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What do we know about the mechanism 
of action of disease-modifying treatments
in MS?

Multiple sclerosis (MS) is a progressive, autoimmune
disease affecting the central nervous system. However,
although a proinflammatory response has been impli-
cated in the aetiology of MS, the exact cause of the dis-
ease remains unclear.

Current therapies for MS include interferon (IFN) β
and glatiramer acetate (GA). These therapies have both
produced positive results in patients with MS, and ap-
pear to suppress the proinflammatory response. Never-
theless, despite ongoing research, the mechanisms of ac-
tion for IFN β and GA are not yet fully understood.
Through actions at five or more different points along
the MS disease pathway, IFN β is thought to decrease T-
cell activation, migration and reactivation, while GA is
thought to have two primary mechanisms of action: act-
ing as a ‘myelin decoy’, thus preventing myelin binding
of proinflammatory molecules; and causing a popula-
tion shift of T-cells from the proinflammatory T-helper
(Th)1 cells towards the anti-inflammatory Th2 cells.

The three papers that follow explore what is known
about the mechanisms of action for IFN β and GA, and
touch on areas in which further research is needed.
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■ Abstract Multiple sclerosis (MS), a chronic inflam-
matory disorder of the central nervous system (CNS),
results in damage to axons and their surrounding

myelin sheath. The exact cause of inflammation remains
unclear, but an autoimmune response directed against
CNS antigens is suspected. MS can affect the brain, optic
nerve and spinal cord, thus causing many neurological
symptoms. These can include limb numbness or weak-
ness, sensory or motor changes, ataxia, blurry vision,
painful eye movements, bladder and bowel dysfunction,
decreased memory, fatigue and effective disorders. This
article will include a concise overview of the pathogen-
esis of MS in order to set the stage for subsequent dis-
cussion of the mechanisms of action of disease-modify-
ing treatments, and whether these should influence our
treatment choices. Although the exact pathogenesis of
MS is not fully understood, current knowledge has al-
ready led to the development of effective treatments,
namely interferon (IFN) β and glatiramer acetate, both
of which have been shown to reduce relapse rates, while
IFN β-1a also reduces confirmed disability progression.
Further increases in our understanding of the patho-
genesis of MS are likely to assist in the identification of
new targets for disease-modifying therapies and in the
optimisation of current treatments.

■ Key words multiple sclerosis · disease-modifying
treatments · pathogenesis

The immunopathogenesis of MS

Over recent years, there have been considerable ad-
vances in our knowledge of the pathogenesis of multiple
sclerosis (MS), which in turn have pointed to new mo-
lecular targets for the development of future therapies.
For example, while the cardinal pathological features of
MS include white matter plaques in the central nervous
system (CNS),particularly in the optic nerve,brainstem,
spinal cord and periventricular regions [1], it is now ap-
parent that changes in grey matter also play a role in the
pathology of this disease [2, 3]. Similarly, although at theJO
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cellular level demyelination is one of the most widely
recognised hallmarks of MS, astrogliosis [4, 5] and (as
recently re-discovered) axonal degeneration [6–9] make
important contributions to the spectrum of pathologi-
cal changes that we encounter in MS.

An additional level of complexity has also now been
added to the equation as a result of studies that clearly
indicate the existence of considerable heterogeneity be-
tween the MS pathology of individual patients [10, 11].
This has led to a proposed categorisation of four funda-
mentally different types of lesion that differ from one
another in terms of myelin protein loss, plaque size and
distribution, patterns of oligodendrocyte destruction,
and evidence of complement activation (Fig. 1) [11].
Overall, two of the patterns resemble those of T-cell-me-
diated or T-cell- plus antibody-mediated autoimmune
encephalomyelitis, whereas the other two more closely
reflect primary damage to, or intrinsic metabolic distur-
bances of, oligodendrocytes, resulting in primary pro-
gressive disease. Further studies will be required to con-
firm the widespread existence of these very distinctive
patterns of pathology. However, if confirmed, such het-
erogeneity is likely to have considerable implications,
both for the optimal use of current therapies and the se-
lection of potential targets for new therapies.

Even without taking into account the existence of in-
ter-patient heterogeneities, the network of factors that
contribute to the pathology and pathogenesis of MS is
far from straightforward. Inflammation is thought to be
one of the key factors in MS disease activity and, al-
though its exact role remains to be defined, it appears to
be a major contributor to the formation of acute lesions
[12]. There is also considerable evidence that the degree
of inflammation within such lesions shows a strong cor-
relation with the extent of axonal loss [7, 13]. Indeed, all
the crucial elements of inflammatory interactions can
be identified in active MS lesions. These include T-cells

(predominantly cytotoxic cluster of differentiation
[CD]8 T-cells), activated microglia, macrophages (the
key executers of the immunoinflammatory response)
and plasma cells (that release antibodies that may bind
to CNS antigens, damaging the structure) [14].

Evidence, assembled over several decades, suggests
that the systemic immune repertoire of some individu-
als may be influenced by genetic factors that increase
their risk of developing MS at a later stage [15–18]. How-
ever, there is also what could (for the sake of simplicity)
be described as an ‘intrinsic immune system within the
brain’ and, in order to understand the evolution of MS,
we need to be able to picture interactions between the
systemic immune system and the local immune cir-
cuitry within the CNS [19] (the two are not completely
separated, however, as the immune system is separated
from the CNS by the blood-brain barrier [BBB]).

Currently, it is hypothesised that during early child-
hood, events (which have not yet been deciphered) re-
sult in a ‘skewing’ of the immune response and the gen-
eration of autoreactive T-cells. Although potentially
capable of recognising CNS antigens, these T-cells re-
main dormant for years, as they cannot leave the sys-
temic immune compartment. It is only if,or when,an ex-
ternal trigger comes into play (often in early adulthood)
that these cells are rendered active, allowing them to mi-
grate to and penetrate the BBB. Having entered the CNS,
these autoreactive T-cells interact with antigen-present-
ing cells such as microglia and, if the correct antigenic
epitope is present in the context of other molecules, un-
dergo local clonal proliferation (Fig. 2) [20].The same T-
cells will also recruit macrophages and instruct B-cells
to synthesise and deliver antibodies that can bind to epi-
topes on the myelin sheath, resulting in an enhanced lo-
cal immunoinflammatory response.

