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Genes associated with Parkinson syndrome

Introduction

Parkinson disease (PD) is an entity with variable combi-
nations of bradykinesia, rigidity, tremor and postural 
instability. These symptoms point towards a character-
istic pattern of neurodegeneration indicating a loss of 
nigral dopaminergic neurons. Eosinophilic inclusions, 
so called Lewy bodies, are found in surviving dopami-

nergic neurons but also in other parts of the brain, and 
have been considered to be essential for the pathologic 
diagnosis of PD. Hardy et al. [22] emphasized the impor-
tance of distinguishing the clinical term parkinsonism 
from the clinicopathological entity referred to as PD. 
Here the term Parkinsonian Syndrome (PS) is used for 
parkinsonism/PD.

Genetic research in the past 10 years, in particular 
the mapping and cloning of genes which cause inher-
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■ Abstract  Genetic findings have 
changed our views on Parkinson’s 
disease (PD) and parkinsonism, 
which will be collectively referred 
to as Parkinsonian Syndrome (PS) 
in the present manuscript. Muta-
tions in several genes are found to 

cause monogenic forms of the 
 disorder. Point mutations, duplica-
tions and triplications in the α-
synuclein gene cause a rare domi-
nant form of PS in families. 
Mutations in the leucine-rich 
 repeat kinase 2 (LRRK2) gene have 
been identified as a much more 
common cause for dominant PS, 
especially in certain ethnic groups, 
while mutations in the parkin gene, 
in DJ-1, PINK1 and ATP13A2 cause 
autosomal recessive parkinsonism 
of early onset. The monogenic 
 variants are important tools in 
identifying cellular pathways that 
also shed light on the molecular 
pathogenesis of sporadic PS and 
some of these genes may play a role 
in the etiology of the common 
 sporadic form of PS. Here we add 
recent findings to a greatly chal-
lenging puzzle.

■ Key words  Parkinson’s disease 
· genetics · LRRK2 · synuclein · 
parkin · PINK1 · DJ1 · ATP13A2
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ited forms of the disorder, has shown that PS is not one 
disease entity, but rather a heterogeneous group of dis-
eases that are associated with a spectrum of clinical and 
pathological changes (PARK1 to PARK13 are shown in 
Table 1). Approximately 5 to 10 % of patients with the 
clinical picture of PS carry a mutation in one of the 
known genes that cause autosomal dominant or reces-
sive forms of PS (monogenic PS). A positive family his-
tory is not always given, either because of recessive in-
heritance, or because of reduced penetrance of a 
dominant mutation. An early age at onset in many (but 
not all) patients with monogenic PS helps to distinguish 
inherited from sporadic cases. Although alterations in 
the genes identified account for only a small number of 
families, there is some evidence that these genes may 
also play a role in the much more common sporadic 
form of the disease. The putative functional intercon-
nection of the encoded proteins in various cellular path-
ways, i.e. localization at the synapse, mitochondria and 
lysosomes, protein degradation, and developmental 
regulation, suggests that these genes could also play a 
role in sporadic PS.

PS-associated genes at the synapse: α-synuclein, 
parkin, LRRK2, UCHL1, synphilin

As the name already implies α-synuclein (α-SYN, SNCA, 
PARK1) was initially identified as a synaptic and nuclear 
protein [49]. Despite intensive studies the exact role of 
α-SYN at the synapse remains elusive. There is evidence 
that the protein plays a role in maintenance of synaptic 
vesicle pools [53] and activity-dependent dopamine re-
lease [1]. α-SYN knockout mice have little or no obvious 
phenotype, but interestingly α-SYN was able to rescue 
the severe phenotype of knockout mice for the presyn-
aptic cysteine-string protein [8]. In an elegant study 
from 2006 Larsen et al. [40] provide evidence that α-SYN 
might modulate synaptic vesicle priming. How does α-
SYN relate to PS?

