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Abstract The association between common neuroradio-

logical markers of multiple sclerosis (MS) and clinical

disability is weak, a phenomenon known as the clinico-

radiological paradox. Here, we investigated to which

degree it is possible to predict individual disease profiles

from conventional magnetic resonance imaging (MRI)

using multivariate analysis algorithms. Specifically, we

conducted cross-validated canonical correlation analyses to

investigate the predictive information contained in con-

ventional MRI data of 40 MS patients for the following

clinical parameters: disease duration, motor disability

(9-Hole Peg Test, Timed 25-Foot Walk Test), cognitive

dysfunction (Paced Auditory Serial Addition Test), and the

expanded disability status scale (EDSS). It turned out that

the information in the spatial patterning of MRI data pre-

dicted the clinical scores with correlations of up to 0.80

(p \ 10-9). Maximal predictive information for disease

duration was identified in the precuneus and somatosensory

cortex. Areas in the precuneus and precentral gyrus were

maximally informative for motor disability. Cognitive

dysfunction could best be predicted using data from the

angular gyrus and superior parietal lobe. For EDSS, the

inferior frontal gyrus was maximally informative. In con-

clusion, conventional MRI is highly predictive of clinical

disability in MS when pattern-based algorithms are used

for prediction. Thus, the so-called clinico-radiological

paradox is not apparent when using suitable analysis

techniques.
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Introduction

Since the introduction of the McDonald criteria in 2001,

conventional magnetic resonance imaging (MRI) has

become one of the cornerstones of diagnosing multiple

sclerosis (MS) [1]. However, the association between

common neuroradiological markers such as T1 or T2 lesion

load and clinical disability in patients suffering from MS is

weak [2] and was referred to as the ‘clinico-radiological

paradox’ [3]. Although various confounders have been

discussed [4], the significance of conventional MRI in
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describing the clinical status of MS patients has been

questioned [5, 6]. Please note that the term conventional

MRI generally refers to standard MRI sequences such as

T1- and T2-weighted images as compared to advanced

MRI techniques such as diffusion tensor imaging.

In other neurological diseases such as Huntington or Alz-

heimer’s disease, however, multivariate pattern recognition

methods have been demonstrated to be a sensitive tool pre-

dicting the clinical status of individual subjects including the

presence of a disease [7, 8] as well as symptom severity [9, 10].

In the present study, we investigated the amount of predictive

information contained in local tissue intensity patterns

extracted from conventional T1- (magnetization prepared

rapid gradient echo, MPRAGE) and T2-weighted (fluid-

attenuated inversion recovery sequence, TIRM) MRI data for

clinical disability in MS patients. We conducted separate

cross-validated canonical correlation analyses to predict

several clinical scores, including the disease duration, motor

disability (9-Hole Peg Test [9-HPT], Timed-Walk Test

[TWT], [11]), cognitive dysfunction (paced auditory serial

addition test [PASAT], [11]) and overall clinical disability

(expanded disability status scale [EDSS], [12]).

Methods

Patients

Forty-one patients with clinically definite MS (relapsing-

remitting type, [1]) recruited for a recent study of our group

entered the analysis [13]. Patients were required to be

between 18 and 55 years and to have at least one gado-

linium (Gd-DTPA)-enhancing lesion on a qualifying T1-

weighted brain MRI scan [14]. The patients were scored on

the EDSS [12] and the subtests 9-HPT, TWT, and PASAT

of the Multiple Sclerosis Functional Composite (MSFC;

[11]). One subject was excluded because his EDSS score

exceeded the 97th percentile. Demographic and clinical

details are listed in Table 1. Importantly, MRI and clinical

ratings were performed on the same day and all patients

were in remission at this time point (interval to the last

relapse/corticosteroid treatment was at least 30 days).

Consent was obtained according to the Declaration of

Helsinki, and the study was approved by the research ethics

committee of the Charité - Universitätsmedizin Berlin. All

subjects gave written informed consent.

MRI acquisition

Whole-brain high-resolution three-dimensional T1-weighted

images (MPRAGE, TR 2110 ms, TE 4.38 ms, TI 1,100 ms,

flip angle 15�, resolution 1 9 1 9 1 mm) and a T2-weighted

fluid-attenuated inversion recovery sequence (TIRM, TR

10,000 ms, TE 108 ms, TI 2,500 ms, resolution 1 9 1 9

3 mm, 44 contiguous axial slices) were acquired using a

1.5-Tesla MRI (Magnetom Sonata, Siemens, Erlangen,

Germany) with an eight-channel standard head coil.