Antibodies T-cells and macrophages OG – Dystrophy

ACUTE MS

Gr + EOS

Ab + Complement

Ab + Macrophages

T-cells + Macrophages

OG – Dystrophy

RR, SP, PP BALO PP

Prim. OG
damage

PATTERN II PATTERN I PATTERN III PATTERN IV

Fig. 1 Features of different pat-
terns of active multiple sclerosis
(MS) lesions in relation to clinical
disease course [11]. Ab antibody;
BALO Balo’s concentric sclerosis; EOS
eosinophil; Gr granulocyte; OG
oligodendrocyte; PP primary pro-
gressive; RR relapsing-remitting; SP
secondary progressive
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Migration across the BBB

The migration of autoreactive immune system effector
cells, from the systemic immune system into the CNS, is
crucial to the formation of inflammatory MS lesions.
Upon exposure to chemokine signals, T-cells circulating
in the bloodstream can attach to the endothelium of the
BBB, via a process that requires reciprocal interactions
with adhesion molecules expressed on both the T-cells
and the endothelium. Then, by producing a cocktail of
enzymes, including matrix metalloproteases (MMPs),

the T-cells degrade the extracellular matrix of the BBB
and enter the CNS. The processes of adhesion, penetra-
tion and migration across the BBB thus involve a num-
ber of families of molecules (including adhesion mole-
cules, chemokines and MMPs), each of which is thought
to play a fundamental role in the disruption of the BBB
[21], and are therefore important targets for therapeutic
intervention.

Fig. 2 Synoptic view of the immune response in the
pathogenesis of multiple sclerosis. Autoreactive T-
cells recognise with their T-cell receptor (TCR) a spe-
cific autoantigen presented by major histocompati-
bility complex (MHC) class II molecules and the
simultaneous delivery of co-stimulatory signals (clus-
ter of differentiation [CD]28, B7, CD40, CD40L) on the
cell surface of antigen-presenting cells (APCs), such
as macrophages, in the systemic immune compart-
ment (Panel 1). Activated T-lymphocytes can cross
the blood-brain barrier (BBB) in order to enter the
central nervous system (CNS). The mechanisms of
transendothelial migration are mediated by the com-
plex interplay of cell adhesion molecules (CAMs),
chemokines and their receptors (CCRs, CXCRs) and
matrix metalloproteases (MMPs; Panel 3). Within the
CNS, T-cells activate microglia cells/macrophages
(Mφ) to enhance phagocytic activity, production of
cytokines, such as tumour necrosis factor (TNF)-α,
leukotriene (LT) and the release of toxic mediators,
such as nitric oxide (NO), propagating demyelination
and axonal loss. Antibodies (Abs) crossing the BBB or
locally produced by B-cells or mast cells (B+) con-
tribute to this process. Autoantibodies activate the
complement cascade resulting in the formation of
the membrane-attack complex (C5b-9) and subse-
quent lysis of the target structure (Panels 2 and 4).
The upregulation of Na+ and Ca2+ channels on the
axon as well as mitochondrial dysfunction and loss of
trophic support contribute to axonal disintegration
and degeneration (Panel 5). The inflammatory re-
sponse is regulated by anti-inflammatory cytokines,
such as interleukin (IL)-10 or transforming growth
factor (TGF)-β, as well as IL-2 inducing programmed
cell death (apoptosis) in immunoreactive T-lympho-
cytes (Panel 6). From Wiendl H, Kieseier BC (2003)
Disease-modifying therapies in multiple sclerosis: an
update on recent and ongoing trials and future
strategies. Expert Opin Investig Drugs 12:689–712
[20], and published with permission. Ag antigen; TH T-
helper cell
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■ Chemokines

Chemokines form a chemoattractant gradient that is
perceived by T-cells and assists them in their invasion of
the CNS. They also increase binding of T-cell adhesion
molecules to their reciprocal counterparts on endothe-
lial cells (see the following section). Studies have shown
that the levels of several chemokines are elevated in pa-
tients who are experiencing MS relapses. These include
chemokines, such as interferon γ-inducible protein-10,
which is expressed by brain microvascular endothelial
cells only after inflammatory stimuli [22], while its re-
ceptor CXCR3 is expressed at enhanced levels in periph-
eral blood mononuclear cells of patients during MS re-
lapses, and is found on lymphocytic cells within almost
all perivascular inflammatory infiltrates in active MS
lesions [23].

■ Adhesion molecules

The attachment of T-cells to the endothelial cells of the
BBB requires the reciprocal interaction of complemen-
tary adhesion molecules expressed on the cell surface of
both cell types. Three pairs of adhesion molecules that
are important from the perspective of MS pathology are:
E-selectin and sialyl Lewis (SLe); vascular cell adhesion
molecule (VCAM)-1 and very late antigen (VLA)-4; and
intracellular adhesion molecule (ICAM)-1 and lympho-
cyte function-associated antigen (LFA)-1 [24, 25]. How-
ever, the exact role of these adhesion molecules is not yet
clear. Antibodies against LFA-1 and ICAM-1 have been
reported to suppress experimental allergic en-
cephalomyelitis (EAE) [26, 27], and studies have indi-
cated that ICAM-1 levels are elevated just prior to the
first clinical signs of the disease [28].However,not all in-
vestigations of anti-LFA-1/ICAM-1 therapy have pro-
duced favourable results [29–31].

■ Matrix metalloproteases

MMPs produced by activated leukocytes assist in the
breakdown of the BBB and immune cell invasion into
the brain parenchyma [32]. Studies of EAE models and
patients with MS indicate that some MMPs, such as
gelatinase B (MMP-9) and matrilysin (MMP-7), are pre-
sent at increased levels in the blood, cerebrospinal fluid
and brain during periods of inflammatory disease activ-
ity [33–35]. Correlations between increased MMP pro-
duction, BBB breakdown and the presence of gadolin-
ium-positive magnetic resonance imaging lesions have
also been reported [36] and, more recently, elevated lev-
els of MMP-9 and MMP-7 have been detected in lesions
and normal-appearing white matter of patients with MS
[37].As yet, the mechanism underlying the upregulation

of these MMPs during the MS disease process has not
been fully elucidated. However, it has been suggested
that imbalances between MMP levels and those of the
tissue-specific inhibitors of metalloproteases may lead
to persistent proteolytic activity [37].

Thus, each of the three families of molecules listed
above plays a crucial role in the process by which T-cells
that have the potential to attack the brain and spinal
cord move from the bloodstream to the CNS where,
upon re-activation, they set in motion a cascade of in-
flammatory events.

Cellular mediators of the MS disease process

■ T-cells, B-cells and macrophages

The concept that MS is primarily a T-cell-, in particular
a CD4+ T-cell, driven autoimmune disease has domi-
nated our view of MS for a long time. Nevertheless, it is
clear that T-cells can also influence or instruct B-cells to
produce autoreactive antibodies, thus bringing into play
the humoral part of the immune system. The proinflam-
matory cytokines secreted by re-activated T-cells within
the CNS stimulate the activation of additional T-cells, B-
cells and macrophages [38].

