
Introduction

Following the publication of a number of studies
testing adult stem cell therapy in patients with cardiac
disease, the past year or so has seen the beginning of a
comparable therapeutic effort in neurological disease:
small numbers of patients with stroke have received
autologous bone marrow cells [6], as have comparable
numbers of individuals with amyotrophic lateral
sclerosis [82]. At least one (unpublished) study of
patients with multiple sclerosis has been completed,

wherein the effects of intracerebral implants of
autologous Schwann cells and fibroblasts were stud-
ied, apparently with no demonstrable effect (http://
www.myelin.org/12082003.htm).

What is the future of cell therapy in multiple
sclerosis? If there be one, does it lie with Schwann
cells, with oligodendrocyte progenitors, olfactory glia,
or with stem cells? Is the time ripe to try further
clinical studies? If not, what are the remaining hur-
dles? Here we propose that remyelination treatments
by cell-based therapy represent an approachable
challenge offering a realistic prospect of successful
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j Abstract A number of factors
more or less unique to multiple
sclerosis have suggested that this
disease may be particularly ame-
nable to cell-based reparative
therapies. The relatively focussed
damage to oligodendrocytes and
myelin at least in early disease
implies that only a single popula-
tion of cells need be replaced
—and that the daunting problem
of re-establishing connectivity
does not apply. The presence of
significant though partial sponta-
neous myelin repair in multiple
sclerosis proves there to be no
insurmountable barrier to remye-
lination intrinsic to the CNS: the
therapeutic challenge becomes
that of supplementing this spon-
taneous process, rather than cre-
ating repair de novo. Finally, the
large body of available knowledge
concerning the biology of oligo-

dendrocytes, and the success of
experimental myelin repair, have
allowed cautious optimism that
future prospects for such therapies
are not unrealistic. Nonetheless,
particular and significant prob-
lems are not hard to list: the
occurrence of innumerable lesions
scattered throughout the CNS,
axon loss, astrocytosis, and a
continuing inflammatory process,
to name but a few. Here we review
the progress and the areas where
difficulties have yet to be resolved
in efforts to develop remyelinating
therapies for multiple sclerosis.
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implementation for the current generation of patients
with multiple sclerosis.

Multiple sclerosis is particularly suitable for cell
therapy

j A primary demyelinating disease—with
substantial secondary axon loss

A combination of factors suggests that multiple scle-
rosis provides an attractive and tempting testing
ground for neurological cell therapy.

The first is its nature: primarily a demyelinating
disease. But axon loss of course represents the prin-
cipal pathophysiological cause of disability in chronic
progressive disease: does this undermine the rationale
of a cell-based therapy?

Rather the opposite—for two reasons. First, none
of the recent experimental, imaging or neuropatho-
logical studies re-confirming the importance of axon
damage have challenged the concept that disease
processes in MS are primarily directed against oligo-
dendrocytes and/or myelin, and that axons are rela-
tively spared until late disease [12, 115]. Therefore, in
the main, axon pathways remain intact. Cell therapies
therefore aim �only’ to reinvest axons with myelin,
rather than addressing the almost overwhelming
challenge presented by most other neurological dis-
eases: that of re-establishing connectivity in highly
complex but fragmented axonal circuitry.

Secondly, the mechanism of axon loss is important
to consider. The course of secondary progres-
sion—and by implication, of axon loss—is signifi-
cantly neither related to early inflammatory disease
activity [10, 31, 64] nor impeded by even the most
profound immune suppressant treatments. These and
other observations have fuelled the hypothesis that
progressive axonal damage is (at least in part) a
consequence of persistent myelin loss [12, 112, 128].
Pathological studies have indicated that chronic axon
loss does not correlate with either inflammatory cell
infiltrate, tumour necrosis factor expression, nitric
oxide expression, or demyelinating activity, but does
correlate with the overall extent of established myelin
loss [10, 64]. It is seen in lesions which are demyeli-
nated but which exhibit sparse or no inflammation,
but is rare in remyelinated lesions [64]. Demyelina-
tion-induced axon loss might occur by several pos-
sible mechanisms: directly, through the loss of
oligodendrocyte-derived trophic support [47, 85,
128], or sustained demyelination-induced conduction
block and electrical silence [78], or indirectly through
increased vulnerability of the exposed axon to inju-
rious agents [99]. A further important driver for early
cell therapy thus emerges: the restoration of a normal

oligodendroglial environment in order to sustain
(previously demyelinated) axons.

