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Abstract The etiopathogenesis of essential tremor (ET)

is still debated, since the predominant role of circuit dys-

function or brain degenerative changes has not been clearly

established. The relationship with Parkinson’s Disease

(PD) is also controversial and resting tremor occurs in up to

20 % of ET. We investigated the morphological and

functional changes associated with ET and we assessed

potential differences related to the presence (ET?R) or

absence (ET-R) of resting tremor. 32 ET patients (18

ET?R; 14 ET-R) and 12 healthy controls (HC) underwent

3T-MRI protocol including Spoiled Gradient T1-weighted

sequence for Voxel-Based Morphometry (VBM) analysis

and functional MRI during continuous writing of ‘‘8’’ with

right dominant hand. VBM analysis revealed no gray and

white matter atrophy comparing ET patients to HC and

ET?R to ET-R patients. HC showed a higher BOLD

response with respect to ET patients in cerebellum and

other brain areas pertaining to cerebello-thalamo-cortical

circuit. Between-group activation maps showed higher

activation in precentral gyrus bilaterally, right superior and

inferior frontal gyri, left postcentral gyrus, superior and

inferior parietal gyri, mid temporal and supramarginal gyri,

cerebellum and internal globus pallidus in ET-R com-

pared to ET?R patients. Our findings support that the

dysfunction of cerebello-thalamo-cortical network is asso-

ciated with ET in absence of any morphometric changes.

The dysfunction of GPi in ET?R patients, consistently

with data reported in PD resting tremor, might suggest a

potential role of this structure in this type of tremor.
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Introduction

Essential Tremor (ET) is a common neurological disorder

whose etiology and pathogenesis is still debated, since the

predominant role of circuit dysfunction or brain degener-

ative changes has not been clearly established. Several

clinical [1, 2] and electrophysiological [3, 4] evidence are

converging on an involvement of the cerebellum in ET,

which is also suggested by several functional neuroimaging

studies [5–8] revealing an increased bilateral cerebellar

activity. Morphological MRI studies performed using

Voxel-based morphometry (VBM) analysis provided

widespread abnormalities in gray matter (GM) and white

matter (WM) both in cerebellum and cerebral hemispheres,

however, their results were controversial [9, 10]. From a

pathological point of view, 75 % of the ET patients [11]

exhibited structural changes in cerebellum although more
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recently some authors raised doubts about the presence of

these morphological abnormalities [12]. Further, the rela-

tionship between ET and PD is intriguing and still debated.

Indeed, personal and family history of ET is commonly

reported in PD patients [13], 20 % of ET patients develop

resting tremor clinically similar to resting tremor in PD

[14] and 25 % of ET patients might show Lewy body

pathology in the locus coeruleus [11].

Hence, in this study, we investigated cerebellar func-

tion in ET patients in an exploratory design by fMRI

during a specific motor task, characterized by the ‘‘8’’

figure writing, which strongly activates cerebellum as

well as cortical motor, premotor, posterior parietal areas

and thalamus [15].

We also investigated cerebellar morphometry by struc-

tural MR Imaging to assess the presence of any degener-

ative changes. Finally, we wished to look at the potential

functional and morphological differences between ET with

and without resting tremor.

Methods

Patients

Thirty-two ET patients [17 males and 15 females;

69.7 ± 9.7 years; mean values ± Standard Deviation

(SD)] were recruited at the Movement Disorders Center of

Neurology Unit, University of Pisa. All patients had a

diagnosis of definite or probable ET according to the

Consensus Statement on tremor of Movement Disorder

Society [16]. Exclusion criteria were: thyroid dysfunctions,

severe vascular encephalopathy, recent brain injuries,

structural lesions potentially related to tremor or history of

tremorogenic drugs use. Patients were grouped into sub-

jects with resting tremor (ET?R) and without resting tre-

mor (ET-R) according to the score (at least 1 for ET?R

and 0 for ET-R patients) in any rest tremor item for head,

trunk, upper and lower extremities in the part A of Tolosa–

Fahn–Marin Rating Scale (TRS) [17]. Demographic char-

acteristics of patients are reported in Table 1. All ET?R

subjects performed a 123I-FP-CIT SPECT which excluded a

nigrostriatal dopaminergic degeneration. Twelve healthy

volunteers (4 males and 8 females; 67.4 ± 4.8 years) with

no history of neurological or psychiatric diseases were

recruited as controls. All patients and control subjects were

right-handed according to Edinburgh Handedness Inven-

tory [18]. Each patient was directly evaluated by a neu-

rologist expert in movement disorder on the day of the MRI

exam, before the scan. In patients taking medications for

tremor, drugs were stopped 7 days before the MRI scan.

