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Abstract Inherited peripheral neuropathies (IPN) are one

of the most frequent inherited causes of neurological dis-

ability characterized by considerable phenotypic and

genetic heterogeneity. Based on clinical and electrophysi-

ological properties, they can be subdivided into three main

groups: HMSN, dHMN, and HSN. At present, more than

50 IPN genes have been identified. Still, many patients and

families with IPN have not yet received a molecular

genetic diagnosis because clinical genetic testing usually

only covers a subset of IPN genes. Moreover, a

considerable proportion of IPN genes has to be identified.

Here we present results of WES in 27 IPN patients

excluded for mutations in many known IPN genes. Eight of

the patients received a definite diagnosis. While six of

these patients carried bona fide pathogenic mutations in

known IPN genes, two patients had mutations in genes

known to be involved in other types of neuromuscular

disorders. A further group of eight patients carried

sequence variations in IPN genes that could not unequiv-

ocally be classified as pathogenic. In addition, combining

data of WES and linkage analysis identified SH3BP4,

ITPR3, and KLHL13 as novel IPN candidate genes.

Moreover, there was evidence that particular mutations in

PEX12, a gene known to cause Zellweger syndrome, could
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also lead to an IPN phenotype. We show that WES is a

useful tool for diagnosing IPN and we suggest an expanded

phenotypic spectrum of some genes involved in other

neuromuscular and neurodegenerative disorders. Never-

theless, interpretation of variants in known and potential

novel disease genes has remained challenging.

Keywords IPN � CMT � dHMN � HMSN � WES

Introduction

Inherited peripheral neuropathies (IPN) represent one of the

most frequent inherited causes of neurological disability with

an estimated prevalence of 1 in 2,500 [1]. Age at disease onset

is usually within the first two decades of life but may be later

as well. Clinical hallmarks comprise foot deformities, slowly

progressive weakness and wasting of the distal parts of the

lower limbs leading to gait disturbances, and usually distally

pronounced sensory deficits. Involvement of the small hand

muscles may also be present to a variable degree [2, 3]. All

modes of inheritance have been described. Traditionally, IPN

are subdivided into three main groups based on clinical and

electrophysiological properties: the hereditary motor and

sensory neuropathies (HMSN), i.e., the classical form, which

is also known as Charcot–Marie–Tooth (CMT) syndrome.

HMSN is further subdivided into the demyelinating form

(HMSN1, CMT1) characterized by a considerable reduction

of nerve conduction velocities (NCV; motor median nerve

\38 m/s), an axonal variant (HMSN2, CMT2) with normal or

slightly slowed NCV but low compound motor action

potential amplitudes (CMAP), and an intermediate form

(intermediate HMSN, ICMT) with NCV in the intermediate

range (motor median nerve 25–45 m/s) [2, 3]. Patients lacking

sensory disturbances both clinically and electrophysiologi-

cally have been classified as distal hereditary motor neurop-

athies (dHMN) [4, 5]. However, an overlap between dHMN

and HMSN (mainly HMSN2) has been observed even within

families [6, 7]. If patients present with predominant sensory

(and autonomic) abnormalities and no or milder motor dis-

turbances, the disease is called hereditary sensory (and auto-

nomic) neuropathy (HSN, HSAN) [8, 9]. Furthermore, the

IPN phenotype may be complicated by various additional

neurological and/or non-neurological features [10–12].

Molecular genetic studies have demonstrated marked

genetic heterogeneity of the IPN with more than 50 genes

identified so far ([3] and are in part listed by http://www.

molgen.ua.ac.be/CMTMutations/). However, many patients

and families with IPN have not yet received a molecular

genetic diagnosis. One explanation is that clinical genetic

testing usually does not include all known IPN genes

(mostly due to restricted funds and limited availability of

tests). Moreover, further genetic heterogeneity has been

suggested and additional causative genes have to be eluci-

dated [13].

Next-generation sequencing techniques including

whole-exome sequencing (WES) and whole-genome

sequencing (WGS) have now opened promising possibili-

ties to find the disease-causing mutation in patients har-

boring any Mendelian disease. Recent studies have also

demonstrated the diagnostic and scientific impact of WES

and WGS in IPN patients [14–18].

In the present study, WES was carried out in 27 patients

with presumed rare or novel forms of IPN excluded for

mutations in numerous known IPN genes (Supplementary

Table 1). Thereby, eight patients (29.6 %) received an

accurate diagnosis, while potentially disease-causing

mutations were identified in another eight cases (29.6 %).