The inflammatory response seen in active MS plaques
involves both T-cells and macrophages, but is mediated
primarily by macrophages, which are abundant at the
edges of these plaques and release an ensemble of mole-
cules (including tumour necrosis factor [TNF]-α,oxygen
radicals and nitric oxide) that cause tissue damage, in-
cluding damage to the myelin sheath [39, 40]. The acti-
vated B-cells, in contrast, differentiate to form autoanti-
body-secreting plasma cells. Upon binding to antigens,
these antibodies activate the complement cascade, initi-
ating the formation of a complex, which, in very simple
terms,punches holes in the myelin membrane and even-
tually results in myelin degradation [38].

The list of potential B-cell autoantigens is almost as
long as that for T-cells. However, recently there has been
particular interest in the role of myelin oligodendrocyte
glycoprotein (MOG),at least in part because of its strate-
gic extracellular location on the myelin membrane,
which makes it readily accessible to antibodies [41, 42].
Furthermore, although additional studies are required,
it has been reported that the presence of anti-MOG an-
tibodies during an initial clinical event in patients with
clinically isolated syndromes may be of predictive value
in identifying those patients who will go on to develop
clinically definite MS [43].



V/16

Cellular targets of the MS disease process

■ Oligodendrocytes

Oligodendrocytes are the producers of myelin in the
CNS, and these cells are also targets of the immunoin-
flammatory response, which causes damage and eventu-
ally apoptosis of oligodendrocytes. Mechanisms that are
thought to be involved in this process include the TNF-
α/factor-activating exoenzyme S (Fas)-mediated death
cascade, which leads to caspase activation and ulti-
mately oligodendrocyte demise [44–46].

■ Axons

The importance of axonal damage as a factor in MS dis-
ease progression has been rediscovered and highlighted
extensively over the past few years [6–9]. We now know
that axonal damage dictates to a large extent the devel-
opment of neuropathological deficit and may therefore
be key to the cumulative progression of disability over
time in patients with MS [47, 48].

A number of hypotheses have been proposed as to
why axonal death occurs during the MS disease process
[48–52]. Some of these relate to the fact that demyelinat-
ing axons appear to be particularly vulnerable to axonal
degeneration, while others suggest a disturbed interac-
tion between axons and glia resulting in the loss of
trophic support. Increasing our understanding of the
mechanism of such axonal damage may allow us to de-
vise approaches that can be used alongside anti-im-
munoinflammatory strategies to preserve the structural
and functional integrity of the CNS. Strategies aimed at
the replenishment of trophic support may have an im-
portant role to play in future MS therapies. However,
even greater benefits are likely to be achieved if we can
prevent such damage from occurring in the first place.

At present, there is a hypothesis that suggests that in
the case of axonal damage it may not be an overwhelm-
ing CD4+ T-helper (Th)1-cell-driven response, but
rather a CD8+ cytotoxic T-cell response that makes the
major contribution to the pathological process. While
cell culture experiments have shown that CD8+ T-cells
can cut axons, with an almost scissor-like motion [53],
studies of brain tissue have also implicated perforin-
containing T-cells in axonal dissection [54]. The final
common effector pathway may involve calcium flooding
(as is reported to occur in other neurodegenerative dis-
eases), followed by calpain activation and subsequent
disintegration of the cytoskeleton.

These, however, are just some of the mechanisms that
are thought to underlie the axonal pathology that over
time significantly contribute to atrophy, the summation
of the destructive pathological processes occurring as
the MS disease process evolves.

Inflammation: a role in destruction 
and in healing?

Anti-inflammatory properties are a key feature of many
of the disease-modifying therapies currently in use or
undergoing trials for use in the treatment of MS. How-
ever, although it is clear that inflammation can have ex-
tremely destructive effects, there is also evidence to sug-
gest that inflammatory reactions may also have
beneficial effects that contribute to protective or repair
responses [55]. This concept (often referred to as the
‘Janus face of inflammation’ [56]), although not new, has
been the subject of renewed focus over the past few
years, and a factor that should be carefully considered
when designing new therapeutic strategies. Complete
abrogation of all inflammatory responses at a given time
point in the disease process may not always provide the
most effective route towards maximal treatment effi-
cacy, as it may compromise the protective aspects of this
basic biological phenomenon.

Conclusions

While it is true that our rapidly developing knowledge of
MS immunopathogenesis presents us with an increas-
ingly complex picture of this disease process, it also pro-
vides us with greater opportunities to try to combat dis-
ease progression and prevent the development of
long-term disability. It is now clear that even from the
earliest stages of the disease process, axonal damage is a
prominent feature of MS and may be the pathological
correlate of permanent neurological impairment. There
are, however, many molecular interactions that must oc-
cur in order for autoreactive T-cells to cross the BBB, en-
ter the CNS and then trigger the cascade of destructive
events that eventually lead to axonal damage. As dis-
cussed in the following articles, many of the steps along
these pathways are the targets of currently available MS
disease-modifying treatments,while others may suggest
targets for new or combination therapies.
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current knowledge and questions
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■ Abstract Although insights into the therapeutic
mode of action of multiple sclerosis (MS) therapies are
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no substitute for the results of well-designed pivotal
clinical trials, such an understanding does play an im-
portant role in the rational development of new and im-
proved treatments. Elucidating the mechanisms of ac-
tion of MS treatments could also help to optimise the use
of current therapies, and may provide an added degree
of comfort to patients and their care teams. However, it
is not always easy to reconcile the rapidly growing, and
at times inconsistent, information emerging from
‘mechanism of action’ studies. One challenge relates to
how readily one can translate laboratory studies of
mechanism of action to the actual ways a given medica-
tion may mediate its disease-relevant effects in vivo.
While studying drug effects in animal models (such as
the commonly used model of MS, experimental autoim-
mune encephalomyelitis) has become an important part
of the process of drug development and approval, it is
well appreciated that observations from these models do
not predict effects (or toxicities) in patients. More and
more studies are emerging on effects of drugs on human
cells in vitro, though it must be kept in mind that signif-
icant and reproducible in vitro findings may not always
be relevant to the in vivo situation. Therefore, the chal-
lenge is to somehow distinguish between results of
‘mechanism of action’ studies that are ‘plausible’ based
on animal and/or in vitro studies, and those that are
drawn from direct observations of patients subjected to
a given therapy. Even the latter observations are not
foolproof, however, since a real effect of a therapy could
be measured in patients, which may or may not be rele-
vant to the drug’s impact on the disease itself. Here, we
will consider a simplified model of MS immune patho-
genesis to review the proposed therapeutic mechanisms
of action of the four approved therapies on the inflam-
matory component of the illness.