Lesion load

Lesion load for MPRAGE and TIRM images were rou-

tinely measured using the MedX v.3.4.3 software package

(Sensor Systems Inc., Sterling, VA, USA, [15]). Lesion

load of TIRM images were additionally measured using in-

house software [13].

Preprocessing

Several preprocessing steps were performed. First, a clinician

and experienced reader (CP) applied in-house software to

conduct lesion mapping based on individual TIRM images.

To be as conservative as possible, CP was instructed to mark

any hyperintensities visible in the TIRM images and not only

oval lesions as it is common in clinical practice. Next, cor-

rection of field inhomogeneities, coregistration of high-reso-

lution MPRAGE and TIRM images, and normalization of

these high-resolution images to the Montreal Neurological

Institute (MNI) brain template (voxel size: 2 9 2 9 2 mm)

were conducted using SPM5 (Wellcome Trust Centre for

Neuroimaging, Institute of Neurology, UCL, London,

http://www.fil.ion.ucl.ac.uk/spm; Fig. 1). The normalization

parameters for the MPRAGE images were estimated by the

‘unified segmentation approach’ [16] and then applied to the

MPRAGE and co-registered TIRM images as well as to

individual lesion masks. Importantly, lesion areas identi-

fied by the clinician were excluded to avoid lesion-mediated

artifacts in the normalization routine (see SPM5 manual:

www.neuro.nl/fmri/docs/SPM5manual.pdf). Finally, we

Table 1 Demographic and clinical details of MS patients

Characteristic MS patients

Gender 20 female, 20 male

Age (years) M = 35.5, SD = 7.4

Disease duration (years) M = 6.8, SD = 6.4

T1 lesion load (‘black holes’, mm3) M = 398.0, SD = 680.1

T2 lesion load (mm3; MedX) M = 5,302.0,

SD = 4,141.6

Expanded Disability Status Scale (EDSS) Md = 2.0,

range = 0.0–5.0

9-Hole Peg Test (9-HPT, s) M = 19.1, SD = 2.7

Timed-Walk Test (TWT, s) M = 4.8, SD = 0.7

Paced Auditory Serial Addition Test

(PASAT)

M = 52.3, SD = 9.2

M mean, Md median, SD standard deviation
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obtained MPRAGE and TIRM images from all subjects as

well as their individual lesion masks in MNI space (voxel size:

2 9 2 9 2 mm).

For the pattern-based analyses, only voxels within the

SPM standard brain mask that were not cerebrospinal fluid

(CSF) with a probability of more than 0.8 (based on SPM

CSF prior map) were included. The rather conservative

threshold of 0.8 was chosen to avoid misinterpretation of

tissue-free voxels as brain tissue. To account for different

intensity levels, the images were standardized within sub-

jects based only on normal-appearing (i.e., non-lesional)

brain tissue. This was done to ensure that a higher lesion

load did not introduce any biases into the standardization.

We continued by using a general linear model to regress

out the variance contained in voxel intensities that could be

explained by local deformation parameters determined

during spatial normalization. The deformation (i.e., shift)

parameters in x, y, and z direction were calculated for

individual MPRAGE images using the deformations tool-

box implemented in SPM5. This step was performed in

order to rule out that pattern-based prediction could rely on

intensity differences induced by the spatial transformation

that correlate with clinical disability (e.g., due to a stronger

correction of regional atrophy in patients with a higher

disability score).

Pattern-based canonical correlation analysis

In order to decode symptom severity from the preprocessed

MRI data, we conducted a pattern-based and cross-vali-

dated canonical correlation analysis using in-house soft-

ware [17] independently for MPRAGE and TIRM images

and for each of the following clinical variables: disease

duration, motor disability (as measured by 9-HPT and

TWT), cognitive dysfunction (as measured by PASAT)

and overall clinical disability (as measured by EDSS;

Figs. 1, 2).

In all analyses, local intensity patterns were extracted

from the given MRI data by using a ‘searchlight’ approach

[18, 19], which searches across the whole brain for local

tissue intensity patterns informative about clinical disabil-

ity. A searchlight is defined as a spherical cluster of N

voxels that is created around a given center voxel vi. Here,

we used a searchlight radius of four voxels (i.e., 8 mm,

corresponding to at most 257 voxels in one searchlight).