In three families (11.1 %), we identified interesting new

candidate genes for IPN. Another three probands (11.1 %)

carried variants of unknown significance in genes known to

cause other neuromuscular disease, but still in five patients

(18.5 %) neither mutations in known IPN genes nor any

strong candidate variants could be sorted out.

Patients and methods

Clinical and electrophysiological studies

Twenty-seven index probands who had received a diagnosis

of IPN were included in this study. Clinical and electro-

physiological studies were performed using standard methods

as described previously [19]. Patients were subdivided

according to the mode of inheritance and their phenotype,

which either resembled HMSN or dHMN. Cases exhibiting

IPN, but also additional neurological and/or non-neurological

signs or symptoms, were classified as ‘‘complicated’’ IPN.

Ten patients showed dominant or autosomal dominant

inheritance (HMSN-D1–D6; dHMN-D1–D4). Autosomal

recessive inheritance was suspected in seven probands, all

exhibiting an HMSN phenotype (HMSN-R1–R7). In ten

patients, the disease occurred apparently sporadic. Four of

these showed a ‘‘classical’’ HMSN-phenotype (HMSN-S1–

S4), four had a complicated form of HMSN (HMSN-SC1-4)

and two were classified as dHMN (dHMN-S1-S2)

(Tables 1, 2, 3).

The study was approved by the local ethical committees

of the Medical Universities of Vienna and Graz.

Genetic studies

Sanger sequencing

Prior to WES, up to 20 known IPN genes were excluded for

mutations in the probands using Sanger sequencing
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techniques (Supplementary Table 1). Sequence variations

detected by WES that were considered to be associated

with the disease were confirmed by Sanger sequencing.

Whole-exome sequencing

Sequencing was performed on a HiSeq 2000 system

(Illumina, San Diego, CA, USA) after in-solution enrich-

ment of exonic and adjacent intronic sequences [SureSelect

Human all Exon 50 Mb v3 and v4 kits (Agilent, Santa

Clara, CA, USA)] and indexing of samples for multiplex-

sequencing (Multiplexing Sample Preparation Oligonu-

cleotide Kit, Illumina). We performed 100-bp paired-end

runs yielding on average 8.8 Gb of sequence for 35 sam-

ples (the 27 index probands and for eight families an

additional affected individual was included). The average

read depth was 110 with 90 % of the targeted regions

covered at least 20-fold. Read alignment was performed

with BWA (version 0.6.1) to the human genome assembly

hg19. Single-nucleotide variants and small insertions and

deletions were called with SAMtools (version 0.1.18). We

filtered variants to exclude HapMap-SNPs present in

dbSNP-135 with an average heterozygosity greater than

0.02 and those present in more than four of 2,246 in-house

exomes from individuals with unrelated diseases. Variant

annotation was performed with custom scripts.

Linkage analysis

To perform linkage analysis, genomic DNA samples from

all available affected and unaffected individuals and

spouses of families HMSN-D5, HMSN-D6, HMSN-R4,

and dHMN-D2 were hybridized to GeneChip Human

Mapping 10 K 2.0 and 250 K Nsp SNP arrays (Affymetrix,

Santa Clara, CA, USA) using the protocols recommended

by the manufacturer. Parametric multipoint LOD scores

and haplotypes were obtained with the ALOHOMORA

program [20] based on linkage analysis from Merlin [21]

under the assumption of an autosomal dominant or auto-

somal recessive, fully penetrant model. Pedigrees of the

families, possible disease intervals, and maximum LOD

scores detected for each family are shown in Supplemen-

tary Fig. 1a–1d.

Biochemical studies

Very long chain fatty acids (VLCFA) and phytanic acid

concentrations in plasma were determined by GC/MS with

deuterated internal standards as their methyl or dimethyl-

silyl derivatives according to established methods [22, 23].

Pipecolic acid was analyzed with a modified commer-

cially available method designed for amino acid ana-

lysis by liquid chromatography/triple quadrupole mass

spectrometry with pipecolic acid-D9 as internal standard

(Phenomenex, Torrance, CA, USA).

Results

Clinical and electrophysiological findings in the index

patients and results of WES are summarized in Tables 1, 2,

and 3. Applying filtering as indicated above revealed up to

377 variants (108–377, mean 163) for each individual.

First, we focused on significant SNVs in genes known to be

involved in the pathogenesis of IPN. This approach resul-

ted in 15 missense variants in 13 IPN genes (Table 4).