■ Key words multiple sclerosis · mechanisms of action
· immune modulators

Introduction

The aetiology of multiple sclerosis (MS) remains elu-
sive, though most believe that the condition manifests in
individuals with a polygenetic susceptibility combined
with one or more environmental exposure/s during a
critical period (probably early adolescence) [57–61].
The role of activated T-helper (Th)1 cells directed
against self-antigens in the central nervous system
(CNS), such as myelin epitopes, has been the subject of
intense study [58–60, 62–65]. Until recently, the most di-
rect data implicating these cells have come from animal
models of MS, such as experimental autoimmune en-
cephalomyelitis (EAE) [66]. In this model, injecting an-
imals with myelin components such as myelin basic pro-
tein (MBP) results in activation of circulating Th1

MBP-reactive T-cells and in a subsequent ascending
paralytic illness sharing many pathological features
with MS. Notably, removing these Th1 MBP-reactive T-
cells from an affected animal and injecting into the cir-
culation of a healthy naïve animal can transfer the same
CNS paralytic illness (adoptive transfer). In contrast, in-
jecting the recipient animal first with Th2 MBP-reactive
cells can protect the animal from EAE. These observa-
tions have suggested that, in MS, Th1 responses directed
against myelin components may be proinflammatory
and cause damage, whereas Th2 responses may be anti-
inflammatory and protective.

It has been known for over a decade that all individ-
uals – including those without MS – have T-cells circu-
lating in their blood that have the potential to react
against MBP and other CNS antigens [63, 64], yet most
people do not get MS. This suggests that the mere pres-
ence of these ‘self-reactive’ T-cells is not enough to cause
the illness. It is now known that in patients with MS,
MBP-reactive T-cells are in a higher state of activation
than the comparable cells in individuals without MS [67,
68]. It is also suspected that in patients with MS, the
MBP-reactive cells are more likely on average to produce
proinflammatory (Th1), rather than anti-inflammatory,
molecules. The hypothesis is therefore that these MBP-
reactive T-cells in the circulation of patients with MS en-
counter their antigen (MBP) or a very similar antigen (a
molecular mimic of MBP) and become activated in the
periphery. If the context of activation preferentially pro-
motes Th1 differentiation, the resultant Th1 MBP-reac-
tive T-cells can then migrate to the brain where they will
recognise MBP and react by releasing Th1 mediators
that contribute to the disease process.

It must be stressed that the relationship between Th1
and Th2 responses (loosely designated as ‘proinflamma-
tory’ and ‘anti-inflammatory’, respectively) and tissue
damage or protection in MS remains only partially un-
derstood, as recent studies have suggested that Th1 re-
sponses may not always be detrimental [69]. Indeed,
cells of the immune system are not all ‘bad’ or all ‘good’
[70–72]. The challenge is to define which immune re-
sponses are pathogenic, and when, so that the most ef-
fective therapies can be developed. Nonetheless, a para-
digm that continues to be pursued in trials of
experimental therapeutics of MS is that treatments that
can prevent CNS-reactive Th1 cells from entering their
target, and/or treatments that can shift the immune re-
sponse from a Th1 to a Th2 profile are considered bene-
ficial [59, 61, 73–78].

The process of infiltration of myelin-reactive T-cells
into the CNS depends on a series of well-coordinated in-
teractions between several families of molecules [32,
79–82]. It is thought that, in MS, CNS-reactive T-cells in
the periphery become activated by either fragments of
the CNS itself (e. g. myelin), or by some antigen that
closely resembles components of the CNS (molecular



V/18

mimic) and preferentially differentiates into Th1 cells
(Step 1). These activated Th1 cells express the required
adhesion molecules and chemokine receptors on their
surface that allow them to efficiently interact with the
blood-brain barrier (BBB) endothelial cells by the
processes of adhesion (Step 2) and chemoattraction
(Step 3). With the additional help of enzymes that de-
grade the BBB, such as matrix proteases, the activated
Th1 CNS-reactive T-cells are then able to break into the
central compartment (Step 4). There, these T-cells en-
counter the CNS antigen presented by resident antigen-
presenting cells (APCs; microglia) or invading mono-
cytes/macrophages,and become re-activated to produce
the Th1 proinflammatory responses that contribute to
tissue damage (Step 5). This model can be used to iden-
tify the probable sites of action of the currently approved
immune-modulating therapies in MS [62,83–88].The in-
terferon (IFN) β medications (IFN β-1b/Betaseron®,
Schering; subcutaneous IFN β-1a/Rebif®, Serono; intra-
muscular IFN β-1a/Avonex®, Biogen Idec) are believed 
to share the same general mechanisms of action in MS
and will therefore be discussed here as one family (IFN
βs), while glatiramer acetate (GA; Copaxone®, Teva
Pharmaceuticals) has a different mode of action [89].

Mechanisms of action of IFN β and GA in MS

■ IFN βs (Betaseron®, Rebif®, Avonex®)

Binding of IFN β to its specific receptor results in the ex-
pression of multiple IFN β response-genes, the majority
of which are likely not relevant to the therapeutic po-
tential of this family of agents in MS [90]. Drug effects
that probably do contribute to the efficacy of IFN βs in
MS include the ability of this class of medications to sup-
press T-cell responses that may relate, in part, to the
property of IFN βs to decrease the expression of some
co-stimulatory molecules that are otherwise able to pro-
mote T-cell activation [91]. In some cases, IFN βs may
also preferentially suppress Th1-type responses, while
promoting Th2 responses that could also be of benefit in
MS [90]. Perhaps the most important effects of IFN βs
with regards to MS are at the levels of adhesion and mi-
gration of activated immune cells at the level of the BBB.
IFN βs are known to suppress the upregulation of adhe-
sion molecules on activated T-cells, and are effective in
suppressing both the transcription and translation of
matrix metalloproteases, the enzymes that break down
the BBB [32, 80, 82, 89, 90]. Together, IFN βs are thought
to exert part of their beneficial effect by limiting the
process of transmigration of activated proinflammatory
Th1 cells across the BBB.

■ GA (Copaxone®)

Unlike IFN βs that mediate their actions by binding to
specific receptors, leading to transcription of IFN β in-
ducible genes,GA is viewed as an antigen-based therapy.
Several potential mechanisms of action have been de-
scribed over the years,some of which may reflect in vitro
phenomena that are not necessarily relevant to the in
vivo state.