For each voxel in a searchlight, we extracted individual

tissue intensity values based on MPRAGE and TIRM

images, respectively. In the next step, these feature vectors

were used to decode disease duration, motor disability,

cognitive dysfunction, or overall clinical disability by

carrying out a canonical correlation analysis (CCA).

Fig. 1 Overview of data

processing. Raw MPRAGE and

TIRM images were co-

registered and normalized to the

Montreal Neurological Institute

(MNI) template. Individual

lesions that were marked

beforehand by a clinician were

excluded from the estimation of

normalization parameters. The

search space was reduced to

only voxels within the standard

brain mask that were not

cerebrospinal fluid with a

probability of greater than 0.8.

For the normalized MPRAGE

and TIRM images separately,

we aimed to predict the clinical

markers’ disease duration,

motor disability, cognitive

dysfunction, and overall clinical

disability
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CCA is a standard tool in statistics to study linear rela-

tionships between two sets of multidimensional variables

[20]. The goal of CCA is to find two bases, one for each set of

variables, such that the correlation between the projections of

the variables onto these two bases is mutually maximized.

Because it is independent of the coordinate system in which

the variables were originally described, it can overcome one of

the major drawbacks of ordinary correlation analysis.

In our case, the first set of variables is given by the

N-dimensional local tissue intensity vector of all subjects;

the second set is given by one or two clinical scores of the

subjects. Prediction of motor disability comprised two

variables, 9-HPT and TWT; all other clinical variables

were modeled using one variable.

Since CCA is ill conditioned for redundant sets of

variables, we reduced the dimensionality of the feature

vectors to 20 (i.e., half the number of subjects) using

principal component analysis (PCA, [21]). A fixed number

of principal components were chosen to guarantee equal

feature vector lengths across all regions.

To assess the generalizability of performance using an

independent data set while at the same time avoiding cir-

cular inference [22], we performed a leave-one-out cross-

validation. This means that we used the feature vectors of

all but one subjects as ‘training data’ first to reduce the

dimensionality by PCA and second to train the CCA

algorithm to learn a relationship between intensity values

and clinical scores. We then tested it on the remaining,

independent ‘test’ subject. This procedure was repeated so

that each subject was the test subject once.

Decoding accuracy is then given by the Pearson’s corre-

lation coefficient between true and predicted clinical scores

(i.e., canonical variates) and is assigned to the center voxel of

the searchlight. A high correlation implies that the local

cluster of voxels surrounding the center voxel spatially

encoded information about the clinical variables under

investigation. Please note that we extracted only the first

canonical variate since it accounts for the largest canonical

correlation. After repeating the procedure for each searchlight

position, we generated a parametric map indicating the cor-

relation for each searchlight. Corresponding probabilities

were calculated using Student’s t distribution. To account for

the multiple comparison problem, we report searchlight center

coordinates that exhibit a significant correlation on a Bon-

ferroni-corrected level of p \ 0.01 (one-tailed). This very

conservative threshold was chosen to increase the specificity

of the analyses.

To characterize the underlying tissue alterations, we also

reported the average grey matter and lesion ratio for each

significant cluster. For this purpose, individual grey matter

and lesion ratios for all voxels contained in the searchlights

of the cluster were calculated and then averaged. The

individual grey matter ratio was determined by the number

of grey matter voxels (probability of being grey matter

[0.5 based on individual grey matter probability maps

provided by SPM5 during spatial normalization) divided by

the number of all voxels in the cluster. Similarly, individual

lesion ratio was determined by the number of lesion voxels

(according to the individual lesion masks) divided by the

number of all voxels in the cluster.

Fig. 2 Illustration of pattern-based canonical correlation analysis. In

the training phase, local patterns (i.e., so-called searchlights) of n-1

subjects were extracted from the normalized MPRAGE and TIRM

images, respectively. The dimension of these feature vectors were

reduced to half the samples using principal component analysis (PCA;

not shown here). The canonical correlation analysis (CCA) then finds

a linear relationship between PCA-projected voxel intensities and

clinical scores for all training subjects. In the testing phase, a pattern

of a new ‘unseen’ subject is represented and CCA is used to predict

the clinical score of this person. For validation, we performed a leave-

one-out cross-validation over all subjects. This whole procedure was

repeated for each searchlight position, so that each voxel in the brain

was the center voxel of the searchlight once
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In a further analysis, we investigated the predictability

of clinical disability based on lesion load alone. Here, we

conducted a CCA where the first set of variables is given

by T1 and/or T2 lesion load and the second set is given by

the clinical markers.

