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Abstract The purpose of this meta-analysis was to

investigate the association between progranulin polymor-

phism rs5848 and risk of the neurodegenerative diseases

frontotemporal lobar degeneration (FTLD), Alzheimer’s

disease (AD), Parkinson’s disease (PD), and amyotrophic

lateral sclerosis (ALS). Published literature from PubMed

and other databases were retrieved, and 16 case–control

studies were identified as eligible: 5 on FTLD (1,439 cases,

4,461 controls), 5 on AD (2,502 cases, 2,162 controls), 3 on

PD (1,605 cases, 1,591 controls), and 3 on ALS (663 cases,

811 controls). The pooled odds ratio (OR) and 95 % con-

fidence interval (CI) were calculated. We found that rs5848

was associated with an increased risk of neurodegenerative

diseases in the homozygous (TT vs. CC: OR, 1.24; 95 %

CI, 1.10–1.39; P\ 0.001) and recessive models (TT vs.

CC ? CT: OR, 1.23; 95 % CI, 1.10–1.37; P\ 0.001).

Stratified analyses showed associations of rs5848 with

increased risk of AD and PD in the homozygous and

recessive models. Our data indicate that rs5848 is associ-

ated with risk of AD and PD, suggesting important roles of

progranulin in neurodegenerative processes.
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Introduction

Neurodegenerative diseases are progressive disorders with

selective neuronal loss in particular regions of the brain,

including frontotemporal lobar degeneration (FTLD),

Alzheimer’s disease (AD), amyotrophic lateral sclerosis

(ALS), Parkinson’s disease (PD), and many others. In

addition to aging, brain injury, and lifestyle, it has been

acknowledged that the etiology of neurodegenerative dis-

eases is often multifactorial (particularly gene–environ-

ment interactions). However, epidemiological evidence for

an association between environmental agents and neuro-

degenerative disease is limited [1].

Gene defects are prominent factors in the etiology and

pathogenesis of neurodegenerative diseases. To date, hun-

dreds of genetic variants located in dozens of genes have

been associated with susceptibility to various such diseases

(reviewed in [2]). Although the majority of susceptibility

genes do not overlap across diseases, some mutations in

certain genes have been linked to diverse neurodegenera-

tive diseases, e.g., TAR DNA-binding protein 43 and fused

in sarcoma/translated in liposarcoma [3, 4]. Among them,

mutations in progranulin (PGRN) have been reported in

FTLD, AD, ALS, and PD [5–8]. It has been reported that

PGRN mutations are a major genetic cause of FTLD, and
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most pathogenic PGRN mutations are associated with

FTLD [9]. On the other hand, several missense mutations

and deletions in PGRN have been reported in AD, ALS,

and PD [10–12]. These studies suggest that PGRN muta-

tions play important roles in neurodegenerative processes

in general.

Progranulin is the precursor of granulins, and its

downregulation may lead to neurodegeneration. PGRN is

located 1.7 Mb centromeric of the MAPT gene (encoding

tau protein) on chromosome 17q21.31, a region linked to

FTLD [5]. Since the identification of mutations in PGRN,

[60 different pathogenic PGRN mutations and some

deletions have been identified in patients with neurode-

generation (AD&FTD mutation database) [5, 6]. Most

PGRN mutations including heterozygous deletions iden-

tified to date cause null alleles that result in loss-of-

function of PGRN or haploinsufficiency through non-

sense-mediated decay [5, 6, 13, 14]. Notably, the single

nucleotide polymorphism (SNP) rs5848, which is located

in the 30-untranslated region (30-UTR) of PGRN and

predicted to be a binding site for the microRNA miR-659,

is associated with frontotemporal dementia [15]. Simi-

larly, the PGRN genetic polymorphism rs5848 has also

been demonstrated to increase the risk of AD [6, 7] and

the development of PD [16]. However, other studies

showed no association of rs5848 with FTLD [17], AD

[18], or PD [19]. In addition, a recent study reported no

major contribution of progranulin genetic variability to

the etiopathogenesis of ALS [20]. These inconsistent

results might be due to the limited numbers of partici-

pants included in each study, so a single study may be

underpowered to estimate the effects of loci conferring

small changes in disease risk.