j Supplementing spontaneous myelin repair

The second positive feature of MS, in terms of
developing cell therapies, is found in the clear evi-
dence of spontaneous if partial myelin repair in
multiple sclerosis [71, 79, 96, 101]. The nature of
relentlessly progressive disability in many patients
implies bears witness to the insufficiency of this
process, but supplementing spontaneous remyelina-
tion must appear a less fanciful proposition than
imposing repair in a fundamentally non-reparative
environment.

j Therapeutic remyelination works experimentally

The third reason to be cheerful is the now large body
of experimental evidence proving that cell therapy can
achieve successful remyelination. Schwann cells, oli-
godendrocyte lineage cells or cell lines, olfactory en-
sheathing cells (OEC), and rodent embryonic, adult
neural and adult bone marrow stem cells all have been
shown successfully to remyelinate the rodent CNS [2,
8, 9, 18, 46, 48, 50, 54, 93, 105, 109, 120, 134], and
variously demonstrated to restore normal conduction
[52, 122] and/or function [56].

What problems remain?

Several! Perhaps the most pressing are readily sum-
marised as ‘‘where?’’, ‘‘when?’’, ‘‘with what?’’ and
‘‘then what?’’

j Where?

Multiple inoculations of cells into widely distributed
lesions in the brain and spinal cord of patients with
MS is neither attractive nor realistic. Two possibilities
are here relevant.

First, many plaques are clinically silent. A dispro-
portionately large degree of disability frequently
emanates from a few critical lesions in eloquent areas.
Thus implantation into a very small number of
carefully selected lesions—for example, the optic
nerves, the spinal cord, or the superior cerebellar
peduncle—could yield a commensurately dispropor-
tionate therapeutic dividend [30].

Alternatively, some experimental evidence using
adult bone marrow- and brain-derived stem cells
suggests that the tropism of certain reparative cells for
diseased tissue can be exploited, and disseminated
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(or perhaps also diffuse) disease may be addressed by
intravenous delivery of cells [2, 93].

j When?

On the basis of ‘‘first, do no harm’’, late MS seems
safest: progressive disability is established, with sadly
negligible hope of spontaneous recovery, and the
possibility of doing damage or compromising spon-
taneous repair is remote.

However, arguments can be offered in favour of the
early intervention—although at this stage, little dis-
ability is present and therefore there is much to lose,
and the natural history is such that some patients will
never develop significant disability. In addition,
implanting cells into early lesions exposes remyeli-
nating glia, and their new myelin, to ongoing
inflammatory activity.

But spontaneous remyelination appears to occur
maximally in acute inflammatory lesions [95, 101],
suggesting (paradoxically) that these offer an optimal
reparative environment. Some evidence suggests that
anti-inflammatory drugs [116], or the suppression of
inflammation in general [33], may impair myelin
regeneration.

The clinical impact and irreversibility of accumu-
lating axon loss in secondary progressive disease [11,
12] provide a more potent reason for earlier remyeli-
nating intervention. Quite apart from the futility of
attempting to remyelinate absent axons, it has become
clear that changes in the cell surface expression of
various molecules (e.g. PSA-NCAM) in chronically
demyelinated axons actively inhibit myelination [23].

Accumulated myelin debris also inhibits myelination
[65], and chronic astrocytosis offers a profound
inhibitory effect on the migration of remyelinating glia
[41].

j With what?

A number of cell types may be considered. (see Fig. 1)

Cells of the oligodendrocyte lineage

Oligodendrocytes are the most obvious candidates:
they are the cells lost, and their normal function is to
myelinate the CNS. Immature oligodendrocytes and
oligodendrocyte precursors are found in fresh lesions
[22, 80, 97, 100, 114, 131] and are generally considered
responsible for the great majority of spontaneous
remyelination [21, 40, 113, 130].

Despite their motility in vitro, oligodendrocyte
progenitors however show poor survival andmigration
when implanted into normal white matter, although
they are able to populate and remyelinatewhen injected
into, or very close to, lesioned tissue [44]. A further
difficulty is that investigations of human CNS glia have
consistently demonstrated significant biological dif-
ferences from rodent cells, so that data concerning
rodent OPCs cannot be directly extrapolated to human
glia. Thus, notwithstanding the success of rodent glial
progenitors in experimental myelin repair, initial
studies of adult human oligodendrocyte progenitors
suggested a very limited capacity for remyelination (in
the irradiated rodent spinal cord) [119]. However, oli-
godendrocyte lineage cells can successfully be derived

Fig. 1 cell-based therapies for myelin repair in MS:
potential sources
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from ES-cells, and can repair myelin, with demon-
strable functional recovery [59, 89]—but human
embryonic stemcells as a source of therapeuticmaterial
bring a number of problems (see below). Improved
methods for isolating adult human oligodendrocyte
progenitors (by genetically labelling) have also
emerged [106]. Interestingly, comparative studies
suggest that adult human CNS-derived oligodendro-
cyte progenitors have a significantly greater remyeli-
nating capacity than their foetal counterparts [129].