Results

Statistical analysis of clinical and volumetric measures

Significant correlations (Spearman’s rho) were found

between the univariate variables disease duration and

EDSS (r = 0.50, p \ 0.01), disease duration, and 9-HPT

(r = 0.38, p \ 0.05), EDSS and 9-HPT (r = 0.40,

p \ 0.05), EDSS and TWT (r = 0.33, p \ 0.05), 9-HPT

and TWT (r = 0.46, p \ 0.05), and TWT and PASAT

(r = -0.47, p \ 0.01). T2 lesion load calculated using in-

house software correlated strongly with the T2 lesion load

calculated with MedX (r = 0.88, p \ 10-12, Pearson), but

due to the sensitive lesion mapping performed by the cli-

nician, it resulted in a higher overall mean (in mm3; mean

(M) = 12,556, standard deviation (SD) = 9,196 as com-

pared to M = 5,302, SD = 4,142). Decoding accuracies

based on T1 and/or T2 lesion load (calculated with MedX)

are shown in Table 2.

Pattern-based canonical correlation analysis

Local patterns informative about disease duration, motor

disability, cognitive dysfunction, and overall clinical dis-

ability are shown in Fig. 3, separately for MPRAGE and

TIRM images. Clusters reaching statistical significance

after correction for multiple comparisons (p \ 0.01, Bon-

ferroni corrected) based on independent test data are listed

in Tables 3 and 4. Please note that the decoding accuracy

based on tissue intensity patterns was clearly higher than

for T1 and T2 lesion load. The anatomical regions were

identified using ‘automated anatomical labeling’ (AAL,

[23]) and differed between MPRAGE and TIRM images,

Table 2 Decoding of clinical scores based on lesion load

Score T1 lesion

load

T2 lesion

load

T1 ? T2 lesion

load

Disease duration r = 0.39** NS r = 0.33*

9-HPT and TWT r = 0.72** r = 0.34* r = 0.72**

PASAT r = 0.48** r = 0.37** r = 0.45**

EDSS NS NS NS

Lesion load was routinely measured using the MedX software

NS not significant, r Pearson’s correlation coefficient

* p \ 0.05, ** p \ 0.01

Fig. 3 Results of pattern-based canonical correlation analysis. Brain

regions encoding information about disease duration (pink), motor

disability (blue), cognitive dysfunction (red), and overall clinical

disability (green) are overlaid on a rendered T1-weighted anatomical

template image. For illustrative purposes, searchlight center coordi-

nates are shown at p \ 10-5 (uncorrected) with a cluster threshold of

five voxels. Peaks of correlation reaching statistical significance after

correction for multiple comparisons (p \ 0.01) are listed in Tables 3

and 4. AG angular gyrus, CER cerebellum, FFG fusiform gyrus, IFG
inferior frontal gyrus, IPL inferior parietal lobe, M1 primary motor

cortex, ITL inferior temporal lobe, IOL inferior occipital lobe, MFG
middle frontal gyrus, MOL middle occipital lobe, MTL middle

temporal lobe, PC paracentral, PCN precuneus, PH parahippocampus,

S1 somatosensory cortex, SFG superior frontal gyrus SMA supple-

mentary motor area, SMG supramarginal gyrus, SPL superior parietal

lobe, TP temporal pole. All other areas correspond to white matter
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but included both white matter and task-related grey matter.

We found patterns in the somatosensory cortex and posterior

parietal cortex linked to disease duration. For motor dis-

ability, we identified regions in areas related to motor control

such as cerebellum, thalamus, and primary motor cortex as

well as in areas related to the planning and coordination of

movements such as posterior parietal cortex and middle

frontal gyrus. PASAT scores could be accurately predicted

from areas known to be involved in working memory [24]

such as posterior parietal cortex, but also from inferior tem-

poral lobe, cingulum, and fusiform gyrus. When lowering the

threshold to p \ 0.05 (Bonferroni corrected), we additionally

found clusters in the right prefrontal cortex (inferior frontal

gyrus for MPRAGE images and middle frontal gyrus for

TIRM images; Fig. 3). For EDSS, one cluster in the inferior

frontal gyrus was maximally informative.