Thus, all patients were clinically scored in the same con-

dition (off medication).

Age and gender did not significantly differ between

patients and controls (Mann–Whitney U test p = 0.15 for

age; Pearson Chi-square p = 0.24 for sex) and between

ET-R and ET?R patients (p = 0.61 for age; p = 0.30 for

sex); neither disease duration differed between ET-R and

ET?R (Mann–Whitney U test p = 0.17).

Patients and controls gave their written informed con-

sent to all the diagnostic procedures. The protocol was

approved by our Ethics Committee.

MRI

MRI data were acquired on a 3.0 T scanner (Discovery

MR750 3.0 T, GE Healthcare, Milwaukee) with high-per-

forming gradients (strength 50 mT/m, maximum slew rate

200 T/m/s) equipped with an eight channels head coil with

ASSET technology. Foam cushions were used for head

stabilization to reduce motion-related artifacts. All partic-

ipants underwent the same MRI protocol with structural

and functional acquisition in the same session for each

subject.

Voxel-based morphometry

After scouts, a high-resolution fast 3D Spoiled Gradient

Recalled (SPGR) sequence was acquired on axial plane

(TR = 8.2 ms; TE = 3.2 ms; flip angle = 12�;

TI = 450 ms; FOV = 25.6 cm; 256 9 256 matrix; 160

slices; slice thickness 1.0 mm).The VBM analysis was

carried out by the FSL-VBM optimized protocol [19]

available in the FMRIB software library (FSL). Structural

images were brain-extracted using Brain Extraction Tool

(BET) [20] and manually refined. Then, these images were

segmented into GM using FMRIB’s Automated Segmen-

tation Tool (FAST) [21], aligned to the Montreal Neuro-

logical Institute (MNI) 152 standard space [22] by the

affine registration tool FMRIB’s Linear Image Registration

Tool (FLIRT) [23, 24] and subsequently non-linearly reg-

istered using FMRIB’s Nonlinear Image Registration Tool

(FNIRT) [25]. To create a study-specific template, the

registered GM images of 10 healthy subject and 10 ET

patients were averaged. After that the native GM images of

all subjects were non-linearly registered to the study-spe-

cific template, modulated and smoothed with an isotropic

Gaussian kernel with a sigma of 3 mm. Statistical analysis

was performed using a voxel-wise General Linear Model

(GLM) with a permutation-based (5,000 permutations)

non-parametric testing and Threshold-Free Cluster

Enhancement option (TFCE) [26]. The significance level

was set at p \ 0.05 corrected for multiple comparisons via

family-wise error correction across space.

To further assess possible differences in GM volume

between ET-R and ET?R patients, a second study-
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specific template was created with the registered GM

images of 10 ET-R patients and 10 ET?R patients and

then we performed the analysis as described above. Since

voxel-based quantification of atrophy is influenced by

aging [27], we inserted age and gender of patients and

controls as covariate variables within the GLM matrix.

Functional magnetic resonance imaging

Study protocol

We used a block-design experiment with five task periods

lasting 30 s each alternated to five rest periods with the

same duration. Subjects were asked to perform a continu-

ous writing of the ‘‘8’’ figure with their right dominant

hand and to maintain self-paced frequency and amplitude

as constant as possible during the experiment. Subjects

were trained to the task before the exam out of the scanner

and also within the magnet before fMRI acquisitions to

check the capability to perform a corrected task. They also

were invited to maintain the eyes closed for the whole

experiment because it restricts the risk of motion artifacts

and particularly because the oculomotor activity could

interfere with the cerebellar activation [28]. The task exe-

cution was externally guided by the auditory inputs ‘‘go’’

and ‘‘stop’’ and monitored in real-time by a compatible

device previously developed [15]. The device allowed to

monitor possible errors throughout the active or passive

phases of the task and to evaluate, for each subject, the

mean frequency and the mean size of the ‘‘8’’ figures.