In this study, we performed a meta-analysis by pooling

all 16 case–control studies to derive a more precise esti-

mate of the relationship between rs5848 and the risk of

neurodegenerative disease.

Methods

Identification and eligibility of relevant studies

To identify all articles that examined the association of

progranulin polymorphism with neurodegenerative dis-

ease, we conducted a literature search in the PubMed

databases up to August 2013 using the MeSH terms and

keywords ‘‘progranulin’’, ‘‘polymorphism’’, and ‘‘neuro-

degenerative disease’’. Additional studies were identified

by a manual search of other sources (e.g., Web of

Knowledge), and references in original studies or review

articles on these topics. Eligible studies had to meet the

following criteria: (a) evaluation of an association between

rs5848 and neurodegenerative disease; (b) an unrelated

case–control study; if studies had partly overlapping par-

ticipants, only the one with a larger sample size was

selected; (c) available genotype frequency and sufficient

data for estimating an odds ratio (OR) with 95 % confi-

dence interval (CI); and (d) genotype frequencies in the

control group consistent with Hardy–Weinberg equilibrium

(HWE).

Data extraction

Two investigators independently assessed the articles for

inclusion/exclusion, reached a consensus on all items, and

extracted data. For each study, the following information

was extracted: name of the first author; publication year;

ethnicity (country); sample size (numbers of cases and

controls); types of neurodegenerative disease; minor allele

frequency; P value for the Chi-square (v2) HWE test in

each control group.

Statistical analysis

The association between the progranulin polymorphism

rs5848 and neurodegenerative disease was estimated by

calculating pooled ORs and 95 % CIs. The significance of

the pooled OR was determined by the Z test (P\ 0.05 was

considered statistically significant). The risk of rs5848 in

neurodegenerative disease was evaluated by comparison

with the reference wild-type homozygote. We first esti-

mated the risks of the CT and TT genotypes in neurode-

generative disease, compared with the reference CC

homozygote, and then evaluated the risks of CT ? TT vs.

CC and TT vs. CC ? CT in neurodegenerative disease,

assuming dominant and recessive effects of the variant TT

allele, respectively. The I2-based Q statistic test was per-

formed to evaluate variations due to heterogeneity rather

than chance. A random-effects (DerSimonian–Laird

method) or fixed-effects (Mantel–Haenszel method) model

was used to calculate pooled-effect estimates in the pre-

sence (P B 0.10) or absence (P[ 0.10) of heterogeneity.

Publication bias was detected by Egger’s test [21] and

Begg’s [22] test for the overall pooled analysis of different

models of rs5848. In addition, Begg’s funnel plots were

drawn. Asymmetry of the funnel plot means a potential

publication bias. For one-way sensitivity analysis, a single

study was excluded each time, and the new pooled results

could reflect the influence of the deleted study on the

overall summary OR. To obtain a measure of the degree to

which the findings reported here might be false-positives,

corrections for multiple comparisons were considered

using the Benjamini–Hochberg false-discovery rate (FDR)

adjustment [23]. FDR-adjusted P\ 0.05 was considered to

be potentially significant. FDR-adjustment analysis was
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carried out with the q value package in R software (version

3.1.0; R Foundation for Statistical Computing, Vienna,

Austria) and other analyses were conducted with Stata

software (version 11.0; StataCorp LP, College Station,

TX), using two-sided P values.

Results

Characteristics of studies

Twenty-six abstracts were retrieved through the search for

‘‘progranulin’’, ‘‘polymorphism’’ and ‘‘neurodegenerative

disease’’, and 7 studies meeting the inclusion criteria were

identified [17–19, 24–27]. We also included 9 studies

found by manual searching [15, 16, 20, 28–33]. As a result,

a total of 16 studies met the inclusion criteria and were

identified as eligible articles (Fig. 1).

Five studies were included in the meta-analysis of

rs5848 genotype in FTLD (1,439 cases, 4,461 controls), 5

in AD (2,502 cases, 2,162 controls), 3 in PD (1,605 cases,

1,591 controls), and 3 in ALS (663 cases, 811 controls). In

terms of ethnicity, 14 studies of Caucasians and 2 of Asians

were included. The detailed characteristics of each study in

the meta-analysis are presented in Table 1.