GA was originally designed as a co-polymer contain-
ing a random mix of four amino acids (G, L,A, T) in pro-
portions that resemble the content of MBP [92]. When
found to inhibit MBP-induced EAE, the assumption was
that GA was somehow competing with the MBP [92, 93].
It was subsequently demonstrated in vitro that GA can
efficiently bind major histocompatibility complex
(MHC) molecules and compete with MHC binding of
MBP, as well as limit the T-cell receptor (TCR) engage-
ment of MBP-reactive T-cells [94, 95]. It is not clear
whether the in vitro conditions used in such experi-
ments are reproduced in vivo. Moreover, it is now appre-
ciated that the GA co-polymer is in fact many antigens
in one, and that its effects in vivo are not restricted to
MBP responses [96].

The aspect of the GA mechanism of action that is
thought to be most relevant to its benefit in MS inflam-
mation relates to the reproducible finding that GA in-
jections trigger a broad T-cell response (consistent with
GA being many antigens), which in most patients results
in a shift in the population of GA-reactive T-cells to-
wards a Th2 response profile [97–106]. This peripheral
‘immune deviation’ generates activated Th2 cells that
can be identified within a month of therapy and would
be expected to migrate efficiently (like other activated
immune cells) into the CNS. Because they may react to
multiple antigens (including, but not limited to, MBP),
and given their demonstrated TCR-degeneracy, some of
these GA-reactive T-cells would be expected to become
re-activated within the CNS, where production of Th2
factors would counter proinflammatory Th1 responses
of pathogenic CNS-reactive cells, in the process termed
‘bystander suppression’. Though the exact mechanism/s
by which GA therapy induces a Th2 shift is not estab-
lished [89, 107, 108], recent findings extend our under-
standing of the mechanism of action of GA, and demon-
strate that in vivo therapy modulates APCs in patients
with MS [97, 109]. This work identifies a novel ‘positive-
feedback’ loop between T-cells:APC, which could serve
to promote further Th2 responses both in the periphery
and within the CNS of patients.

Possibly of further relevance to the mechanism of ac-
tion of GA are recent studies demonstrating that acti-
vated T-cells produce nerve growth factors such as
brain-derived neurotrophic factor (BDNF) [110], and
that BDNF-containing immune cells are found within
active MS lesions [111], at sites where the BDNF recep-
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tors are expressed on neural cells [112]. In this context,
GA-reactive T-cells from the circulation of patients with
MS have also been shown to secrete BDNF [113], raising
the possibility that following migration across the BBB,
these cells may contribute to both anti-inflammation
and neuroprotection upon re-activation within the CNS.
While direct demonstration of these effects in the CNS
of patients is not feasible, studies in EAE have demon-
strated that labelled GA-reactive T-cells induced by GA
therapy accumulate within the CNS of the animals and
produce in situ anti-inflammatory cytokines and BDNF
[114]. Thus, in contrast to the IFN βs, GA seems to have
little effect directly at the level of the BBB. Instead, pe-
ripheral induction of anti-inflammatory APC and T-
cells that can migrate efficiently into the CNS would con-
tribute to an anti-inflammatory (and possibly
neuroprotective) environment within the CNS.

Conclusions

Conceptualising the MS process as a series of steps that
can also be regarded as potential targets of therapy
should help us discuss with our patients current as well
as new treatments that will be introduced in upcoming
clinical trials.

Many laboratories and clinical research activities
around the world have contributed to our growing un-
derstanding of the processes leading to nervous system
injury in MS. In addition to recognising the role of T-
cells, there are clearly other immune responses that par-
ticipate, as well as an important involvement of BBB and
brain cells in these processes [72, 81]. The best ap-
proaches to treatment are likely to be those that alone,
or in combination, restore a normal balance of immune
responses and at the same time protect and support the
functional regeneration of the nervous system [59, 61,
74–78]. While important questions remain, ongoing re-
search efforts will undoubtedly lead to the development
of new therapies that are both more effective and, im-
portantly, easier for patients to tolerate.
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■ Abstract Multiple sclerosis (MS) is a putative au-
toimmune disorder. Various models of recognition of

self and non-self have improved our understanding of
autoimmunity. From simple models of direct recogni-
tion of foreign antigens by B-cells, we have moved to
more complicated models that require the coordinated
action of T-cells, B-cells and antigen-presenting cells
(APCs). From the simple self/non-self model to the in-
fectious non-self model and, finally, to the danger
model, APCs are central in the immune process of
self/non-self recognition. Genetic and environmental
factors including infections are implicated in the patho-
genesis of MS, although the nature of antigen stimulus
remains unknown. However, our current understanding
of the pathological process of the disease has led to new
therapeutic approaches. Interferon (IFN) β and glati-
ramer acetate (GA) have well-established clinical bene-
fits in terms of relapse rates, and IFN β has also been
shown to decrease disease progression. The proposed
mechanisms of action of these disease-modifying ther-
apies reflect our understanding of the complex immune
mechanisms implicated in MS. IFN β is used in the
treatment of MS because of its general anti-inflamma-
tory properties. It acts via specific receptors and by in-
ducing a cascade of signalling. It interferes with T-cell
activation, counteracts the proinflammatory effects of
IFN γ, exhibits effects on co-stimulatory molecules, in-
teracts with adhesion molecules and trafficking of T-
cells into the central nervous system (CNS), downregu-
lates specific metalloproteinases, facilitates the
apoptotic process of T-cells, has an antiviral effect and
probably shifts the balance of cytokine production to-
wards the anti-inflammatory cytokines, T-helper (Th)2.
The proposed mechanism of action of GA is a cross-re-
action with myelin basic protein and T-cell receptors,
thus closely mimicking the alleged antigen stimulus in
MS. The generation of Th2 cells could act both in the
periphery and the CNS, producing anti-inflammatory
cytokines resulting in bystander suppression and a gen-
eralised shift in cytokine production from Th1 to Th2.
However, the evidence for this is derived primarily from
experimental animal models and small in vitro studies
on T-cell lines. In conclusion, although the well-docu-
mented clinical efficacy of IFN β treatment in MS is
based on its specific mechanisms of action on the im-
mune system, that of GA treatment is poorly under-
stood.

■ Key words multiple sclerosis · mechanism of action

Introduction

Multiple sclerosis (MS) is a putative autoimmune condi-
tion, characterised by central nervous system (CNS) in-
flammation, demyelination and axonal degeneration.
Although the exact cause of MS remains unknown, our
knowledge of MS pathology has increased rapidly in re-
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cent years, and continues to do so. This, in turn, has
greatly assisted studies of the mechanisms of action of
the disease-modifying treatments (DMTs) currently
used in the treatment of MS, and the identification of
potential targets for new DMTs. However, such studies
have also raised questions, as in some cases it has been
difficult to reconcile the proposed mechanisms of action
with the available clinical data. This has often led to re-
appraisal of the mechanism of action, furthering our
knowledge of the disease process,while emphasising the
importance of a careful assessment of the data, particu-
larly if derived from in vitro studies or animal models.
Interferon (IFN) β and glatiramer acetate (GA) are the
two most frequently used drugs in the treatment of re-
lapsing-remitting MS. It is proposed that both achieve
their effects by blocking the proinflammatory response.
Nevertheless, the ways in which they are thought to act,
and the extent of the data supporting these mechanisms
of action, differ considerably.