Subsequently, we searched for variants in genes known to

cause other neuromuscular or neurodegenerative diseases.

Thereby we detected seven interesting variants in five

genes (Table 5). Moreover, we identified three interesting

novel candidate genes for IPN (Table 6). Variants were

further evaluated in detail to define their potential impact

on the disease (Tables 4, 5, 6). Whenever possible, further

affected and unaffected family members were screened to

confirm or exclude segregation.

SNVs in IPN genes regarded to be disease causing

In eight index cases we identified mutations which we

regarded to be disease causing. These mutations affect

amino acid residues that are well conserved among species.

Most of them are predicted to be probably or possibly

damaging by Polphen2 and SIFT (Tables 4, 5) and segre-

gated within the families. Patient HMSN-D2 carried the c.1

A[T (p.M1L) missense variant in GJB1 (gap junction

protein, beta 1, 32 kDa) that was also present in his less

severely affected mother. The same mutation had been

detected previously in another unrelated Austrian HMSN

patient (unpublished data) exhibiting a similar phenotype

thus making causality of the disease highly likely. In

patient HMSN-D2 this variant had been missed by con-

ventional Sanger sequencing in a laboratory offering

genetic testing. In two patients (HMSN-R2 and HMSN-R7)

displaying a classical HMSN2 phenotype we identified two

novel homozygous mutations in GAN (gigaxonin) (c.1312

G[A, p.V438I; c.305 T[C, p.I102T). Segregation within

the family could be confirmed for the c.305 T[C (p.I102T)

mutation. The mutation in SPTLC1 (serine palmitoyl-

transferase, long chain base subunit 1) (c.992 C[A,

p.S331Y, patient HMSN-SC1) resulted in an unexpected

severe sensory motor neuropathy. The detailed phenotype

has been reported recently [24].

Patient HMSN-SC2, exhibiting a severe HMSN pheno-

type with unrecordable NCV in the upper and lower limbs,

was homozygous for the c.1066 C[T (p.R356X) mutation

in SBF2 (SET binding factor 2). In addition to prominent

J Neurol (2014) 261:970–982 975

123



distal muscle weakness and wasting, the patient presented

with moderate scoliosis and a hoarse voice due to unilateral

vocal fold paralysis. The c.1415 A[G (p.H472R) mutation

in GARS (glycyl-tRNA synthetase), which had already

been reported previously [25], was identified in family

dHMN-D1 and was also present in the similarly affected

father.

SNVs in non-IPN genes regarded to be disease causing

Proband HMSN-SC3 was initially diagnosed as HMSN2

because of prominent pes cavus, distal muscle wasting, and

axonal neuropathy being the most striking feature at the

beginning of the disease. However, with progression of the

disease complications like bilateral juvenile cataracts,

cerebellar and pyramidal tracts signs, and abnormalities of

lipid metabolism became evident as well. WES identified a

known homozygous mutation in CYP27A1 (cytochrome

P450, family 27, subfamily A, polypeptide 1) (c.1016 C[T,

p.T339M), the gene responsible for cerebrotendinous

xanthomatosis [26, 27]. The advanced clinical presentation

fits well with the latter diagnosis although initial predom-

inant peripheral neuropathy may be an unusual finding. The

mutation in REEP1 (receptor accessory protein 1) (c.304-2

A[G; family dHMN-D4) and the associated phenotype has

been reported elsewhere [16].

SNVs of unknown significance in known IPN genes

A further eight patients carried novel mutations in known

IPN genes (Table 4). The significance of these variations

has remained unclear so far for several reasons. Mutations

in DCTN1 (dynactin 1) have been reported in patients with

dHMN and amyotrophic lateral sclerosis [28, 29] but not in

HMSN2 as is the phenotype of family HMSN-D1 carrying

the c.2009 A[T (p.Y670F) mutation, which has not yet

been reported. Only one family without clinical symptoms

but slow NCV has been reported carrying a mutation in

ARHGEF10 (Rho guanine nucleotide exchange factor

(GEF) 10) [30]. The two patients of family HMSN-D3

exhibit very mild intermediate HMSN and both carry a

c.604 A[C (p.N202H) variant. We also identified muta-

tions in AARS (alanyl-tRNA synthetase) and YARS (tyro-

syl-tRNA synthetase), two further IPN genes [31, 32]: case

HMSN-S4 carried a YARS mutation c.820 G[A (p.E274K)