These parameters exert a significant effect on BOLD

activation within primary sensory, motor and premotor

frontal cortices (frequency) and in posterior parietal cortex

(size); both frequency and size parameters modulate acti-

vation in the inferior cerebellum [15].

fMRI data acquisition

The fMRI data were obtained with a T2*-weighted gradi-

ent recalled multi-phase Eco-Planar Imaging (EPI)

sequence, with the following parameters: TR 3,000 ms, TE

40 ms, flip angle 90�, FOV 26.0 cm, image

matrix 9 128 9 128. 28 interleaved slices (slice thickness

4 mm, spacing 1 mm) were acquired angled of 30� with

respect to the anterior–posterior commissural plane (AC–

PC) to minimize susceptibility-related artifacts, repeated

over 104 volumes for a total scanning time of 5 min and

12 s.

fMRI data analysis

Functional data were analyzed using FEAT tool part of

FSL. To avoid T1-related relaxation effects, the first four

scans of each run were discarded from analysis. Pre-sta-

tistics processing consisted of motion correction using

MCFLIRT [23, 24], slice-timing correction (interleaved

acquisition), non-brain structures removal using BET [20],

high pass temporal filtering (cut off = 100 s) and spatial

Table 1 Demographic and

clinical data

Mean ± standard deviation

(SD)

UL upper limb, LL lower limb

* p \ 0.001 Mann–Whitney

U test

Patients

Total ET-R ET?R

Number # 32 14 18

Age 69.7 ± 9.7 68.6 ± 8.7 70.5 ± 10.6

Gender 17 M/15F 6 M/8F 11 M/7F

Disease duration 13.4 ± 12.9 9.9 ± 10.6 16.1 ± 14.2

Age of onset 56.3 ± 5.5 58.7 ± 9.6 54.4 ± 21.4

Patients with family history # 17 7 10

Patients on therapy # 13 6 7

Type of therapy 4 Propranolol 5 Propranolol

2 Gabapentin 1 Gabapentin

1 Zonisamide

TRS 25.6 ± 9.5 19.4 ± 5.4* 30.4 ± 9.8*

Dystonic features – – –

Resting tremor distribution – – 4 left UL

7 right UL

4 both UL

1 left UL ? left LL

1 both UL ? both LL

1 both UL ? right LL
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smoothing (Gaussian kernel Full Width Half Maxi-

mum = 8 mm). Subjects with absolute translational or

rotational displacement higher than 3 mm or 3� were

excluded from further analysis.

First-level statistical analysis was performed by GLM

approach also including, in the design matrix, the head

motion parameters estimated by MCFLIRT as adjunctive

confound variables. BOLD activation maps were obtained

comparing signal changes between active versus rest pha-

ses for each subject. Functional data were registered to

brain-extracted refined 3D T1-weighted SPGR images by

FLIRT [23] and subsequently both functional and structural

data were aligned to the MNI 152 standard space using

FNIRT [25]. The Z statistical maps resulting from the first-

level analysis underwent voxel-based correction with a

threshold set to p = 0.001.

To reveal statistically significant differences in BOLD

signal between active and rest phases within the group of

patients and controls, a single-tail t test was performed by a

fixed-effects model [29, 30]. The Z statistical maps derived

from within-group analysis underwent cluster thresholding

with Z threshold = 10 and a (corrected) cluster signifi-

cance threshold of p = 0.001.

Between-group analysis was later performed to reveal

possible differences in BOLD activation pattern between

patients and controls using unpaired t test and a fixed-

effects model. The Z statistical maps underwent cluster

thresholding with Z threshold = 5 and a (corrected) cluster

p threshold = 0.001.

Finally, a further between-group analysis was performed

between ET?R patients group and ET-R patients group.