What do we know about the mechanism 
of action of IFN β?

IFN β is a type I IFN that is produced by fibroblasts and
has general antiviral, antiproliferative and im-
munomodulatory properties. At present, two forms of
IFN β are licensed for use in the treatment of MS. IFN β-
1a is produced in mammalian cells, has an amino acid
sequence identical to that of natural IFN and is glycosy-
lated, whereas IFN β-1b is produced in bacterial cells,
has a slightly different amino acid sequence and is not
glycosylated. However, although the structural differ-
ences do appear to impact on the level of biological ac-
tivity exhibited by these two molecules (the in vitro an-
tiviral activity of IFN β-1a being higher than that of IFN
β-1b) and the level of clinical efficacy, there is no evi-
dence that they differ from one another in terms of their
mechanism of action.

IFN β acts through specific receptors (Fig. 3), trig-
gering a signalling cascade, the effects of which appear
to act at several different levels within the pathways that
are involved in the pathological processes of MS. Events
that are thought to be influenced by IFN β include the
activation of immune cells, adhesion and transmigra-
tion of autoreactive T-cells across the blood-brain bar-
rier (BBB), cytokine secretion, antigen presentation and
macrophage function. It is also possible that IFN β may
have neurotrophic or neuroprotective actions within
the CNS, although data to support this remain incon-
clusive.

■ Effects of IFN β on T-cell activation 
and transmigration

One of the earliest actions of IFN β is the inhibition of
T-cell activation. In vitro studies comparing the re-
sponses of peripheral blood monocytes (PBMC) from
patients who have MS with those of healthy controls
have shown that treatment with IFN β can significantly
decrease T-cell activation and the production of the
proinflammatory cytokine IFN γ [115]. Downregulation
of adhesion molecules has also been reported to occur
as a result of IFN β treatment. For example, studies by
Gelati et al. have shown reduced expression of adhesion
molecules by PBMCs and cluster of differentiation
(CD)45+ cells in patients who have received 1 year of
IFN β treatment [116], while studies on very late antigen
(VLA)-4, the vascular cell adhesion molecule (VCAM)-1
ligand suggest that its expression on lymphocytes is de-
creased soon after initiation of IFN β treatment [117].
Thus, it appears that IFN β can begin to impact on the
pathological processes of MS, even before the autoreac-
tive cells make contact with the BBB.

There is also considerable evidence that IFN β in-
hibits transmigration across the BBB. Experiments ex-
amining the in vitro effect of IFN β on the ability of
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PBMCs or T-cells to migrate through fibronectin have
shown that IFN β decreases interleukin (IL)-2-induced
secretion of the matrix-degrading enzymes matrix met-
alloproteinase (MMP)-2 and MMP-9, reducing migra-
tion in a dose-dependent manner [118, 119]. Similar re-
sults were reported by Lou et al., who found that IFN β
dose-dependently inhibits the migration of activated
leukocyte migration through a tumour necrosis factor
(TNF) and IFN γ pre-stimulated human brain microvas-
cular endothelial cell monolayer [120].

■ Effects of IFN β on cytokine levels

Cytokines secreted by immune system cells play an im-
portant role in mediating the inflammatory process, and
can be broadly divided into two categories on the basis
of whether their effects are predominantly pro- or anti-
inflammatory.

IFN β decreases both the accumulation of the proin-
flammatory cytokine IL-2 and (as mentioned previously
in relation to MMP-9) the expression of IL-2 receptors
[115]. It also antagonises many of the effects of IFN γ, an
IFN that has predominantly proinflammatory actions
and has been implicated in several disease processes
that are linked with chronic immune activation. In pa-
tients with MS, IFN γ has been found to increase the rate
of exacerbations and there is some evidence to suggest
that it is involved in the pathogenesis of MS lesions.

Results from early studies of animals with experi-
mental autoimmune encephalomyelitis led to the pro-
posal that the IL-12/IL-10 balance was a key factor in the
regulation of inflammation and the pathogenesis of MS:
IL-12 appeared to be critical to the proinflammatory re-
sponse, while IL-10 acted as an inhibitor of this re-
sponse. Furthermore, IFN β was shown to cause recip-
rocal changes in IL-12 and IL-10 production in vitro,
decreasing IL-12 and increasing IL-10.However,many of
these experiments were conducted using p40-deficient
mice, which are now known to lack both IL-12 and IL-23
[121]. Moreover, although IL-12 is required for the de-
velopment of the Th1 phenotype, it appears that it is IL-
23 (a heterodimer comprising one IL-12 subunit [p40]
and one IL-23-specific subunit [p19]) that is critical for
the inflammatory activity and CNS-macrophage activa-
tion [122–124].

Experiments examining the production of IL-12 and
IL-10 by PBMCs and myelin basic protein (MBP)-spe-
cific T-cells from patients with MS [125–127] have re-
vealed that prior to the initiation of therapy these pa-
tients have higher levels of inducible IL-12 expression
than are found in healthy controls [127], and following
treatment with IFN β there is a dose-dependent decrease
in IL-12 [126, 127], with a corresponding increase in IL-
10 [125, 127]. To date, though, the effects of IFN β on IL-
23 expression have not been fully investigated.

■ Effects of IFN β on antigen presentation

Antigen-presenting cells (APCs), such as macrophages
and B-cells, express major histocompatibility complex
(MHC) class II molecules, which, along with co-stimula-
tory molecules, are essential for antigen presentation
and subsequent T-cell activation. IFN β decreases anti-
gen presentation and T-cell activation by: (i) reducing
the expression of co-stimulatory molecules; and (ii) re-
ducing the expression of MHC class II molecules on
APCs (Fig. 4) [89].

Studies by Genç et al. have indicated that following
IFN β treatment there is reduced lymphocytic expres-
sion of the co-stimulatory molecule CD80(B7-1), which
is involved in the induction of the T-helper (Th)1 proin-
flammatory response, while there is increased mono-
cytic expression of CD86 (B7-2), which is involved in the
induction of the Th2 anti-inflammatory response [91].
Furthermore, the essential role of co-stimulatory factors
in T-cell activation and the consequent production of
cytokines by these cells can be clearly illustrated
through experiments that show that the levels of cy-
tokines such as IL-10 (an anti-inflammatory Th2 cell cy-
tokine) increase when PBMCs are treated with IFN β,
but there is no such effect if the experiment is conducted
with purified CD4+ or CD8+ cells.