The PARK1 locus was mapped in a large family with 
dominantly inherited PS and Lewy body pathology [61]. 
Two additional point mutations have been identified 
[35, 91] each in a large, dominant family, reflecting the 
high penetrance of these mutations. α-Synuclein point 
mutations are very rare and have not been found in spo-
radic PS [3]. 

α-SYN is the major fibrillar component of the Lewy 
body [77] in familial and in sporadic cases. Hypotheti-
cally amino acid changes in the α-SYN protein but also 
duplications and triplications result in an increase of α-
SYN levels leading to a tendency of the protein to form 
oligomers and later fibrillar aggregates although the 
precise relationship between aggregation, cellular dys-
function and cell death underlying PS is unknown. Re-
cently aggregates have been described to also be present 

in the presynaptic compartment in addition to cell body 
and neurites [34]. Increased cellular load of α-SYN pro-
tein by 50 to 100 % causes familial PS with high pene-
trance (multiplication of the gene) [76]. Alterations in 
regulatory regions of the gene may also be associated 
with a higher risk to develop the disease. Multiple stud-
ies found nucleotide polymorphisms located close to the 
promoter region and throughout the gene to be associ-
ated with sporadic PS (PDGene database). Since α-SYN 
levels presumably affect synaptic function, it is tempting 
to speculate that this might lead to early and presymp-
tomatic changes in vulnerable neurons.

Parkin (PRKN, PARK2) was the first gene identified 
for an autosomal recessive form of PS. Parkin protein lo-
calizes, although not predominantly, to the synapse and 
associates with membranes [36, 17]. In general parkin is 
a cytoplasmic protein and functions in the cellular ubiq-
uitination/protein degradation pathway as an ubiquitin 
ligase [73, 95]. Interestingly parkin is involved in the 
modulation and in the turnover of several presynaptic 
proteins (summarized by Moore [52]). α-SYN and the 
α-SYN-binding synaptic protein synphilin are two 
prominent examples. In addition parkin has been shown 
to modulate the function of a G-protein coupled recep-
tor (GPR37) that interacts with the dopamine trans-
porter DAT [48].

Mutations within parkin were identified in patients 
with very early onset of the disease. This form of PS was 
also called autosomal recessive juvenile parkinsonism 
(AR-JP). Clinically, patients suffer from l-dopa-respon-
sive parkinsonism and often develop early and severe le-
vodopa-induced motor fluctuations and dyskinesias 
[31]. Nearly 50 % of sibling pairs with evidence of reces-
sive inheritance and the majority of sporadic cases with 
very early onset were found to have parkin mutations 
[47]. Parkin mutations are rare in sporadic cases with 
onset later than 45 years. As mutations in parkin most 
probably cause parkinsonism by a loss-of-function 
mechanism, the study of the normal function of parkin 
is crucial to uncover the molecular pathogenesis of the 
disorder. 

Another locus for a dominant form of PS was first 
mapped in a Japanese family on chromosome 12 and 
named PARK8 [19]. Missense mutations in the gene for 
leucine-rich repeat kinase 2 (LRRK2) [57, 96] were found 
to be disease causing. LRRK2-associated PS is remark-
able for several reasons. First, mutations in the LRRK2 
gene are clearly the most common cause of inherited PS 
discovered so far. In a number of studies across several 
different populations 4 % of all families with PS carry 
the common G2019S mutation within LRRK2 with high-
est frequencies of up to 40 % in the Ashkenazi Jewish 
population [25]. A common variant, G2385R, was found 
in approximately 9 % of Chinese patients with PS [18, 
82], but also in about 3 % of controls, suggesting that 
specific mutations in the LRRK2 gene may act more as 
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risk alleles rather than as high penetrance disease genes. 
Clinical signs and symptoms of LRRK2-related disease 
closely resemble typical sporadic PS. Many groups im-
mediately started to study altered function of mutated 
LRRK2 which is of great importance for the understand-
ing of molecular pathways leading to PS. One year after 
the first description of mutated LRRK2 West et al. [89] 
was the first to succeed in cloning the 51 exon long gene 
and most interestingly showed that mutated overex-
pressed protein has increased kinase activity in vitro. 
Endogenous LRRK2 is ubiquitiously expressed within 
neurons and associates with membranes and lipid rafts 
[4, 23]. The protein is found in presynaptic terminals 
where it associates with vesicles and endosomes. A dele-
tion mutant for C.elegans lrk-1 (lrk-1 is similar to mam-
malian LRRK1, a homolog of LRRK2), points towards a 
function in localizing synaptic vesicle proteins to termi-
nals [68]. Recently it was shown that LRRK2 regulates 
synaptic vesicle endocytosis by directly interacting with 
the early endosome marker protein Rab5 [74].