A relatively low grey matter ratio (between 16.32 and

79.01 %) in areas classified as grey matter by AAL indi-

cated that most areas were located in the conjunction of

white and grey matter. The lesion ratio found was quite low

(at most 14.69 %) in all significant clusters, but tended to

be higher in white matter.

Maps obtained from MPRAGE and TIRM images

indicating the correlation coefficient for each searchlight

position were moderately correlated (r = 0.34 for disease

duration, r = 0.22 for motor disability, r = 0.29 for cog-

nitive dysfunction, and r = 0.31 for EDSS; Pearson). This

means that correlation values between predicted and true

clinical scores calculated based on either MPRAGE or

TIRM images are to some extent related. The number of

significant searchlights (p \ 0.01, Bonferroni corrected)

was higher for MPRAGE images (n = 36) compared to

TIRM images (n = 29). In both modalities, more signifi-

cant searchlights were found for motor disability and

cognitive dysfunction than for disease duration and overall

clinical disability.

Discussion

In the present study, we demonstrated that local tissue

intensity patterns extracted from conventional MRI of MS

patients together with a canonical correlation analysis

encode clinically relevant information about symptom

Table 3 Regions encoding symptom severity based on MPRAGE images

Score Brain region H CS Voxel coordinates r p GM

(%)

Les

(%)
x y z

Duration Periventricular WMa,b L 1 -32 -46 26 0.74 \10-7 3.18 14.69

Precuneus L 1 -8 -46 8 0.76 \10-8 42.41 0.22

9-HPT, TWT Cerebellar cortexa L 4 -46 -76 -44 0.75 \10-7 50.49 0.00

Periventricular WMa,c R 1 42 -46 0 0.76 \10-8 15.57 6.55

Thalamus L 1 -16 -24 14 0.73 \10-7 16.32 0.33

Middle frontal gyrus L 1 -22 48 34 0.73 \10-7 62.38 0.18

Precuneus L 1 0 -58 22 0.74 \10-7 73.39 0.02

R 3 4 -52 44 0.77 \10-8 72.05 0.01

R 1 8 -48 44 0.73 \10-7 66.17 0.03

PASAT Centrum semiovalea,d R 4 22 0 34 0.77 \10-8 0.86 9.20

Fusiform R 3 40 -18 -26 0.73 \10-7 57.22 1.28

Angular gyrus R 8 40 -64 36 0.75 \10-7 52.79 0.14

Precuneus R 1 12 -70 48 0.74 \10-7 50.59 0.01

EDSS Periventricular WMa,e R 4 36 -68 -4 0.76 \10-8 32.85 1.01

Inf. frontal gyrus (tria) L 2 -46 40 -2 0.77 \10-8 58.36 0.02

Results are reported on a statistical level of p \ 0.01, whole-brain Bonferroni corrected. Only peak voxels of clusters are listed. Since we used a

very strict threshold, it is possible to find more than one cluster in a specific area

H hemisphere, L left, R right, Inf. inferior, Tria triangular part, CS cluster size, r Pearson’s correlation coefficient, p p value, GM grey matter

ratio, Les lesion ratio, WM white matter
a These voxel coordinates were not contained in the ‘Automated Anatomical Labeling’ (AAL, [23]) mask and therefore visually assessed by a

neuroradiologist (JW)
b Posterolateral border of putamen (e.g., arcuate fasciculus)
c Adjacent to gyrus temporalis medius (e.g., posterior thalamic radiation)
d Corticospinal tracts
e Occipital lobe, temporodorsal to the posterior horn of the left ventricle (e.g., optic radiation)
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severity quantified in terms of disease duration, motor

disability, cognitive dysfunction, and overall clinical dis-

ability in normal-appearing brain parenchyma. In particu-

lar, these patterns were more informative than the global

lesion load. Remarkably, decoding accuracy based on local

tissue intensity patterns was twice or three times higher

than for T2 lesion load.

In recent years, numerous efforts have been made to link

clinical disability scores in MS patients and MRI-derived

markers. Generally, this association seems to be rather poor

and led to the formulation of the so-called clinico-radio-

logical paradox [3]. However, these early studies mostly

tried to establish a dependency between T2 lesion load and

clinical scores. For T1 lesion load, atrophy and measures

based on non-conventional MRI, the results tend to be

better [25, 26], but are still not applicable in clinical practice.