The Z statistical maps obtained underwent cluster thres-

holding with Z threshold = 5 and a (corrected) cluster

p threshold = 0.001.

Age and gender of patients and controls were inserted as

covariate variables in all the GLM models [27]. To remove

the contribution of the variability in task performance to

the cortical activation mean frequency and size of ‘‘8’’,

figures were included, for each subjects, in the analysis as

confound variables. GM probability maps were also added

to the models to include voxel-wise tissue information as

nuisance variable [31]. The description of statistical maps

was based on Anatomical Automated Labeling (AAL)

Atlas [32].

Results

Clinical data

No significant differences were found in clinical charac-

teristics of the two subgroups with the exception of TRS

score which was, as expected, significantly higher in

ET?R patients with respect to ET-R patients. Some

subjects did not drink any alcohol so we were not able to

evaluate possible differences in alcohol sensitivity between

groups. Similarly, some subjects did not assume any drugs

for tremor, but no significant difference was found in the

number of patients taking and not taking medication

between ET-R and ET?R.

Behavioral data

All patients and controls correctly performed the writing of

the ‘‘8’’ figure. ET patients performed ‘‘8’’ figure writing

task with a mean frequency significantly different (Mann–

Whitney U test p \ 0.05) with respect to controls (0.48 vs

0.63 Hz, respectively), whereas mean area (815 vs

603 mm2) did not differ between the two groups. No sig-

nificant differences were found in the task’s features by

comparing ET-R and ET?R (Mann–Whitney U test;

p = 0.15 for frequency, p = 0.21 for size). Plots of the

frequency and the size of the ‘‘8’’ figures performed by

healthy controls, ET patients and subgroups of ET?R and

ET-R patients are available as supplemental materials (see

Online Resource 1 and 2).

Voxel-based morphometry

The between-group VBM analysis revealed no significant

differences in cortical GM volume both between ET

patients and healthy controls and between ET-R and

ET?R patients.

fMRI analysis

Within-group analysis

When comparing active and rest periods, ET patients

showed significant bilateral activation in precentral gyrus,

superior, middle and inferior frontal gyri, supplementary

motor area (SMA), Rolandic operculum, postcentral

gyrus, superior and inferior parietal gyri, supramarginal

gyrus. Activation in these areas was more widespread on

the left side, contralaterally to the task. A significant

activation in left cinguli gyrus was also observed. ET

patients presented significant bilateral activation in cere-

bellar hemispheres and vermis, which was more wide-

spread on the right side, ipsilaterally to the task. The same

cerebral and cerebellar areas presented significant acti-

vation in healthy controls by comparing active with rest

periods. Similarly, activated clusters were more wide-

spread on the left side in cerebral areas and on the right

side in cerebellar regions. However, control subjects

showed also significant left thalamus activation which

was not revealed in ET patients.
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Between-group analysis

Healthy subjects showed significant higher activation with

respect to ET patients in precentral and postcentral gyrus

bilaterally (with more extension on the left side), in left

SMA, cinguli gyrus and inferior parietal gyrus. Also, left

thalamus was significantly more activated in controls

compared to ET patients. Further, in healthy subjects,

higher activated clusters were found in cerebellum bilater-

ally, mainly on the right side. In a lesser extent, left superior

frontal gyrus and superior parietal gyrus, right middle

frontal gyrus and supramarginal gyrus, resulted more acti-

vated in controls compared to ET patients (Table 2; Fig. 1).

By comparing ET patients to healthy subjects, little

clusters of significant higher activation were detected in

left precentral and postcentral gyrus, precuneus and supe-

rior parietal gyrus (Table 2; Fig. 1).

A significantly higher activation in ET-R patients with

respect to ET?R patients was observed in precentral gyrus

bilaterally (more widespread on the left side), in left

postcentral gyrus, supramarginal gyrus, superior and infe-

rior parietal gyri and medium temporal gyrus. In a lesser

extent, right superior and inferior frontal gyri and left

cerebellum resulted more activated in ET-R patients. A

significant higher activation was also shown in left internal

globus pallidus (GPi) (Table 3; Fig. 2).