Schwann cells

Schwann cells make a small but significant contribu-
tion to endogenous myelin repair in multiple sclero-
sis, perhaps particularly in the spinal cord [55, 79, 90].
Experimental methods for preparing, from adult
peripheral nerve biopsies, cultures of Schwann cells,
and for purifying and expanding the cells in vitro to
generate large populations of Schwann cells have been
established [88, 107]. When so purified, human
Schwann cells successfully lay down new myelin in the
mouse [75] and the rat spinal cord [17, 62]; autolo-
gous, expanded Schwann cells successfully repair
relatively large areas of demyelination in the macaque
demyelinated spinal cord [5].

Autologous Schwann cell harvesting from periph-
eral nerve biopsy, expansion in vitro, then trans-
plantation into patients offers the considerable
attractions of relative ease of availability, and the
avoidance of rejection. Furthermore, Schwann cells
(and their myelin) should be resistant to continuing
MS-related immunological attack. Firm evidence is
required however, that expanded human Schwann
cells do not form tumours in vivo, a hazard described
when rodent Schwann cells immortalised by growth
factor expansion were transplanted [70]; unpurified
preparations of human peripheral nerve cells result in
substantial fibroblast overgrowth with axon destruc-
tion [17]. The apparent inhibitory effect of astrocytes
on Schwann cell mediated CNS remyelination [45, 49,
133] represents another potential problem—though
genetic modification of Schwann cells to show in-
creased and sustained surface expression of PSA on
NCAM significantly improves migration [72].

Olfactory glia

Olfactory ensheathing cells, found in the olfactory
bulb, nerves and epithelium, ensheath axons ema-
nating from olfactory epithelial neurons that pene-
trate the olfactory bulb of the CNS. Rodent OEC’s
assume a myelinating phenotype closely resembling
that of Schwann cells when transplanted into lesions
containing demyelinated axons [46, 54]. Human
OEC’s, like rodent OEC’s, are also capable of remye-

lination following transplantation into the demyeli-
nated rodent spinal cord [7, 58]. This, and the OEC’s
ability to migrate in an astrocytic environment [46,
69], in stark contrast to Schwann cells, has helped
generate much interest in olfactory glia in the field of
CNS repair [42].

Stem cells

Stem cells have enormous therapeutic potential, not
least for treating neurodegenerative disease [13, 20,
91, 127]: a consequence of their proliferative and
multipotent capacities. Most studies have concen-
trated on using embryonic tissue as a source of stem
cells [18], but to develop therapies would obviously
require the use of human embryos as the stem cell
source, and this raises significant practical, immu-
nological, and insurmountable ethical concerns [15,
111]. One serious risk is that of teratoma formation
(Bjorklund et al. 2002): removing this capacity from
embryonic stem cells with absolute success in order to
develop safe cell therapies may pose considerable
problems. In addition, the emergence of significant
chromosomal abnormalities in cultured human
embryonic stem cells raises further concerns about
their safe use [39]. The problem of rejection would
also have to be circumvented. Early, optimistic sug-
gestions were that using stem cells from embryos
cloned (by cell nuclear transfer) from individual
putative recipients (recently legalised uniquely in the
UK) would solve this, the implication that every pa-
tient requiring a transplant would first have to be
cloned seems quite unrealistic, would not bypass the
major ethical difficulties associated with the use of
human embryonic material—and may in any case not
prove possible, as recent events in Korea have shown.

These problems have helped stimulate the largely
successful search for alternative sources of stem cells
[103, 104]. There is increasing evidence that adult
stem cells have a greater capacity to differentiate into
a wider range of cell types than previously antici-
pated, and the use of adult stem cells—particularly
autologous in origin—would avoid many of the dif-
ficulties associated with embryonic stem cells [27, 94,
98, 110].

Neural stem cells are present in the adult rodent
brain [126]; large numbers of oligodendrocyte lineage
cells can be generated using neurosphere/oligosphere
techniques, which, upon transplantation, successfully
remyelinate axons. Neural stem cells are also present
in the adult human brain [68]. Adult rodent CNS-
derived stem cells repair multifocal demyelinating
lesions (in EAE-affected rodents) even after intrave-
nous delivery [39, 93].