Quantitative synthesis

The results of the meta-analysis on the association between

rs5848 and risk of neurodegenerative disease are shown in

Table 2. By pooling all the studies, the results showed that

rs5848 was associated with an increased risk of all neuro-

degenerative diseases in the homozygous (TT vs. CC: OR,

1.24; 95 % CI, 1.10–1.39; P\ 0.001) but not the hetero-

zygous models (CT vs. CC: OR, 1.00; 95 % CI, 0.93–1.08;

P = 0.983). Furthermore, we found that rs5848 was sig-

nificantly associated with an increased risk of all neurode-

generative diseases in a recessive model (TT vs. CC ? CT:

OR, 1.23; 95 % CI, 1.10–1.37; P\ 0.001), but not in a

dominant model (CT ? TT vs. CC: OR, 1.04; 95 % CI,

0.98–1.11; P = 0.263). We also performed subgroup

analyses and found that rs5848 polymorphism was associ-

ated with increased risk of all neurodegenerative diseases in

Caucasians in the homozygous (TT vs. CC: OR, 1.18; 95 %

CI, 1.04–1.34; P = 0.012) and recessive models (TT vs.

CC ? CT: OR, 1.18; 95 % CI, 1.04–1.33; P = 0.008).

Similar associations were also found in Asians.

We next performed subgroup analysis on the association

of the rs5848 polymorphism with each neurodegenerative

disease. The results showed that this polymorphism was

not associated with FTLD in different models (Table 2;

Fig. 1 Flow-diagram of study

identification
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Fig. 2). For AD, we found that rs5848 was associated with

an increased risk in the homozygous (TT vs. CC: OR, 1.36;

95 % CI, 1.11–1.66; P = 0.003) and recessive models (TT

vs. CC ? CT: OR, 1.31; 95 % CI, 1.08–1.58; P = 0.006).

As for PD, rs5848 was associated with an increased risk in

the homozygous (TT vs. CC: OR, 1.34; 95 % CI,

1.05–1.69; P = 0.017) and recessive models (TT vs.

CC ? CT: OR, 1.28; 95 % CI, 1.02–1.60; P = 0.034). On

the contrary, we found that rs5848 was associated with a

decreased risk of ALS in the heterozygous (TC vs. CC:

OR, 0.80; 95 % CI, 0.64–1.00; P = 0.047) and dominant

models (TT ? CT vs. CC: OR, 0.79; 95 % CI, 0.64–0.97;

P = 0.026).

Potential publication bias and sensitivity analysis

Publication bias was first assessed by Begg’s test for the

overall pooled analysis of different models of rs5848. This

test showed that the P values of rs5848 were 0.096, 0.096,

0.065, and 0.260 for the heterozygous, homozygous,

dominant, and recessive models, respectively, and the

corresponding funnel plots showed a symmetrical distri-

bution (Fig. 3). Egger’s test also showed that the P values

of rs5848 were 0.023, 0.053, 0.026, and 0.141, respec-

tively, suggesting a slight publication bias. Sensitivity

analysis showed that exclusion of each study did not

influence the result (Fig. 4).