Table 2 Results of the

between-group analysis during

‘‘8’’ figure writing task

AAL Anatomical Automated

Labeling Atlas, MNI Montreal

Neurological Institute

AAL anatomical area Activated (mm3) Z max MNI coordinates

x (mm) y (mm) z (mm)

Healthy controls vs ET patients

Frontal lobes

1 Precentral_L 4,856 12.6 -34 -20 62

2 Precentral_R 280 6.8 62 4 36

3 Frontal_Sup_L 280 6.3 -28 -10 68

8 Frontal_Mid_R 208 6.7 44 -6 54

19 Supp_Motor_Area_L 1,384 7.6 -4 2 50

33 Cingulum_Mid_L 264 6.5 -4 -2 48

Parietal lobes

57 Postcentral_L 2,984 11.1 -36 -22 54

58 Postcentral_R 632 6.9 44 -28 36

59 Parietal_Sup_L 152 7.1 -24 -50 46

61 Parietal_Inf_L 1,312 9.1 -42 -26 38

64 SupraMarginal_R 240 6.9 46 -28 36

Thalamus

77 Thalamus_L 264 5.7 -12 -22 4

Cerebellum

91 Cerebelum_Crus1_L 368 6.1 -16 -78 -26

92 Cerebelum_Crus1_R 440 6.9 34 -54 -34

98 Cerebelum_4_5_R 896 7.5 16 -56 -18

99 Cerebelum_6_L 1,208 7.0 -28 -60 -26

100 Cerebelum_6_R 5,536 10.9 30 -52 -30

104 Cerebelum_8_R 1,792 7.4 30 -62 -54

112 Vermis_6 832 7.1 2 -70 -16

113 Vermis_7 56 5.5 6 -66 -26

ET patients vs healthy controls

Frontal lobes

1 Precentral_L 128 6.5 -24 -26 68

Parietal lobes

57 Postcentral_L 184 6.6 -28 -28 68

59 Parietal_Sup_L 104 5.7 -14 -72 50

67 Precuneus_L 128 5.8 -12 -72 48
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ET?R patients did not show any significant more acti-

vated clusters with respect to ET-R patients.

Discussion

Our study did not show any significant GM loss either in

cerebellum or in other cerebral areas. This finding is con-

sistent with some previous VBM studies performed in ET

patients both with 1.5T [33] and 3T magnets [34, 35].

Nevertheless, it is conflicting with other studies which

revealed widespread neocortical areas of atrophy [9, 10].

Some authors found GM loss in cerebellar vermis only in

the ET patients’ subgroup with head tremor but not in the

whole cohort of ET patients [36, 37].

As expected, the ‘‘8’’ figure writing evoked activation,

in both patients and controls, in cerebellum and primary

sensorimotor cortex as other simple motor tasks. Premotor

cortex, SMA, cinguli gyrus and posterior parietal areas

were also activated in relation to the increased complexity

of the task. In controls but not in ET patients, the task

evoked activation also in left thalamus.

The between-group analysis revealed clusters of higher

activation in controls with respect to ET patients in cere-

bellar hemispheres, particularly on the right side. The

lobules VI and VIII, which are related to motor and

somatosensory functions of cerebellum, were the widest

activated areas. Thus, ET patients showed a dysfunction of

cerebellum which is not explained by atrophy as confirmed

by VBM analysis. However, ET patients showed less

activation compared to controls also in left primary sen-

sorimotor area, frontal superior gyrus, SMA, parietal

inferior gyrus and left thalamus (posterior ventral lateral

region). The reduced recruitment of all these areas in ET

with respect to controls is unrelated to atrophy but it might

be due to a dysfunction along the cerebello-thalamo-cor-

tical network (Fig. 3). Actually the brain areas whose

activation was higher in controls than in ET patients,

Fig. 1 Results of the between-

group (healthy controls and ET

patients) comparison activation

map. Maps of higher activated

clusters in healthy controls

compared to ET patients (blue)

and in ET patients compared to

healthy controls (red)

superimposed on standard MNI

template (Z threshold [5;

cluster p threshold \0.001)
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belong to this circuit according to the evidence from pre-

vious electrophysiological studies. To account for vari-

ability in task performance, we inserted mean value of

frequency and size of ‘‘8’’ figures performed by each

subject as adjunctive explanatory variable in the statistical

model. In this way, BOLD signal difference between

controls and patients was independent of the differences in

task performance by the two groups.