It is now beyond doubt that adult bone marrow
does indeed harbour a sub-population of potentially
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proliferative stem cells [25, 29, 57, 61, 66, 67, 86, 92,
94, 102], whose differentiation capacity includes glial
cells and neurones [37, 60, 108, 132]. Cell fusion of
bone marrow-derived cells can provide an alternative
explanation for apparent trans-differentiation, and
this is particularly important in some organs—the
liver, for example [123, 124]. However, cell fusion
cannot explain the extensive in vitro data indicating
multipotent differentiation, and in vivo studies con-
firm transdifferentiation without fusion in a variety of
tissues [53, 81, 121]. Furthermore, from a pragmatic
perspective, fusion may simply be part of the means
by which bone marrow-derived stem cells stimulate
successful regeneration [83, 104]. Recent studies
indicate that polyploidy is in fact far commoner
phenomenon that previously realised; the possible
occurrence of fusion does not necessarily imply
diminished regenerative capacity in a putative
reparative cell [14].

Bone marrow derived stem cells migrate into
(presumably) normal adult human brain and trans-
differentiate into highly complex, apparently func-
tionally integrate neural cell types [28, 32, 125].
Experimentally, they show an ability to home from
the circulation to various damaged tissue(s) [38, 63],
including tropism in regard to areas of CNS injury [1,
25]. Directly or peripherally injected bone marrow-
derived cells will repair damage, often with demon-
strable functional as well as anatomical recovery, in
rodent models of traumatic, degenerative and is-
chaemic CNS damage [4, 16, 24–26, 74, 77, 87]. Re-
myelination is reported not only after intra-lesional
injection [3, 109], but also following peripheral
injection [2].

These properties, their easy accessibility, and not
least the absence lack of ethical problems, and also
their significant track history in the treatment of
haematological disease makes bone marrow cells
strong candidates for use in cellular therapies for CNS
disease. Further elucidation of the mechanisms in-
volved may allow for mobilisation of endogenous
cells, perhaps even obviating the need for transplan-
tation.

The advantages and disadvantages of the different
sources of stem cells and progenitor cells to achieve
demyelination in MS are summarised in Table 1.

j Then what?

How can the effects of a trial cell therapy in MS be
assessed? At present, MRI detection of new myelin is
not reliably feasible, but new techniques continue to
emerge, of which magnetisation transfer contrast is
one promising candidate [36], 3-dimensional MRI

using multiple contrasts [84], and radial diffusivity
[117, 118] likewise. Magnetic resonance spectroscopy
measurement of N-acetyl aspartate levels might offer
means of assessing any impact on local neuron/axon
survival [34, 35]. Cells can be labelled to render them
MRI-visible [19, 43, 76], but from a safety perspective,
even trivial manipulation of cells prior to implanta-
tion is best avoided. Furthermore, graft survival
cannot be inferred from migration, since dead cells
remain visible [19], and this method not only fails to
show new myelin formation but may also impair the
ability of other MR modalities to do so.

Serial neurophysiology may prove valuable, and
monitoring conduction times may provide evidence of
returning saltatory conduction in the targetted
pathway(s). The optic nerve has particular advantages
in this respect, but various approaches to more gen-
eralised neurophysiological assessment have been
described and may prove useful for any intervention
aimed at multifocal or more diffuse myelin repair [73].

Finally, robust and reproducible methods of clini-
cal assessment need to be applied. Specific clinical
outcomes measures of function, disability, and
handicap must be adopted; considerable advances in
clinical scale design have improved physical and
functional measurement in multiple sclerosis [51], so
that the tools for assessing clinical outcome, on which
remyelination therapies must stand or fall, are
becoming available.

j Acknowledgements The authors thank the UK Multiple Sclerosis
Society and the Ipsen Trust for support. The Burden Chair Clinical
Neurosciences is supported by the Burden Trust.

Table 1 Some relative advantages and disadvantages of sources of stem cells
and progenitors for remyelination therapy

Source Advantage Disadvantage

Xenograft Relatively easy access Infective risk
Rejection

Human embryo Pluripotency Ethical objections
Rejection
Tumour formation
Genetic stability
Infective risk
?Limited remyelinating capacity

Adult brain Autologous tissue Relatively inaccessible
Migratory capacity

Olfactory cells Autologous tissue ?PNS-type myelin
Migratory capacity

Adult bone marrow Autologous tissue ?PNS-type myelin
Accessible ?Proliferation
Safety data available
Migratory capacity

Schwann cells Autologous tissue ?PNS-type myelin
Accessible Poor migration

?Tumour formation
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