UCHL1 stands for ubiquitin carboxy-terminal hydro-
lase L1 and is already suggesting one function of the 
protein (UCHL1, PARK5). A mutation (I93M) was iden-
tified in affected members of one single family of Ger-
man ancestry [42]. To date, no other bona fide patho-
genic mutations of this gene have been found. Whether 
UCHL1 really is a PS gene is not yet clear. Interestingly 
loss of UCHL1 function leads to neurodegeneration in 
mice [67]. Recently UCHL1 has been shown to improve 
cognitive impairment by strengthening synapses 
through the transcription factor CREB in a model of Alz-
heimer’s disease [21].

Although not one of the canonical PARK genes, the 
presynaptic protein synphilin 1 and its isoform 1A have 
been associated with PS [16]. Synphilin is an interactor 
of α-SYN and is modulated by parkin [10]. Synphilin is 
widely expressed with highest levels in brain, heart and 
placenta. One alteration within synphilin (R621C) had 
been identified in two German patients with sporadic PS 
[51], but recently this variant and two other variants 
(V44A and E706Q) were also found in controls [54]. 
Mouse models will hopefully shed light on the function 
of the protein.

PS-associated genes and mitochondria: α-synu-
clein, parkin, PINK1, Omi/HtrA2, DJ-1, POLG1

α-SYN has long been known to modulate mitochondrial 
function [13, 27], but the mechanism remains unknown. 
In a recent study Devi et al. [15] demonstrate the local-
ization of α-SYN to the inner membrane of mitochon-
dria. They identified a cryptic mitochondrial targeting 
signal in the N-terminus of the protein. In addition they 
provide evidence that accumulated α-SYN might inter-
fere with complex I function. α-SYN may act as a mod-

ulator of oxidative stress [84] and α-SYN knockout mice 
are resistant to mitochondrial toxins [33].

Parkin has a role in mitochondrial morphogenesis 
during spermiogenesis [65]; it enhances mitochondrial 
biogenesis in proliferating cells through transcription 
and replication of mitochondrial DNA [39] and rescues 
mitochondrial dysfunction in PINK1 (PARK6) deficient 
flies [11]. Recently loss of parkin has been shown to 
worsen mitochondrial damage in α-SYN overexpressing 
mice [79].

Mutations in the PINK1-gene have been identified as 
a cause for autosomal recessive early-onset parkinson-
ism [86]. This gene is particularly interesting within the 
context of the findings linking PS to mitochondrial dys-
function and oxidative stress, as PINK1 encodes a pri-
marily mitochondrial protein kinase. Mutations in the 
PINK1-gene are much less common than parkin muta-
tions, and probably account for only 1 to 4 % of early-on-
set cases [24, 38, 66, 87]. 