High-resolution magnetoencephalography (MEG)-elec-

tromyography (EMG) coherence studies recently con-

firmed the role of cerebello-thalamo-cortical network in ET

and in other movement disorders characterized by tremor.

In ET patients, a coherent activity at tremor frequency

between EMG signal and MEG recorded by primary motor

cortex has been reported and interestingly a cortico-cortical

coherence activity between M1 and ipsilateral premotor

area, thalamus and contralateral cerebellum and brainstem

was detected [38]. Similar results were found in patients

affected from Wilson’s Disease with postural/intentional

tremor [39], in resting tremor in PD [40] as well as in

physiologic tremor [41] and ‘‘voluntary’’ tremor [42].

Hence, the dysfunction of this network, physiologically

active in healthy subjects during the execution of rhythmic

and repetitive voluntary precision movements [43], could

presumably generate tremor. Recently, two resting-state

fMRI (RS-fMRI) studies have shown impaired functional

connectivity within the cerebello-thalamo-cortical network

in ET patients with respect to healthy controls using both

independent component analysis [44] and regional homo-

geneity measurement [35].

Several evidence, although not univocally [45], reported

the crucial role of thalamus as drive of this network. In

Table 3 Results of the

between-group analysis in ET-

R compared to ET?R patients

AAL Anatomical Automated

Labeling Atlas, MNI Montreal

Neurological Institute

AAL anatomical area Activated (mm3) Z max MNI coordinates

x (mm) y (mm) z (mm)

Frontal lobes

1 Precentral_L 744 7.5 -28 -28 66

2 Precentral_R 464 7.1 64 10 24

6 Frontal_Sup_Orb_R 392 6.4 18 24 -16

12 Frontal_Inf_Oper_R 120 6.1 62 12 28

16 Frontal_Inf_Orb_R 184 6.3 18 20 -18

Parietal lobes

57 Postcentral_L 1,640 8.2 -28 -30 64

59 Parietal_Sup_L 480 7.2 -26 -54 66

61 Parietal_Inf_L 168 6.9 -60 -24 46

63 SupraMarginal_L 832 7.2 -64 -22 38

Pallidum

75 Pallidum_L 80 5.8 -12 0 -6

Temporal lobes

85 Temporal_Mid_L 480 6.3 -50 -48 -4

Cerebellum

91 Cerebelum_Crus1_L 56 5.5 -30 -78 -20

99 Cerebelum_6_L 240 6.0 -28 -76 -20

Fig. 2 Results of the between group (ET-R and ET?R patients)

comparison activation map. Map of higher activated clusters in ET-R

compared to ET?R patients (red) superimposed on standard MNI

template (Z threshold [5; cluster p threshold \0.001)
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drug-resistant ET, neurons of VIM, which receives the

main cerebellar projections, presented a frequency dis-

charge proportional to EMG signal recorded from contra-

lateral forearm maintained in antigravitary position [46,

47]. Our finding that in ET patients the motor task, dif-

ferently from controls, was not able to evoke activation in

left thalamus, could support the role of thalamic dysfunc-

tion in the generation of tremor in ET. However, our study

could not allow us to establish if thalamus is the primary

drive of this circuit. Its importance has been suggested by a

recent electrophysiological study which analyzed the

interaction between thalamus and motor cortex within the

cerebello-thalamo-cortical network in patients with vol-

untary tremor compared to those with involuntary tremor.

In the former thalamus mainly relayed motor-related

information to cortex, whereas in the latter a bidirectional

mode of interaction was detected [42]. On the other hand,

also cerebellum seems to play an important role [3, 5–8]

and electrophysiological studies have also shown the

involvement of motor cortex, although intermittent [48,

49]. Further, a simultaneous activation of all the network

components in ET has been previously reported [38] and an

ischemic lesion in any component of the circuit could

reduce ET in single patients [50]. All these data have led to

the hypothesis of a dynamic entrainment between the net-

work structures which may all act as oscillator [51], in

absence of a unique primary drive.