Table 1 Characteristics of

literatures included in the meta-

analysis

FTLD frontotemporal lobar

degeneration, AD Alzheimer’s

disease, PD Parkinson’s disease,

ALS amyotrophic lateral

sclerosis, MAF minor allelic

frequency, HWE Hardy–

Weinberg equilibrium

References Country Ethnicity Case/control Diseases MAF HWE

Rademakers et al. [15] US Caucasian 339/934 FTLD 0.30 0.568

van der Zee et al. [33] Belgium Caucasian 112/459 FTLD 0.28 0.344

Simon-Sanchez et al. [30] Netherlands Caucasian 256/1,644 FTLD 0.30 0.190

Galimberti et al. [25] Italy Caucasian 265/375 FTLD 0.29 0.159

Rollinson et al. [17] US/UK/Belgium Caucasian 467/1,049 FTLD 0.29 0.186

Brouwers et al. [32] Belgium Caucasian 779/459 AD 0.28 0.344

Fenoglio et al. [18] Italy/US Caucasian 684/679 AD 0.29 0.390

Viswanathan et al. [29] Finland Caucasian 506/649 AD 0.36 0.960

Lee et al. [24] Taiwan Asian 275/260 AD 0.35 0.158

Kamalainen et al. [28] Finland Caucasian 258/115 AD 0.39 0.158

Nuytemans et al. [27] Belgium Caucasian 261/459 PD 0.28 0.334

Jasinska-Myga et al. [19] US/Poland Caucasian 771/642 PD 0.31 0.299

Chang et al. [16] Taiwan Asian 573/490 PD 0.32 0.828

Xiao et al. [31] UK Caucasian 194/194 ALS 0.29 0.26

Sleegers et al. [26] Belgium Caucasian 230/436 ALS 0.28 0.325

Del Bo et al. [20] Italy Caucasian 239/181 ALS 0.28 0.112

Table 2 Meta-analysis of the PGRN polymorphism rs5848 on neurodegenerative disease risk

Groups na TC vs. CC (heterozygous) TT vs. CC (homozygous) TT ? TC vs. CC (dominant) TT vs. CC ? CT (recessive)

OR (95 % CI) Pb OR (95 % CI) Pb OR (95 % CI) Pb OR (95 % CI) Pb

Pooled 16 1.00 (0.93–1.08) 0.534 1.24 (1.10–1.39) 0.155 1.04 (0.98–1.11) 0.233 1.23 (1.10–1.37) 0.227

Ethnic

Caucasian 14 0.98 (0.91–1.06) 0.546 1.18 (1.04–1.34) 0.222 1.02 (0.94–1.09) 0.309 1.18 (1.04–1.33) 0.262

Asian 2 1.15 (0.93–1.42) 0.660 1.66 (1.21–2.09) 0.667 1.25 (1.02–1.52) 0.815 1.55 (1.15–2.09) 0.544

Disease type

FTLD 5 0.94 (0.83–1.07) 0.991 1.20 (0.97–1.49) 0.116 0.99 (0.87–1.12) 0.847 1.19 (0.88–1.62) 0.085

AD 5 1.08 (0.95–1.22) 0.465 1.36 (1.11–1.66) 0.729 1.13 (1.00–1.27) 0.588 1.31 (1.08–1.58) 0.604

PD 3 1.08 (0.93–1.26) 0.623 1.34 (1.05–1.69) 0.377 1.13 (0.98–1.30) 0.522 1.28 (1.02–1.60) 0.401

ALS 3 0.80 (0.64–1.00) 0.387 0.75 (0.51–1.12) 0.382 0.79 (0.64–0.97) 0.259 0.82 (0.57–1.20) 0.525

a Number of studies included
b P value of Q test for heterogeneity test
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Discussion

In the present meta-analysis, we found that rs5848 was

associated with increased risk of neurodegenerative dis-

eases in homozygous and recessive models. In the sub-

group analysis, however, rs5848 was associated with a

decreased risk of ALS in the heterozygous and dominant

models. It should be noted that only 663 ALS cases and

811 controls were included. Thus, the protective effect of

rs5848 on ALS development awaits further investigation.

As for PD, an early study by Jasinska–Myga et al. [19]

reported a lack of association between rs5848 and PD risk

in the US and Poland, while a recent study showed that

PGRN rs5848 affects the risk of developing PD in a Tai-

wanese population [16]. This discrepancy may be due to a

differential effect of rs5848 on PD risk between Eastern

and Western populations. By pooling all studies, our data

showed that rs5848 was associated with increased risk of

PD in the homozygous and recessive models. Future

studies are required to verify this association since our data

were only based on three studies. In addition, we found

significant associations between rs5848 and increased risk

Fig. 2 Forest plots of the association between rs5848 and risk of

neurodegenerative diseases. The association between rs5848 and risk

of neurodegenerative diseases was examined in heterozygous (a),

homozygous (b), dominant (c), and recessive models (d). The squares

and horizontal lines correspond to the OR and 95 % CI of a specific

study, and the area of squares reflects the study weight (inverse of the

variance). The diamond represents the pooled OR and its 95 % CI
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of neurodegenerative diseases in both Caucasians and

Asians; however, only two studies of Asians were included.