The kinase PINK1 has been shown to be in a linear 
pathway upstream of parkin [11]. More recently the 
function of PINK1 was linked to the fission and fusion 
machinery in Drosophila and mammalian cell mito-
chondria [62, 90]. The first substrate of PINK1 to be re-
ported was the mitochondrial chaperone TRAP1 (TNF 
receptor associated protein 1). By phosphorylation of 
TRAP1 PINK1 suppresses cytochrome c release from 
mitochondria and therefore protects against oxidative 
stress induced cell death. PS linked mutations within 
PINK1 impair its protective activity [63]. Another inter-
esting finding has been described by Plun-Favreau et al. 
[60]. In a PINK1-dependent manner HtrA2 is phosphor-
ylated upon activation of the p38 stress sensing path-
way. 

The serine protease HtrA2 also known as Omi (HtrA2/
Omi) is localized to the inner membrane space of mito-
chondria [81]. Knocking out Omi in mice leads to neu-
rodegeneration with features of motor neuron dysfunc-
tion, ataxia and parkinsonism with striatal damage [29]. 
Subsequently a variation within Omi (G399S) was found 
in four patients with late-onset PS and a polymorphism 
(A141S) has been suggested to be a risk factor in Ger-
mans [80]. In a recent study by Sanchez and Singleton 
[75] both variations were not associated with PS, al-
though the authors did not exclude small genetic risk at 
the Omi/HtrA2 locus (PARK13).

Mutations in the DJ-1 gene (PARK7) are another rare 
cause of autosomal recessive parkinsonism [6, 26]. The 
clinical picture with early-onset and slow progression is 
similar to the other recessive Parkinson syndromes. The 
normal function of DJ-1 and its role in dopamine cell 
degeneration is unknown, but there is evidence linking 
DJ-1 to oxidative stress response and mitochondrial 
function (summarized in [71]). Studies of the intracellu-
lar distribution of DJ-1 demonstrate that it is not only 
cytoplasmic but also present in the inner membrane 
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space and matrix of mitochondria [93]. Canet-Aviles 
et al. [7] have shown that wild-type DJ-1 translocates to 
the outer mitochondrial membrane upon oxidative 
stress which is associated with neuroprotection. 

POLG1 is a mitochondrial DNA polymerase (Poly-
merase gamma 1) of the inner membrane that synthe-
sizes, replicates and repairs mitochondrial DNA. Several 
mutations within POLG1 have been associated with par-
kinsonism in addition to other clinical phenotypes (see 
POLG mutation database). 

PS-associated genes and the proteasome:  
Parkin, UCHL1, α-synuclein

The ubiquitin proteasome pathway has been strongly 
implicated in PS pathogenesis. Parkin functions as an E3 
ubiquitin ligase [28, 73, 95]. Some disease causing muta-
tions within parkin impair its ligase activity leading to 
intracellular accumulation of parkin substrates (re-
viewed by Lim and Tan [45]). Accumulation of poten-
tially toxic proteins might be especially detrimental for 
vulnerable neurons like dopaminergic neurons as one 
example. However, parkin may have additional func-
tions. For example it has been shown that parkin not 
only mediates ubiquitinylation via lysin48 (K48), which 
directs ubiquitinylated proteins to proteasomal degra-
dation, but also via lysin63 (K63), which may play a role 
intracellular signaling processes and also in Lewy body 
formation [44]. 

Impairment of degradation of proteins through the 
proteasome has been further implicated in PS after a 
missense mutation has been described in UCHL1, a de-
ubiquitylating enzyme. The I93M substitution decreases 
UCHL1 enzymatic activity in vitro [42]. Deubiquity-
lation is an important process to recycle ubiquitin mono-
mers from proteins that have been targeted to the prote-
asome.

Although not directly involved in proteosomal deg-
radation of proteins overexpressed wildtype or mutant 
α-SYN has been shown to inhibit proteasome function 
in vitro and in vivo [9, 78, 83, 94].