and proband dHMN-S1 carried an AARS mutation c.1823

C[T (p.T608M). Although all these variants alter well-

conserved amino acid residues, we noted that a

Table 4 Mutations/sequence variations identified in IPN genes

Family ID IPN gene Base change Mutation Segregation

in family

Ns SNV in

2,246 controls

Conservation

of mutation

Polyphen

2

Sift Impact on

IPN disease

HMSN-D1 DCTN1 c.2009 A[T (het) p.Y670F Yes 33 (0) ??? 0.983 1 PDC

HMSN-D2 GJB1 c.1 A[T (hem) p.M1L Yes 4 (0) ??? 0.989 0 DC

HMSN-D3 ARHGEF10 c.604 A[C (het) p.N202H Yes 73 (0) ??? 0.953 0.22 PDC

HMSN-R1 HSJ1 c.14 A[G (hom) p.Y5C Yes 15 (2) ??? 0.976 0 PDC

HMSN-R2 GAN c.1312 G[A (hom) p.V438I nt 15 (0) ??? 0.931 0.02 DC

HMSN-R7 GAN c.305 T[C (hom) p.I102T Yes 15 (0) ??? 0.639 0 DC

HMSN-R6 MFN2 c.776 G[A (het) p.R259H No 20 (0) ???? 0.995 0.01 PDC

HMSN-S4 YARS c.820 G[A (het) p.E274K nt 14 (2) ??? 0.182 – PDC

HMSN-

SC1

SPTLC1 c.992 C[A (het) p.S331Y [24] Yes 13 (0) ??? 0.595 0 DC

HMSN-

SC2

SBF2 c.1066 C[T (hom) p.R356X nt 62 (2) ???? – 1 DC

HMSN-

SC4

PRX c.604 T[C (het) p.V525A nt 56 (0) ? 0.001 – PDC

PRX c.4004 G[A (het) p.R1335Q nt 56 (0) ?? 0.479 0.18 PDC

dHMN-D1 GARS c.1415 A[G (het) p.H472R Yes 25 (0) ??? 0.997 0 DC

dHMN-D2 GDAP1 c.117 G[C (het) p.K39N Yes 11 (1) ???? 0.970 0 PDC

dHMN-S1 AARS c.1823 C[T (het) p.T608M nt 37 (2) ??? 1.000 0 PDC

Polyphen 2: Classification of a mutation: probably damaging (probabilistic score [0.85), possibly damaging (probabilistic score [0.15). The

remaining mutations are classified as benign [60]

Sift: damaging (score B 0.05), tolerated (score [ 0.05) (http://sift.jcvi.org/www/SIFT_help.html#SIFT_OUTPUT)

hem hemizygous; hom homozygous; het heterozygous; nt not tested; Ns SNVs in controls number of non-synonymous single-nucleotide

variations in 2,246 in home controls; conservation of mutation ???? complete at position and within region, ??? almost complete, ??

moderate, ? incomplete (not in mouse); DC disease causing; PDC potentially disease causing; IPN inherited peripheral neuropathies
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considerable number of rare missense variants affecting

almost invariable residues occur in DCTN1, ARHGEF10,

AARS, and YARS in our controls (Supplementary Table 2)

and in other databases (http://evs.gs.washington.edu/EVS/;

https://genomics.med.miami.edu/). Thus, caution seems

warranted when evaluating these variants in these genes.

Mutations in HSJ1 (DnaJ (Hsp40) homolog, subfamily

B, member 2) have been described in one recessive dHMN

family only [33]. However, the phenotype in family

HSMN-R1 carrying a c.14 A[G (p.Y5C) mutation

resembles HMSN2. To confirm the pathogenicity of this

mutation, functional studies are currently ongoing.

Mutations in MFN2 (mitofusin 2) have been reported in

both autosomal dominant and autosomal recessive HMSN

[34–37]. The heterozygous c.776 G[A (p.R259H) MFN2

mutation in family HMSN-R6 presenting with a mild

HMSN2 phenotype affects a highly conserved residue but

does not segregate within the family. If this MFN2 variant

was a true mutation, two carriers (III/4 and IV/1) would

have remained asymptomatic (Supplementary Fig. 2).

Individuals III/4 and IV/1 are neurologically and electro-

physiologically normal except for diminished tendon

reflexes in the lower limbs in III/4 and very mild pes cavus

foot deformity in IV/1.