We used a complex pattern-based decoding approach to

establish a relationship between tissue characteristics from

conventional MRI and clinical scores. The main advantage

over common correlation analysis is that it is capable of

detecting subtle tissue alterations in local brain areas that are

not distinguishable by the naked eye or measurable by global

markers such as lesion load or brain volume. Therefore, it

allows for a sensitive mapping of clinically relevant regions.

By using a cross-validated procedure, we additionally ensured

the generalizability to new data sets.

Although we used a very conservative significance

threshold, we found several regions that robustly encode

symptom severity. For disease duration, we identified the

precuneus and postcentral gyrus as areas with high pre-

dictive information. Interestingly, both structures have

been linked to significant grey matter loss in MS and seem

to be associated with fatigue [27] and sensory disturbances

[28]. We hypothesize that this grey matter loss in con-

junction with clinical symptoms accumulates over time and

therefore correlates with disease duration. For motor dis-

ability, we mostly found regions involved in motor control

(cerebellum, thalamus, and precentral gyrus) and planning

of coordinated movements (posterior parietal cortex).

These regions have been linked to various structural and

functional abnormalities in MS patients [29, 30]. For

cognitive dysfunction, we mainly found working memory

areas including posterior parietal cortex and—when low-

ering the significance threshold—prefrontal cortex. Both

areas have been shown to be functionally related to

numerical information processing [24]. In MS patients, the

PASAT score has been shown to correlate with atrophy

[31], reduced diffusivity [32], and a higher functional

activation [33] in these areas. Additionally, we have found

patterns in the cingulum for which structural abnormalities

have actually been reported to correlate with the PASAT

score [34]. In line with several studies arguing that atrophy

Table 4 Regions encoding symptom severity based on TIRM images

Score Brain region H CS Voxel coordinates r p GM (%) Les (%)

x y z

Duration Postcentral gyrusa L 3 -60 -14 48 0.76 \10-8 44.58 0.00

Postcentral gyrus L 1 -54 -18 46 0.73 \10-7 46.35 0.00

L 1 -50 -20 50 0.75 \10-7 36.89 0.02

9-HPT, TWT Cerebellar cortexa R 1 54 -18 -40 0.73 \10-7 50.15 0.00

Periventricular WMa,b R 1 42 -48 0 0.75 \10-7 13.22 6.36

Cerebellum L 2 -40 -78 -40 0.75 \10-7 68.78 0.00

Supramarginal gyrus R 1 58 -32 24 0.77 \10-8 67.58 0.05

Precentral gyrus L 2 -60 8 38 0.77 \10-8 57.75 0.00

PASAT Temporal WMa,c L 1 -34 2 -20 0.73 \10-7 63.46 0.60

L 10 -34 -2 -16 0.80 \10-9 55.43 0.54

Fusiform L 1 -40 -60 -22 0.74 \10-7 79.01 0.00

Inf. temporal lobe R 1 54 2 -40 0.73 \10-7 58.62 0.00

Cingulum (median) R 2 4 -18 44 0.75 \10-7 70.87 0.01

Sup. parietal lobe L 2 -28 -64 54 0.76 \10-8 46.19 0.00

Results are reported on a statistical level of p \ 0.01, whole-brain Bonferroni corrected. Only peak voxels of clusters are listed

H hemisphere, L left, R right, Sup. superior, Inf. inferior, CS cluster size, r Pearson’s correlation coefficient, p p value, GM grey matter ratio, Les
lesion ratio, WM white matter
a These voxel coordinates were not contained in the ‘Automated Anatomical Labeling’ (AAL, [23]) mask and therefore visually assessed by a

neuroradiologist (JW)
b Adjacent to gyrus temporalis medius (e.g., posterior thalamic radiation)
c e.g., uncinate fasciculus
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in frontal areas is a good indicator of the EDSS [35, 36], we

found one area in the inferior frontal gyrus to accurately

predict the EDSS score. However, most other studies did

not find a connection between regional brain MRI abnor-

malities and the EDSS score, which has been explained by

the low specificity of the EDSS [37] and a major

involvement of the spinal cord in constituting the EDSS

score [38].

Although the result maps based on MPRAGE and TIRM

images were moderately correlated, peak regions encoding

symptom severity differed between MPRAGE and TIRM

images. This might be due to the fact that T1- and T2-

weighted images measure different tissue and disease

properties. For instance, it has been argued that T1 signal

intensity is a marker of neuronal density, whereas T2 hy-

pointensity rather correlates with the myelin content [39].