PS-associated genes and the lysosome:  
α-synuclein, ATP13A2, GBA

Proteins with short half-lives are mostly degraded by the 
proteasome whereas most cytosolic proteins with half-
lives longer than 10 hours are degraded by the auto-
phagy-lysosome pathway (recently reviewed by Pan et al. 
[58]). α-SYN levels increase after lysosomal inhibition 
suggesting that α-SYN is not only cleared by the protea-
some [12]. Within the chaperone-mediated lysosomal 
uptake pathway α-SYN binds lysosomal membrane re-
ceptors before being selectively translocated into the 
lysosome. Mutant α-SYN also binds to receptors, but in-

stead of being translocated sufficiently blocks not only 
its own uptake but also uptake of other substrates [12].

Mutations in ATP13A2, a lysosomal ATPase, cause au-
tosomal-recessive early onset PS further linking lyso-
somes to neurodegeneration [64]. 

A role of another lysosomal protein in PS is suggested 
by the clinical observation of association of PS with 
Gaucher’s disease. Patients with this well characterized 
recessive neurometabolic disease, caused by mutation in 
the glucocerebrosidase gene (GBA) have a high preva-
lence of PS. Screening of PS patients for GBA mutations 
found a higher number of heterozygous mutations car-
riers as compared to healthy controls [2]. GBA is a lyso-
somal enzyme that catalyzes the breakdown of the gly-
colipid glucosylceramide to ceramide and glucose.

PS-associated genes and embryonic stages  
of development: α-synuclein, parkin, UCHL1, 
LRRK2, Omi/HtrA2, Nurr1, PITX3, microRNAs

Western blot analysis from various human tissues from 
15 to 23 gestational weeks show that α-SYN expression 
can be observed in all fetal human organs examined. In 
adult human tissues high expression of α-SYN is only 
maintained in brain. Within other organs expression 
levels were greatly reduced [46]. This suggests that α-
SYN is important not only in brain but also in peripheral 
tissues during normal human prenatal development.

Parkin mRNA and protein is detected at embryonic 
day (E) E10/12 in mice and shows a widespread distribu-
tion in CNS and other organs with marked increase dur-
ing midgestational development (E15-18) within the 
CNS followed by a steady increase until adulthood. Par-
kin expression is correlated with cell maturation and 
implicates a physiological role of parkin in various types 
of neurons [37].

UCHL1 is highly expressed in cultured NPCs (neural 
progenitor cells) as well as in embryonic brain in gen-
eral. UCHL1 has been shown to be involved in regulat-
ing morphology of NPCs and in mediating neurogene-
sis. In vitro studies with NPCs suggest that UCHL1 
mediates neurogenesis in embryonic brain by regulating 
progenitor cell morphology [70].

LRRK2 mRNA can be detected around mouse embry-
onic day 15 with steady increase before birth in lung and 
kidney. In brain protein levels increase dramatically be-
tween postnatal day 0 and four weeks of age [5, 43]. In-
volvement of LRRK2 in neurite outgrowth might ex-
plain high expression levels in the first two or three 
weeks after birth.

α-SYN, parkin, LRRK2, DJ-1, Pink1 knockout mouse 
models are viable and fertile suggesting either dispens-
ability of the gene product or redundancy due to crucial 
function. DJ-1 and Pink1 expression during early devel-
opment has not been studied yet.
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Omi/HtrA2 is found in various fetal tissues [55]. Loss 
of Omi/HtrA2 (mouse mutant mnd2, motor neuron de-
generation 2) leads to muscle wasting, neurodegenera-
tion, involution of the spleen and thymus, and death by 
40 days of age [29]. 

Dopaminergic neurons have long been central to PS 
research and genes involved in development of these 
cells enjoy special attention. In 2002 Le et al. [41] re-
ported dominant mutations in Nurr1 in families with 
late onset PS. As a member of the nuclear receptor super-
family of transcription factors, Nurr1, is critically in-
volved in development of ventral midbrain dopaminer-
gic neurons [69, 92]. Mutations within Nurr1 have not 
been found again, association studies turned out to be 
negative in most studies (PDGene database).

