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Development and malformations 
of the human pyramidal tract

Introduction

The corticospinal tract invariably arises from layer-V
pyramidal cells, particularly from rostral, frontal parts
of the cerebral cortex. Both motor and somatosensory

cortices give rise to corticospinal projections [4, 34, 61,
62, 80, 104]. Several motor areas on the medial surface of
the macaque hemisphere give rise to corticospinal pro-
jections, including the supplementary motor area and
various parts of the cingulate cortex [34, 35, 62]. With
functional brain imaging comparable non-primary mo-
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■ Abstract The corticospinal tract
develops over a rather long period
of time, during which malforma-
tions involving this main central
motor pathway may occur. In ro-
dents, the spinal outgrowth of the
corticospinal tract occurs entirely
postnatally, but in primates largely
prenatally. In mice, an increasing
number of genes have been found
to play a role during the develop-
ment of the pyramidal tract. In ex-
perimentally studied mammals,
initially a much larger part of the
cerebral cortex sends axons to the
spinal cord, and the site of termi-
nation of corticospinal fibers in the
spinal grey matter is much more
extensive than in adult animals. Se-
lective elimination of the transient
corticospinal projections yields the
mature projections functionally
appropriate for the pyramidal
tract. Direct corticomotoneuronal
projections arise as the latest com-
ponents of the corticospinal sys-
tem. The subsequent myelination
of the pyramidal tract is a slow
process, taking place over a consid-
erable period of time. Available
data suggest that in man the py-

ramidal tract develops in a similar
way. Several variations in the funic-
ular trajectory of the human py-
ramidal tract have been described
in otherwise normally developed
cases, the most obvious being those
with uncrossed pyramidal tracts.

A survey of the neuropathologi-
cal and clinical literature, illus-
trated with autopsy cases, reveals
that the pyramidal tract may be in-
volved in a large number of devel-
opmental disorders. Most of these
malformations form part of a
broad spectrum, ranging from dis-
orders of patterning, neurogenesis
and neuronal migration of the
cerebral cortex to hypoxic-is-
chemic injury of the white matter.
In some cases, pyramidal tract
malformations may be due to ab-
normal axon guidance mecha-
nisms. The molecular nature of
such disorders is only beginning to
be revealed.

■ Key words pyramidal tract ·
corticospinal tract · development ·
developmental disorders · aplasia ·
hypoplasia · abnormal decussation



1430

tor areas have been found in the human cortex [42, 54,
110, 116] which, like the primary motor cortex, also have
important roles in the control of hand and finger move-
ments. Pyramidal tract damage can be assessed on mag-
netic resonance imaging (MRI) reconstructions [16, 36,
128, 130], with functional MRI [129] and transcranial
magnetic stimulation [36, 129]. In man, the corti-
cospinal or pyramidal tract is one of the latest develop-
ing descending pathways [3, 131]. Although the pyrami-
dal tract already reaches the level of the pyramidal
decussation at the end of the embryonic period, i. e. at
eight weeks after fertilization, its further development is
rather slow, and its myelination is not complete until the
age of two to three years. Because of this slow develop-
ment, malformations of the pyramidal tract may occur
over almost the entire prenatal period.

In the present review, the development and malfor-
mations of the human pyramidal tract are described.
Following a brief survey of the vast amount of literature
on the development of the mammalian pyramidal tract,
the development of the human pyramidal tract, its vari-
ations and malformations, the latter illustrated with au-
topsy cases, are discussed. In line with recent classifica-
tions of central nervous system malformations [12,119],
we use the following classification for malformations, in
which the pyramidal tract may be involved: 1) malfor-
mations of induction; 2) malformations due to abnorm-
al cell proliferation; 3) malformations due to abnormal
neuronal migration; 4) malformations due to abnormal
axon guidance mechanisms; and 5) malformations due
to secondarily acquired injury, leading to destructive
lesions. Moreover, certain malformations may lead to
anomalies of pyramidal decussation.