The explanation for the limited evidence on Asians should

be treated with caution.

AD is associated with impaired clearance of b-amyloid

from the brain, a process normally facilitated by apolipo-

protein E (APOE). The e4 variant of APOE is a major risk

for AD [34]. A recent study by Lee et al. [24] has dem-

onstrated that rs5848 TT of the PGRN genotype increases

the risk of AD in a Taiwanese population; interestingly,

this association is independent of the APOE e4 allele.

Experimental studies have shown that the PGRN level is

significantly correlated with amyloid load in mouse models

of AD [35]. Furthermore, the T allele of rs5848 has been

shown to lead to decreased levels of PGRN and might be a

risk factor for hippocampal sclerosis in patients with AD

[36]. Therefore, the APOE and PGRN proteins may mod-

ulate the pathogenesis of AD via different pathways.

Previously, Rademakers and colleagues reported an

association between rs5848 and frontotemporal dementia

in a homogeneous cohort of an autopsy-confirmed FTD-U

series (FTD with cortical ubiquitin-only neuropathology)

[15]. However, the study was not confirmed in a larger

population or in other cohorts [17, 25]. By pooling 5

studies, we found no association of rs5848 with FTLD.

Actually, there are discrepancies concerning the role of this

SNP in sporadic FTLD; for example, the diagnosis was

based on a less heterogeneous autopsy-confirmed FTD-U

series in the study by Rademakers [15], while the later

studies lacked an autopsy-proven diagnosis [17, 25].

Progranulin is a secreted growth factor and regulates

multiple physiological and pathological processes, includ-

ing tissue repair, tumorigenesis, inflammation, and

embryonic brain development [37]. Dysregulation of the

PGRN level can lead to neurodegeneration or cancer [38].

Although the role of PGRN in the development of neuro-

degenerative diseases has not been fully characterized, the

precise regulation of PGRN level plays a crucial role in

maintaining proper neuronal morphology and the connec-

tions between neurons [39]. rs5848 is one of the PGRN

Fig. 3 Funnel plots showed symmetric distribution. Log OR was

plotted against the standard error of log OR for the association of

rs5848 with risk of neurodegenerative diseases in heterozygote (a),

homozygote (b), dominant (c), and recessive models (d). The dots

represent specific studies for the indicated association
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variants that can regulate PGRN levels by shifting the miR-

659 binding site [15]. Carriers homozygous for the T allele

of rs5848 have a 3.2-fold increased risk of developing

FTLD compared with homozygous C allele carriers [15].

With regard to the mechanism, miR-659 can regulate

PGRN expression by binding more efficiently to the high-

risk T allele, resulting in augmented translational inhibition

of PGRN [15]. The present meta-analysis demonstrated

that the rs5848 polymorphism was associated with

increased risks of AD and PD, suggesting that this poly-

morphism is a promising predictor for the diagnosis of

neurodegenerative diseases as well as a drug target of miR-

659 in these diseases.

The major limitation of this meta-analysis is that we

only pooled studies on the association of rs5848 with

neurodegenerative diseases. Previous studies have exam-

ined the associations between other PGRN polymorphisms

(e.g., rs9897526, rs850713, and rs25646) and the risks of

different neurodegenerative diseases, and the data are

inconsistent [18, 20, 25, 26, 29, 31, 32]. Due to the limited

number of studies, we did not evaluate the effects of other

PGRN polymorphisms on the risks of different neurode-

generative diseases (see Supplementary Data Tables).

Another limitation is that our meta-analysis did not include

genome-wide association studies due to lack of sufficient

data on the genotype frequency of rs5848 for cases and

controls. However, the publication bias analyses with the

Egger’s and Begg’s tests showed no evident bias, sug-

gesting that we collected sufficient published data. On the

other hand, previous reports have suggested a female

gender bias in the risk association of rs5848 with PD [16],

but a male-oriented bias in the risk association for AD [29].

We did not discern a gender effect in the present meta-

analysis due to limited data.

In summary, we for the first time performed meta-ana-

lysis by pooling all studies, and found that rs5848 is

associated with an increased risk of AD and PD in

homozygous and recessive models, suggesting an impor-

tant role of PGRN in neurodegenerative processes.
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