Moreover, we identified compound heterozygosity for

PRX (periaxin) (c.604 T[C, p.V525A and c.4004 G[A,

p.R1335Q) in a patient with a complex phenotype includ-

ing dysarthria, cerebellar signs, and hypermobility of joints

(HMSN-SC4). While the c.4004 G[A (p.R1335Q) muta-

tion is novel and involves a residue moderately conserved

among species, the c.604 T[C (p.V525A) variant is a

known rare polymorphism affecting a weakly conserved

amino acid [38].

Finally, the c.117 G[C (p.K39N) variant in GDAP1

(ganglioside-induced differentiation associated protein 1)

changes a well-conserved amino acid, segregates within the

small family dHMN-D2, and is one of only three variants

located with the possible linkage regions detected

Table 5 Mutations/sequence variations identified in genes known to cause other neuromuscular/neurodegenerative disorders

Family ID IPN gene Base change Mutation Segregation

in family

Ns SNV in

2,246 controls

Conservation

of mutation

Polyphen

2

Sift Impact on

IPN disease

HMSN-R4 PEX12 c.538 C[T (het)

c.569 C[T (het)

p.R180X

p.S190L

Yes

Yes

16 (4)

16 (4)

???

???

–

0.996

0.43

0.03

PDC

HMSN-S2 GAA c.1912 G[T (het)

c.2749 C[T (het)

p.G638W

p.L917F

nt

nt

49 (1)

49 (1)

??

??

1

0.01

0

0.68

PDC

dHMN-D4 REEP1 c.304–2 A[G [16] (het) – Yes 6 (1) ???? – – DC

HMSN-SC3 CYP27A1 c.1016 C[T (hom) p.T339M nt 26 (5) ???? 0.999 0 DC

dHMN-D3 RYR1 c.1655 G[A (het) p.R552Q Yes 154 (7) ??? 0.999 0.04 PDC

Polyphen 2: Classification of a mutation: probably damaging (probabilistic score [0.85), possibly damaging (probabilistic score [0.15). The

remaining mutations are classified as benign [60]

Sift: damaging (score B 0.05), tolerated (score [ 0.05) (http://sift.jcvi.org/www/SIFT_help.html#SIFT_OUTPUT)

hem, hemizygous; hom, homozygous; het, heterozygous; nt, not tested; Ns SNVs in controls, number of non synonymous single nucleotide

variations in 2,246 in-home controls; conservation of mutation, ???? complete at position and within region, ??? almost complete, ??

moderate, ? incomplete (not in mouse); DC disease causing; PDC potentially disease causing; IPN inherited peripheral neuropathies

Table 6 New interesting candidate genes for IPN identified by whole-exome sequencing

Family ID IPN gene Base change Mutation Segregation

in family

Ns SNV

in 2,246 controls

Conservation

of mutation

Polyphen

2

Sift Impact on

IPN disease

HMSN-D5 SH3BP4 c.47 G[A (het) p.R16H Yes 31 (1) ??? 0.991 0 PDC

HMSN-D6 ITPR3 c.4271 C[T (het) p.T1424M Yes 69 (3) ???? 0.961 0 PDC

HMSN-R3 KLHL13 c.1127 T[C (hem) p.L376S Yes 10 (0) ???? 0.995 0 PDC

Polyphen 2: Classification of a mutation: probably damaging (probabilistic score [0.85), possibly damaging (probabilistic score [0.15). The

remaining mutations are classified as benign [60]

Sift: damaging (score B 0.05), tolerated (score [ 0.05) (http://sift.jcvi.org/www/SIFT_help.html#SIFT_OUTPUT)

hem hemizygous; hom homozygous; het heterozygous; nt, not tested; Ns SNVs in controls, number of non synonymous single nucleotide

variations in 2,246 in-home controls; conservation of mutation, ???? complete at position and within region, ??? almost complete, ??

moderate, ? incomplete (not in mouse); DC disease causing; PDC potentially disease causing; IPN inherited peripheral neuropathies
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(Supplementary Fig. 1d). However, a dHMN phenotype is

unusual in context with dominant GDAP1-associated

neuropathy.

Identification of IPN candidate genes

Linkage analysis was most helpful in selecting possible

candidate genes in small IPN families. Results are sum-

marized in Supplementary Fig. 1a–1d. WES in families

HMSN-D5 and HMSN-D6 (Supplementary Fig. 1a and 1b)

both classified as HMSN1 based on NCV studies did not

reveal a variation in the known IPN genes. Also, the two

families did not share variants within a single gene.

