibular sensory processing exist [18, 19], and this will

allow that the investigation of how decision making may be

incorporated in Bayesian models of sensory inference. The

Fig. 3 Parameter estimates of individual DDM fits for every

participant. Median, 50 and 95% credible regions of parameter

estimates for effects of motion intensity and biased condition on the

drift rate and starting point parameters for each subject individually.

Parameters are the same as in Fig. 2A. There are differences in how

participants incorporated a bias into their decision making (see main

text for details)
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relationship between a Bayesian model of evidence accu-

mulation and the drift diffusion model has been discussed

elsewhere [20], and the authors point out that the two are

equivalent under certain assumptions. As pointed out by

Merfeld et al. [2], however, the standard drift diffusion

model may be inappropriate for the type of evidence

accumulation required for the real-time processing of

dynamic sensory information.

In our study, we found that all participants incorporate

the altered prior belief induced by verbal instructions into

their perceptual decision-making process, albeit in different

ways. In particular, the effects of an induced response bias

can be seen in both an increased starting point and an

altered drift rate. The former may represent a cognitive

process that operates prior to, and possibly independently

of perceptual processing, whereas the latter operates

dynamically, during the evidence accumulation process.

Future research needs to investigate to what extent the

parameters of cognitive process models involved in per-

ceptual decision making, such as changes in drift rate or

starting point, can be mapped onto different underlying

neural mechanisms. Further insight may be gained by

combining cognitive process models with EEG recordings,

allowing a more fine-grained distinction between processes

operating prior to stimulus presentation and processes

operating during the accumulation of sensory evidence.

Ellis and Mast [21] have previously argued that the

vestibular system is well suited for investigating the con-

nection between cognition and perception, and we claim

that vestibular decision making represents a particularly

promising paradigm for future research.
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