In line with several studies highlighting the importance of

T1-relaxation time measurements for disease progression

and clinical disability [40, 41], predictions based on

MPRAGE images (both lesion load and intensity patterns)

were superior to predictions based on TIRM images.

The question regarding the underlying tissue character-

istics explaining the high predictability in certain areas is

the most challenging one in the present study. This is due

to the fact that T1- as well as T2-weighted imaging is

relatively unspecific [42]. A hallmark of MS pathology is

the development of focal inflammatory lesions. However,

since the proportion of lesions was below 5 % in most

brain areas listed in Tables 3 and 4, we argue that lesions

visualized by TIRM images play a minor role in revealing

symptom severity, though. Several studies [3], including

our own data, confirmed that the T2 lesion load only par-

tially accounts for the individual clinical deficits. In addi-

tion to focal lesions, histological studies [43] and advanced

imaging techniques such as diffusion-weighted imaging

[34, 44], magnetization transfer imaging [45], and proton

spectroscopy [29] revealed that tissue damage in MS is

more widespread than previously believed. This tissue

damage usually remains undetected on conventional MRI

and thus the referring parenchyma is termed normal-

appearing brain tissue (NABT). We claim that our algo-

rithm captures not only macroscopic features as presented

by lesions, but also subtle signal alterations in the NABT

that remain occult to the human eye. We showed that these

diffuse abnormalities help to elucidate the extent of clinical

disability in MS patients when suitable and more complex

analysis techniques are employed. This becomes especially

true for brain areas involved in most common symptoms of

MS patients, such as visual disturbances and motor as well

as sensory pathways, which were revealed in both T1- and

T2-weighted sequences.

Several limitations should be pointed out. First, the

exact histopathological processes in MS remain unclear,

although several possible pathomechanisms are discussed

that could account for an accurate prediction. Future

studies should correlate prediction accuracy with histopa-

thological findings and additionally assess whether our

findings can be confirmed with other quantitative MRI

techniques giving an additional insight into tissue integrity

such as magnetization transfer imaging or diffusion tensor

imaging. Second, our sample size is rather small and might

cause effects that are not representative for all MS patients.

Therefore, our results need to be confirmed in a larger

patient cohort, preferentially including also other forms of

MS (e.g., primary or secondary progressive MS) as well as

other neurological diseases. Additionally, it would be

interesting to assess whether our findings can be confirmed

in patients with greater overall clinical disability and

impairment in specific clinical domains. Third, the com-

mon clinical parameters were criticized to be rather

unspecific, in particular the EDSS. Future studies might

consider the sub-scores of the EDSS or additional markers

of symptom severity. Fourth, the spatial normalization

procedure, which is necessary to conduct a group-based

analysis, may be influenced by cerebral atrophy. Although

we aimed to minimize this error by regressing out the

variance induced by the deformations, we cannot guarantee

a totally bias-free normalization. Fifth, although we have

found a strong association between local brain patterns and

the clinical disability markers, the results have to be

interpreted with caution. This is due to the fact that we

cannot estimate the clinical contribution of spinal cord

lesions, in particular to the scores reflecting motor dis-

ability, at the current stage of study. Finally, even though

our proposed method is not yet applicable in clinical

practice, we generally believe in the potential of pattern-

recognition methods in complementing macrotexture

information already used by neuroradiologists. With the

emergence of large databases (such as the Alzheimer’s

Disease Neuroimaging Initiative [ADNI] database,

www.loni.ucla.edu/ADNI) and more powerful computers,

the elaborate methods described in the present study might

be transferable to large-scale clinical practices. However,

future studies are necessary to evaluate the prognostic

information of local intensity patterns in clinical trials and

to make this information usable for individual patients.

In conclusion, we have shown that predictive informa-

tion contained in local brain tissue intensity patterns of MS

patients clearly outperforms information contained in

conventional neuroradiological markers such as the lesion

load when using suitable analysis techniques. Predicting

areas were located in the conjunction of white and task-

related grey matter and consisted mostly of NABT. We

hypothesized that our proposed algorithm uses a mixture of

slight intensity changes due to several pathomechanisms,

including diffuse T2 hyperintensities with lesions as
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endpoint, T1 hypointensities, and atrophy. Our findings

suggest that local intensity patterns might perform as

clinically relevant biomarkers of clinical disability in MS

and should be considered in future studies.
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