Therefore, we scrutinized all variants located within the

regions of possible linkage in each family. Given the

structure of the pedigrees six chromosomal regions in

family HMSN-D5 and more than ten loci in family HMSN-

D6 reached the corresponding maximum LOD scores of

1.5 and 1.2, respectively. Combining data of linkage ana-

lysis and WES revealed only one candidate gene for family

HMSN-D5 (SH3BP4 gene (SH3-domain binding protein

4): c.47 G[A, p.R16H) and two for family HMSN-D6

(ITPR3 gene (inositol 1,4,5-trisphosphate receptor, type 3):

c.4271 C[T, p.T1424M and TEC gene (tec protein tyrosine

kinase): c.700 G[A, p.V234I) (Supplementary Fig. 1a and

1b). All three variants affected well-conserved amino acid

residues (Supplementary Fig. 1a and 1b). In line with data

fom the linkage screens, segregation of these variants was

confirmed by Sanger sequencing.

Family HMSN-R3 consists of two affected brothers

exhibiting severe early onset intermediate HMSN leading

to wheelchair dependence after age 30. The parents were

unaffected by history. By filtering for X-chromosomal,

homozygous, and compound heterozygous variants, only a

variant on the X-chromosome affecting the KLHL13 gene

(kelch-like family member 13) (c.1127 T[C, p.L376S) was

detected. This variant was also present in the affected

brother.

Mutations in genes known to cause other

neuromuscular diseases

In the remaining families, we did not find potentially rel-

evant variants in any of the known IPN genes. However,

family HMSN-R4 was compound heterozygous for two

well-conserved variants in PEX12 (peroxisomal biogenesis

factor 12), a gene previously reported to cause a severe

autosomal recessive infantile disease, called Zellweger

syndrome [39–41]. While the c.538 C[T (p.R180X)

mutation had already been reported in Zellweger patients

[40], the c.569 C[T (p.S190L) variant is novel but affects a

strongly conserved residue. Testing of further family

members revealed segregation with the phenotype. PEX12

was the only gene in the regions suggestive for linkage

harboring two mutations (Supplementary Fig. 1c). As

patients with Zellweger syndrome have elevated levels of

VLCFA and phytanic acid, we tested serum of our patients

for these acids. While VLCFA and phytanic acid were

normal, we repeatedly found elevated levels of pipecolic

acid in both patients but not in the healthy parents. In

cultured fibroblasts of the patients, 70–75 % of catalyze

activity was particle bound while in control fibroblasts

95–100 % are associated with peroxisomes.

In patient dHMN-D3, we detected a novel mutation in

RYR1 (ryanodine receptor 1 (skeletal)) (c.1655 G[A,

p.R552Q), a gene which is involved in malignant hyper-

thermia and central core disease [42]. This mutation was

also present in the affected father.

Patient HMSN-S2 was compound heterozygous for two

SNVs in GAA (glucosidase, alpha; acid) (c.1912 G[T,

p.G638W; c.2749 C[T, p.L917F), the gene responsible for

Pompe’s disease [43, 44].

Detection of mutations in genes causing other

Mendelian diseases

In addition to dHMN, patient dHMN-S1 was affected with

piebaldism, an autosomal dominant skin disorder that was

present in three generations of the family. The genetic

cause had not yet been identified. WES revealed a known

heterozygous missense variant (c.1747 G[C, p.E583Q) in

KIT (v-kit Hardy-Zuckerman 4 feline sarcoma viral onco-

gene homolog), the gene most frequently involved in the

pathogenesis of piebaldism [45].

In total, 4–47 (mean 22) SNVs in different genes

causing dominant and recessive Mendelian diseases could

be detected in every proband but these variants were not

further evaluated.

Discussion

Among 27 patients who had already been screened nega-

tive for many known IPN genes and were thus highly

enriched for mutations in rarer IPN genes, we identified the

disease-causing mutation in eight cases (29.6 %) by WES.

This result is in line with previous studies [17] and high-

lights the power of WES in the diagnosis of rare forms of

IPN. In six of these subjects, mutations in known IPN

genes (GAN, GARS, GJB1, SBF2, SPTLC1) were detected,

while in two cases the responsible gene was previously

reported to cause another neurodegenerative disease

(CYP27A1, REEP1). To interpret the value of each candi-

date variant, we used prediction programs (Polyphen 2,

Sift), considered alignment of sequences with multiple

organisms, and tested for segregation of the variants within
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the families whenever possible. Variants in these eight

patients were either predicted to be probably or possibly

damaging and targeted strongly conserved amino acid

residues (Tables 4, 5). Interestingly, we found a mutation

in GJB1, a gene that is frequently mutated in HMSN and

therefore included in routine diagnosis as was the case in

patient HMSN-D2. This demonstrates that WES may

detect variants that have been missed by conventional

Sanger sequencing. It is noteworthy that two patients with

classical HMSN2 carried mutations in GAN. None of the

patients had cerebellar signs or characteristic hair changes

as described previously [46–48]. A ‘‘pure’’ HMSN2 phe-

notype due to GAN mutations is unusual and unexpected.