There is also evidence that the expression of MHC
class I molecules is enhanced under the influence of IFN
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β, whereas IFN γ enhances the expression of MHC class
II molecules (expressed by APCs). Co-exposure to both
IFN β and IFN γ produces an IFN β concentration-de-
pendent downregulation of MHC class II molecules
[128]. Thus, it appears that IFN β can counteract some of
the T-cell-activating effects of IFN γ.

■ Effects of IFN β on macrophage and microglia

Macrophages and microglia are thought to play an im-
portant role in the MS disease process. Although mi-
croglia can be either neuroprotective or neurodestruc-
tive, studies have indicated that in MS, activated
microglia secrete proteolytic enzymes, free radicals and
cytokines that contribute directly to damage of myelin,
axons and the BBB, inducing the formation of a proin-
flammatory loop that promotes the activation of other
immune cells. Studies in animal models have shown that
IFN β inhibits the proliferation of microglial cells and
IFN γ-induced elevation of MHC II expression, but in-
creases expression of microglial Fc receptors. Notably,
however, in the presence of IFN γ, IFN β-induced Fc re-
ceptor expression is reduced and, as IFN γ is present at
increased levels during MS activity, it seems likely that
the net effect of IFN β treatment in MS would be a re-
duction in proinflammatory microglial activity [129].

■ IFN β: the neuroprotection question

As is true for all currently available MS DMTs, evidence
of neuroprotective effects of IFN β is inconclusive. To
date, a study of embryonic mouse neuronal cells has in-
dicated that cell survival in the presence of IFN α/β is
greater than in controls [130]. There has also been a
spectroscopic study, which concluded that IFN β in-
creases the ratio of N-acetylaspartate to creatine in pa-
tients [131]. However, this conclusion is somewhat con-
troversial, as although the results may reflect metabolic
recovery they could also reflect an increase in metabolic
rate.

Current knowledge of the mechanism 
of action of GA

GA, a synthetic polymer consisting of a mixture of four
amino acids, was designed to act as a myelin ‘mimic’ or
‘decoy’ [132]. It has been proposed that GA competes
with and cross-reacts with MBP, thus blocking the MHC
II binding site, inducing the production of GA-specific
T-cells (which are alleged to have an anti-inflammatory
Th2 bias) and inhibiting the proliferation of myelin-spe-
cific T-cells or other myelin-APCs (Fig. 5). There are also
claims that GA treatment may have neuroprotective ef-

fects, which are mediated by GA-induced increases in
the release of neurotrophic factors such as brain-derived
neurotrophic factor (BDNF) [133].

However, the vast majority of studies of the mecha-
nism of action of GA have been based on in vitro stud-
ies of GA-reactive T-cell lines taken from patients with
MS (treated and untreated) and healthy controls. This in
itself raises some problems, as although there is no
doubt that GA-reactive T-cell lines do exist in these pa-
tients (even before the initiation of treatment), it is very
clear that there is a decrease in the number of these cells
as GA treatment progresses [134]. Questions have also
been raised with regard to the MBP cross-reactivity of
GA, and (as pointed out in the accompanying article by
Dr Bar-Or) it is now apparent that GA actually repre-
sents a multitude of antigens, the actions of which in-
clude the triggering of a more widespread T-cell re-
sponse. However, whether or to what extent such
widespread responses are beneficial remains unclear
and, thus, despite the numerous studies that have al-
ready been conducted, it seems that there are still more
questions than answers with regard to the mechanism of
action of GA.

■ Cross-reactivity between GA and MBP

Although there have been reports of cross-reactivity be-
tween GA and MBP (and vice versa), studies examining
the T-cell proliferative effects induced by such interac-

GA-specific
cells of Th2

bias

CD28

B7

TCR

MHC

X

Macrophage – APC

GA
peptide

GA?
Cross-reaction 

with MBP?

GA

Fig. 5 Proposed mechanism of action of glatiramer acetate (GA) on antigen pre-
sentation. The high affinity of GA for the major histocompatibility complex (MHC)
groove or the uptake of GA by an antigen-presenting cell (APC) leads to the pre-
sentation of GA as an antigen and the generation of GA-specific cells that are T-
helper (Th)2 biased. X represents an antigen that sits on the MHC groove. From
Yong VW (2002) Differential mechanisms of action of interferon-beta and glati-
ramer acetate in MS. Neurology 59:802–808 [89], and published with permission.
CD cluster of differentiation; MBP myelin basic protein; TCR T-cell receptor



V/23

tions have failed to support this concept. Indeed, in an
analysis of a panel of 721 GA-reactive T-cell lines (160
from untreated patients, 300 from patients treated with
GA, 90 from healthy controls and 171 from patients
treated with GA before and after therapy), there was no
detectable cross-reactivity between GA and MBP at the
level of cell proliferation (Fig. 6), and only 10 % of hu-
man GA-reactive T-cells secreted cytokines in response
to MBP [101]. This has led to the suggestion that chronic
subcutaneous administration of GA induces GA-reac-
tive Th2 cells, which after crossing the BBB are re-acti-
vated by myelin-APCs, causing a proportion of the Th2
cells to secrete anti-inflammatory cytokines that may
suppress inflammatory activity in other cells (a phe-
nomenon known as bystander suppression).

■ Effects of GA on the Th1/Th2 ratio

To date, a Th1 to Th2 cytokine shift has been shown only
in GA-reactive T-cell lines and not in whole PBMCs from
patients. Furthermore, the suggestion that GA-reactive
T-cells travel from the blood to the brain, where they are
re-activated by autoantigens,becomes subject to dispute
in the absence of conclusive evidence of cross-reactivity
between GA and autoantigens, as does the ability of GA
to induce bystander suppression and protection.

Even if we accept the evidence from GA-reactive T-
cell lines, the data in favour of a Th1/Th2 shift remain far
from conclusive. In the recent study conducted by

Neuhaus et al., cytokine profiles of GA-reactive T-cell
lines from six patients were examined before and after
treatment with GA. Of the six patients studied, no T-cell
shift was seen in four patients, a partial shift was seen in
one patient and a transient shift was seen in another pa-
tient. Furthermore, when 111 GA-reactive T-cell lines
were tested for secretion of IL-4 (an anti-inflammatory
Th2 cytokine), nine (8.1 %) were positive; whereas when
53 lines were tested for secretion of IFN γ (a proinflam-
matory Th1 cytokine) following stimulation with MBP,
eight (15.1 %) were positive [101].