Nevertheless, the dysfunction of cerebello-thalamo-

cortical circuit reported in ET patients during the execution

of a motor task in our study suggests that there is an

impairment in the individual components of this network.

Previous PET studies have shown the crucial role of

GABAergic modulation in key structures of this circuit [52,

53]. In ET, a reduction in the GABAergic output of cere-

bellar Purkinje cells could reduce the inhibitory activity on

the deep cerebellar nuclei neurons with an increased cer-

ebellar output towards the thalamic and cortical stations of

the network, supporting the use of GABAergic drugs for

ET. Further information could be provided by functional

studies exploring GABAergic drugs’ effects on this circuit.

The comparison between ET patients and controls

showed, in the former, some higher activated areas in

precentral and postcentral gyri and, above all, in precuneus

and superior parietal gyrus. This finding could be related to

an augmented integration of sensorial inputs in patients

during the writing task. However, precuneus, which shows

connections with inferior parietal gyrus, could not exclu-

sively carry out spatial functions but it could be implicated

in sustained attention and identification of significant

events and so probably is more activated in ET patients

since for the complexity of the task they could require

additional effort with respect to controls.

The comparison between ET?R patients and ET-R

patients showed, in the latter, a major activation especially

in contralateral sensorimotor cortex, superior parietal gyrus

and supramarginal gyrus. It could be related to the fact that

the presence of resting tremor in ET?R patients could

produce an increased BOLD effect during the rest phase of

the task with respect to ET-R patients, who did not have

any tremor in rest phase. So when BOLD effect of the rest

phase was deducted from BOLD effect of the active phase

of the task, signal change was lower in ET?R group

compared to ET-R group. Interestingly, ET-R patients

presented an increased GPi activation in comparison to

ET?R patients suggesting a GPi dysfunction in ET?R

patients. GPi has just been retained implicated in resting

tremor generation in Parkinson’s Disease (PD). Actually in

an EMG-fMRI study [54], a correlation between activity in

the cerebello-thalamo-cortical network and the amplitude

of resting tremor was reported, while GPi has been

Fig. 3 Cerebello-thalamo-

cortical network. 3D image of

the network found in our fMRI

study by comparing healthy

subjects with ET patients

(a) and its schematic

representation (b). In b, VLp

ventrolateral posterior thalamic

nucleus; VLa ventrolateral

anterior thalamic nucleus
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proposed as a trigger in the generation of a pathological

oscillatory activity within the cerebello-thalamo-cortical

network. The authors found also a positive correlation

between clinical severity of tremor and dopamine depletion

of GPi measured by [I-123]FP-CITSPECT. The role of GPi

in PD tremor has been suggested by several imaging [55],

electrophysiological [56], and pathological studies in

humans [57] and primates [58, 59]. On the other hand, a

recent postmortem study reported near-normal dopamine

levels in ventral GPi of PD patients with prominent tremor

[60]. No evidence so far on GPi in ET is available.

Unfortunately, in our study, we cannot definitely establish

a causal relationship between GPi dysfunction and resting

tremor in part also because of the lack of a tremor quan-

titative analysis during the fMRI study. Thus, we could not

correlate GPi activation with resting tremor severity. The

evidence from our experience can only suggest a potential

role of GPi in the resting component of ET, similar to

resting tremor in PD.

Finally, another limitation of our study is related to the

use of fixed-effects modeling in the higher level statistical

analysis that could limit the generalization of our results to

the entire population of ET patients.

Conclusions

Our task-related fMRI study confirmed that the dysfunction

of the cerebello-thalamo-cortical network is associated

with ET supporting the strong evidence from electrophys-

iological studies regarding the pathogenetic role of this

circuit in the generation of ET. We also detected the dys-

function of GPi in ET patients with resting tremor con-

sistently with the data reported in PD resting tremor and

suggesting a potential key role of GPi in the generation of

this type of tremor.
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