We therefore suggest that sequence analysis of GAN should

more often be included in routine diagnosis in childhood-

onset HMSN2 patients.

Notably, three of four individuals (i.e., 75 %) classified

as sporadic and complicated IPN received a definite diag-

nosis. In patient HMSN-SC2, we found a novel homozy-

gous nonsense mutation in SBF2. Mutations in SBF2 are

known to cause severe recessive HMSN1, which may be

accompanied by glaucoma [49–51]. The latter feature was

not observed in our patient. However, a hoarse voice was

noted and could be explained by unilateral vocal fold

paralysis, thus expanding the phenotypic spectrum of

SBF2-associated IPN. Vocal fold paralysis is common in

dominant HMSN2C caused by mutations in TRPV4 (tran-

sient receptor potential cation channel, subfamily V,

member 4) [52] and has also been reported in patients with

recessive HMSN4A due to GDAP1 mutations [53]. Patient

HMSN-SC3 initially presented with pes cavus, gait

abnormalities, and an axonal neuropathy in the lower

limbs. Other features like ataxia, cataracts, elevated serum

lipid levels, and dementia, which are typically seen in

patients with cerebrotendinous xanthomatosis due to

CYP27A1 mutations developed later, thus postponing the

distinct diagnosis on a clinical basis [26]. This case dem-

onstrates that in particular conditions, WES may serve to

establish a diagnosis on the basis of the genotype leading to

re-assessment of the phenotype. Finally, the complicated,

syndromic phenotype of patient HMSN-SC1, which has

already been reported in detail, could surprisingly be

explained by a distinct mutation in SPTLC1 [24].

In a further eight subjects (29.6 %), we identified

mutations in known IPN genes (DCTN1, ARHGEF10,

HSJ1, MFN2, YARS, PRX, GDAP1, AARS). Most of these

targeted well-conserved amino acid residues and were

predicted to be probably or possibly damaging (Table 4).

However, interpretation of clinical significance turned out

to be challenging for several reasons. For some of these

genes, well-conserved SNVs not reported in any database

and absent in our large series of 2,246 controls are also

frequently found in individuals not afflicted with IPN

(Supplementary Table 2). This raises the question of how

to sort out true disease-causing mutations. Testing of fur-

ther family members to confirm segregation is an attractive

option, but this requires availability and cooperation of

larger families. As functional studies are usually expensive

and time-consuming and not always readily available,

systematic comparison of SNV in IPN databases will

become a promising strategy to provide a correct diagnosis

for patients. Currently, this service is already offered at

https://genomics.med.miami.edu. Patients carrying

sequence variants of unknown significance in IPN genes

should be invited to genetic counseling and have to be

informed that a final diagnosis based on results available by

WES is currently challenging. Although dominant muta-

tions in GDAP1 have been reported in IPN families [54],

we were cautious to define the c.117 G[C (p.K39N)

mutation in our family dHMN-D2 as definitively disease-

causing. To make any firm conclusions, additional patients

with dHMN carrying heterozygous GDAP1 mutations have

to be identified.

As has been shown in previous studies [16], a combi-

nation of linkage analysis and WES was helpful in iden-

tifying novel candidate genes for IPN in this study.

Combining linkage and WES data of four families dra-

matically reduced the number of SNVs and identified

interesting candidate genes (Supplementary Fig. 1a–1d). In

family HMSN-D5, a mutation in SH3BP4 (c.47 G[A,

p.R16H) was the only variant located within the regions of

suggestive linkage. SH3BP4 functions in transferrin

receptor internalization at the plasma membrane through a

cargo-specific control of clathrin-mediated endocytosis

[55]. It interacts with DNM2 (dynamin 2) a protein which

is also involved in the pathogenesis of IPN [56]. In family

HMSN-D6, two unknown SNVs remained within the

regions of potential linkage. The most interesting candidate

gene is ITPR3 [57]. It encodes a receptor for inositol 1,4,5-

trisphosphate, a second messenger that mediates the release

of intracellular calcium. ITPR3 is expressed in distinct

cellular domains of the Schwann cells, particularly in dense

patches in the paranodal region. Notably, connexin 32

(Cx32), a gap junction protein responsible for HMSN X, is

expressed in close proximity with ITPR3. It has therefore

been speculated that Schwann cell Ca2? signals control the

function of the gap junctions, or that the gap junctional

channels serve as conduits for rapid radial spread of Ca2?

signals initiated during action potential propagation [58].