Indeed, in a study by Duda et al., 590 T-cell lines gen-
erated from seven patients treated with GA over a period
of 12 months failed to show a significant increase in the
average levels of the anti-inflammatory cytokine IL-5
(their chosen indicator of Th2 bias). Subsequent re-
cruitment of another three patients, whose IL-13 (rather
than IL-5) levels were then monitored, did reveal an in-
crease in the levels of this anti-inflammatory cytokine.
However, there was also an increase in the production of
the proinflammatory cytokine IFN γ [100]. These results
are similar to those of Gran et al., who found that of 18
GA-reactive T-cell lines (taken from a single patient
treated with GA),three cross-reacted with MBP,only one
produced IL-5 and the same line also produced IFN γ
[95]. The apparent secretion of both pro- and anti-in-
flammatory cytokines in response to GA is confusing
with regard to the proposed mechanism of action of GA,
and does little to support its ability to induce a T-cell
shift.

■ Effects of GA on monocytes

Data relating to the effects of GA on human monocytes
are limited. There are indications that in the presence of
GA (20 mcg/mL) there is reduced expression of the hu-
man leukocyte antigens DR and DQ. However, although
GA also causes a decrease in levels of TNF-α, there is an
increase in IL-1β (at GA concentrations of 5, 10 and 20
mcg/mL) [135], a proinflammatory cytokine that has
been implicated in the promotion of oligodendrocyte
death [136].Nevertheless,a recent study by Kim et al.has
indicated that GA therapy in patients with MS induces
type 2 monocytes [97].

■ Is GA neuroprotective?

Recent experiments by Ziemssen et al., showing that GA-
reactive T-cells produce BDNF, have led to the proposal
that GA may have neurotrophic and/or neuroprotective
effects in MS [113]. These findings have generated con-
siderable interest, which is understandable, as neuro-
protection is one of the key goals in the treatment of MS.
In considering these data, however, it is important to re-

0.0

0.5

1.0

1.5

2.0

[M
et

hy
l-3 H

]t
hy

m
id

in
e-

in
co

rp
or

at
io

n,
cp

m
 ×

 1
0–3

7.14.3

COP-reactive TCL; GJ-MI-COP50
MBP-reactive TCL; HK-BP32N

No Ag COP MBP MOG S100 TT PHA

Fig. 6 Proliferative response of a representative copolymer 1 (COP)-reactive and a
myelin basic protein (MBP)-reactive T-cell line (TCL). TCLs were stimulated with
COP, MBP, various control antigens (Ags: human myelin-oligodendrocyte glyco-
protein [MOG], S100β, and tetanus toxin [TT]), or the T-cell mitogen phyto-
haemagglutinin (PHA). There was no detectable cross-reaction between COP and
MBP at the level of proliferation. From Neuhaus O, et al. (2000) Multiple sclerosis:
comparison of copolymer-1-reactive T cell lines from treated and untreated sub-
jects reveals cytokine shift from T helper 1 to T helper 2 cells. Proc Natl Acad Sci USA
97:7452–7457 [101], and published with permission. © 2000 National Academy of
Sciences, USA



V/24

alise that neuroprotective factors such as this are by no
means specific to GA-reactive monocytes. Indeed, ear-
lier studies by Kipnis et al. indicate that both GA- and
MBP-reactive cells secrete a variety of neurotrophic fac-
tors in response to optic nerve injury in rat, while stud-
ies of human cells revealed that such factors are secreted
by all activated human T-cells, B-cells and monocytes,
both in vitro and in inflammatory brain lesions [111,
137].

Conclusions

While much has been learnt about the mechanisms of
action of DMTs in MS, there are still many gaps in our
knowledge. Current data strongly suggest that IFN β has
a multi-level immunomodulatory mode of action. In-
deed, it appears that IFN β impacts on T-cell activity
prior to transmigration across the BBB, in addition to
inhibiting the transmigration process and many of the
subsequent stages along the MS disease pathways. In
contrast, there is considerably less certainty surround-
ing the mechanism of action of GA. The originally pro-
posed mechanism of cross-reactivity with MBP is now
widely questioned, and it appears that any effects of GA
may be exerted at a more general level. This would cer-
tainly be consistent with the results from pivotal clinical
trials of these drugs, in which high-dose,high-frequency
IFN β treatment was found to show superior and more
consistent efficacy than GA in reducing relapse fre-
quency and slowing disability progression. Neverthe-
less, it is on the basis of this clinical efficacy, as opposed
to mechanism of action, that treatment choices should
be made. Although a drug’s mechanism of action is
likely to impact on its clinical efficacy, mechanism of ac-
tion studies that are not supported by clinical data are
not a reliable basis on which to make treatment deci-
sions.

What do we know about the mechanism
of action of disease-modifying
treatments in MS?
An overview of current clinical opinion
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Despite the advances made in multiple sclerosis (MS)-
related research over recent years, much still remains
unknown. The promise held out by effective therapies
such as interferon (IFN) β and glatiramer acetate (GA)
has led to a desire to better understand the mechanism
of action of these agents, thus enabling more targeted
therapy. A better understanding of the mechanisms of
action of both IFN β and GA may lead to improvements
in treatment optimisation,determination of appropriate
therapy for individual patients and future drug develop-
ment.

At present, though, our knowledge of mechanisms of
action does not always allow clear correlations to be
drawn between these mechanisms and the clinical out-
comes produced by disease-modifying treatments
(DMTs). For GA, in particular, clinical data are far from
conclusive in their support of the mechanisms of action
identified in vitro. It is to be hoped that, as research con-
tinues, we will gain a greater insight into the mecha-
nisms of action of MS therapies. Nevertheless, a drug’s
mechanism of action, even when well defined, does not
provide a solid basis on which to make treatment deci-
sions. Mechanisms of action that are effective in the
treatment of MS will always be reflected by clinical effi-
cacy data, and it is on the basis of these clinical data that
treatment choices should be made.

Such conclusions were strongly supported by current
clinical opinion, as shown by the results of keypad vot-
ing following presentations based on the information
contained within the previous three manuscripts. For
example, when asked about the basis on which treat-
ment decisions should be made when selecting a DMT,
94 % of participants responded that it should be based
on long-term clinical evidence, while only 4 % thought
that it should be based on mechanism of action, and 2 %
thought that magnetic resonance imaging should be the
determining factor. Similarly, only 5 % of participants
felt that there was ‘direct’ or ‘convincing’ evidence for
neuroprotection by any of the currently available DMTs.
However, it is interesting to note that 64 % of partici-
pants thought that the highest priority for basic research
in MS should be remyelination, neuroprotection and re-
generation, while 23 % thought that research should fo-
cus on treatment response markers.A breakdown of the
responses to these and other pivotal questions can be
found in the overall conclusions by Professor Bates and
the results of the interactive keypad voting (see pages 83
to 87 and 88 to 89 in this supplement).
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