Mice deficient for PITX3, a homeobox transcription 
factor, which is expressed from E11 to adulthood, fail to 
develop dopaminergic neurons of the substantia nigra 
[56]. Polymorphisms within in PITX3 have been posi-
tively and negatively associated with PS (PDGene data-
base).

Abeliovich and his group [32] were the first to show 
that the microRNA miR-133b regulates maturation and 
function of midbrain dopaminergic neurons. Specifi-
cally expressed in these neurons miR-133b acts in a feed-
back circuit together with PITX3.

Taken together several PS associated genes are ex-
pressed during development. The potential involvement 
of these genes in early stages of the disease remains to 
be determined. Additionally PS is by no means restricted 
to dopaminergic neurons. It will be of great interest to 
identify genes with involvement in developmental stages 
of several cell types affected in PS.

Association studies in sporadic PS patients 

Most of the genes and mutations described in the previ-
ous paragraphs have been identified by genetic linkage 
analyses in individual families, implying that the muta-
tions are disease causing with high penetrance. Never-
theless, specific mutations or variants in these genes 
have also been shown to act as risk alleles for the spo-
radic disease, rather than being truly causative. 

The most commonly used procedure to search for 
risk alleles in sporadic disease is the association study, 
i.e. comparing the frequency of putative risk-alleles in 
cohorts of patients and controls. Many candidate genes 
have been studied in this way. Unfortunately, the vast 
majority of initially positive findings have failed to be 
reproducible. The cause for this poor record of associa-
tion studies is probably the fact that most attempts have 
been underpowered, looking only at a few hundred pa-
tients and controls, which also carries the risk of false 
positive results, due to random fluctuations of allele fre-
quencies and poorly matched controls. Interestingly, re-

cent progress in whole genome association studies using 
high density array technologies provides the opportu-
nity to generate much larger data sets by pooling differ-
ent studies. 

So far, the only risk alleles for sporadic PS that seem 
to be robustly reproducible across different populations 
appear to be single nucleotide variants in the 5’ and 3’ re-
gion of the α-synuclein gene (PDGene database), and 
several variants in the Tau gene [85], remarkably both 
genes that also harbor high penetrance disease causing 
mutations. 

A specific polymorphism in the 3' untranslated re-
gion of FGF20 might modulate not only its own expres-
sion but also expression levels of α-synuclein through 
variation of a microRNA binding site [88] and many 
other potential risk factors have been described. Future 
studies will show if minor effects might be potentiated 
by combining risk factors and/or PS associated genes, or 
by looking at genes of one pathway with strong rele-
vance to disease pathogenesis.

Another dominant locus had initially been mapped 
as a high penetrance disease gene in several large fami-
lies on chromosome 2p13 (PARK3 [20]) but the gene has 
not yet been identified. Clinical features closely resem-
ble those of sporadic PS. Interestingly, however, two in-
dependent recent reports implicate the PARK3-locus as 
a disease modifying locus influencing age at onset in 
two sib pair cohorts with PS [14, 59], and a European sib 
pair study also identified a linkage peak in this region 
[50]. A further study refined this association to a region 
containing the sepiapterine reductase gene [30], which 
was confirmed in another study [72]. Sepiapterine re-
ductase is involved in dopamine synthesis. This finding 
may indicate that the SPR gene is modifying age of on-
set of PS. 

Due to space limitations several other genes could 
not be discussed here. We apologize to all authors whose 
important contributions are not mentioned within this 
article.

Conclusion

Although genes that are linked to monogenic forms of 
PS and other closely related neurodegenerative diseases 
are, at first glance, not related to a common cause, recent 
genetic, pathologic and molecular studies have strength-
ened the evidence that the different genes and pathways 
could interact at several levels. These findings support 
the existence of several common pathogenic mecha-
nisms at different sites within the cell and throughout 
different developmental stages. 
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