Sequencing of SH3BP4 and exon 32 of ITPR3 in more than

30 HMSN1 families did not reveal further mutations,

indicating that these genes might—if so—be a rare cause of

IPN. In family HMSN-R3, we suspected autosomal reces-

sive inheritance as the parents were reported to be unaf-

fected. However, no homozygous or compound

heterozygous mutations could be detected. Instead, we
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identified a mutation in KLHL13, which is located on

chromosome X and encodes a BTB (Bric-a-brac–Tram-

track–Broad complex) and kelch domain-containing pro-

tein [59].

Of particular interest is family HMSN-R4 with severe

intermediate HMSN. Autosomal recessive inheritance is

likely as the parents were clinically and electrophysiologi-

cally normal after age 80. The only gene harboring biallelic

mutations and being located in one of the potential linkage

regions was PEX12. Segregation of the variants within the

family was confirmed (Supplementary Fig. 1c). While one of

the mutations (c.538 C[T, p.R180X) has already been

reported in Zellweger’s disease, the second (c.569 C[T,

p.S190L) was novel. Testing for metabolic consequences of

the two mutations yielded normal values for VLCFA and

phytanic acids but considerably elevated levels of pipecolic

acids in both affected probands but not in the heterozygous

parents. Furthermore, in cell lines from both patients, a con-

siderable fraction of catalase activity is cytosolic. Functional

studies are ongoing to further explain these results. However,

no firm conclusions can be drawn that particular recessive

mutations in PEX12 can produce an IPN phenotype. It cannot

be ruled out that the PEX12, SH3BP4, ITPR3, and KLHL13

variants represent harmless variants and that large insertions,

deletions, chromosomal rearrangements, or intronic variants

not detected by WES are the true disease-causing mutation in

these families. Therefore, identification of mutations in

PEX12, SH3BP4, ITPR3, and KLHL13 in further IPN families

as well as functional studies are needed to confirm whether

these are indeed genes for IPN.

Finally, given the example of patient dHMN-S1 pre-

senting with dHMN and a dominant skin disease due to a

KIT c.1747 G[C (p.E583Q) mutation, this study demon-

strates that WES is a suitable method for screening patients

harboring more than one Mendelian disease.

In summary, we confirm that WES is an efficient tool in

the diagnosis of IPN but interpretation of variants in known

and potential novel disease genes has remained challeng-

ing. We suggest an expanded phenotypic spectrum of some

genes involved in other neuromuscular and neurodegener-

ative disorders and introduce three novel IPN candidate

genes. Based on the results obtained in this study, we

conclude that WES should be preferred to IPN/CMT panels

if patients present with a complicated phenotype and/or if

many IPN genes have already been excluded.

Web resources

http://www.ncbi.nlm.nih.gov/

http://www.ensembl.org/index.html

http://genome.ucsc.edu/

http://evs.gs.washington.edu/EVS/

http://www.molgen.ua.ac.be/CMTMutations/

https://genomics.med.miami.edu/

http://sift.jcvi.org/www/SIFT_help.html#SIFT_OUTPUT
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Timmerman V, Schröder JM, Vance JM (2004) Mutations in the

mitochondrial GTPase mitofusin 2 cause Charcot–Marie–Tooth

neuropathy type 2A. Nat Genet 36:449–451

35. Chung KW, Kim SB, Park KD, Choi KG, Lee JH, Eun HW, Suh

JS, Hwang JH, Kim WK, Seo BC, Kim SH, Son IH, Kim SM,

Sunwoo IN, Choi BO (2006) Early onset severe and late-onset

mild Charcot–Marie–Tooth disease with mitofusin 2 (MFN2)

mutations. Brain 129:2103–2118

36. Nicholson GA, Magdelaine C, Zhu D, Grew S, Ryan MM, Sturtz

F, Vallat JM, Ouvrier RA (2008) Severe early-onset axonal

neuropathy with homozygous and compound heterozygous

MFN2 mutations. Neurology 70:1678–1681

J Neurol (2014) 261:970–982 981

123
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