Development of the pyramidal tract in rodents

The development of the pyramidal tract has been exten-
sively studied particularly in rodents, much less so in
primates. In rodents, in striking contrast to primates, the
outgrowth of the corticospinal tract into the spinal cord
occurs entirely postnatally [106, 126]. In rats, by embry-
onic day 14 (E14), the earliest corticofugal projections
arise from preplate cells [30, 95], i. e. postmitotic neu-
rons in the first cortical layer to develop. The preplate is
later split into a marginal zone (layer I) and the subplate
by cortical plate neurons that form layers II–VI. Most of
the preplate cells later occupy the subplate. Axons of
subplate cells may pioneer the pathway from the cere-
bral cortex into the diencephalon [30, 94]. Rat corti-
cospinal neurons are generated on E15–E17 [93].Cells of
cortical layer V start growing their axons towards the in-
ternal capsule at least by the time (E16) when they arrive
in the cortical plate [67]. Corticospinal axons traverse
the diencephalon at E17.5,reach the cerebral peduncle at
E19, the pontine nuclei at E19.5, and the caudal limit of

the medulla oblongata at E20.5, just before birth [67,
121].

■ Early steps in the guidance of pyramidal tract axons

Corticospinal axon growth cones are set a formidable
task in navigating through the internal capsule, cerebral
peduncle, pons and medulla to reach their distant tar-
gets. This task is simplified by the fragmentation of their
journey into shorter steps interrupted by intermediate
targets or choice points,at which other cells provide crit-
ical guidance cues that direct growth cones on the next
stage of their trajectory. The subpallium plays a promi-
nent role in the guidance of corticofugal and thalamo-
cortical axons [30, 95]. The early steps in the guidance of
corticothalamic and pyramidal tract axons appear to be
controlled by common mechanisms. Semaphorins regu-
late the initial extension of cortical axons towards the
adjacent white matter through a complex mechanism
involving repulsion from the outer, marginal zone and
attraction from the inner, subventricular zone [9, 112].
Subsequently, corticofugal axons are attracted laterally
towards the internal capsule by a mechanism that in-
volves the chemoattractant netrin 1, which is promi-
nently expressed in the ganglionic eminences [92, 113].
A critical decision point in the guidance of corticofugal
fibers is located at the telencephalic/diencephalic
boundary [87]. Corticofugal fibers enter the cerebral pe-
duncle, and subsequently split into the layer-VI origi-
nating corticothalamic projections and the layer-V from
which arises the pyramidal tract. Appropriate pattern-
ing of the basal telencephalon and hypothalamus is es-
sential for guidance of corticospinal projections (Fig. 1).
Loss of function of the homeobox gene Nkx2.1 causes
molecular transformation of the basal forebrain. In
Nkx2.1-deficient mice, layer-V cortical projections take
an abnormal path when coursing through the basal fore-
brain. Guidance of corticothalamic and thalamocortical
axons is not impaired. The basal telencephalon and the
hypothalamus repel the growth of cortical axons. The
axon guidance molecule Slit2 may contribute to this ac-
tivity. In Slit2 mutant mice, corticofugal axons fail to en-
ter the cerebral peduncle normally, and instead follow
an abnormal course towards the surface of the telen-
cephalon [10].

■ Spinal outgrowth of the pyramidal tract

Rat corticospinal fibers reach upper cervical segments
shortly after birth, i. e. at postnatal day 0 (P0), the third
thoracic segment at P3, the upper lumbar cord at P7, and
the sacral spinal cord at P9 [57, 121]. After arrival of the
first axons at a particular segment, new axons continue
to be added to the tract for at least one week [57, 121,
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122]. A delay of two days occurs between the arrival of
corticospinal axons at a particular level of the spinal
cord and their outgrowth into the spinal grey. Initially,
most parts of the cerebral cortex including the occipital
lobe innervate the spinal cord [69, 106, 127]. The with-
drawal of collaterals correlates with the dramatic loss of
fibers from the corticospinal tract during development
[122]. O’Leary and co-workers [106] distinguished three
stages in the development of cortical axons arising in
layer-V neurons (Fig. 2): 1) layer-V axons extend out of
the cortex towards the spinal cord, bypassing their sub-
cortical targets; 2) the subcortical targets are exclusively
contacted by axon collaterals that develop by delayed in-
terstitial branching off the flank of a spinally directed
primary axon, and 3) specific branches and segments of
the primary axon are selectively eliminated to yield the
mature projections functionally appropriate for the area
of cortex in question. The homeodomain transcription
factor Otx1 plays an important role in this elimination
process [143]. Otx1 mutants are defective in the refine-
ment of the exuberant, transient projections. In autoso-
mal recessive mutant mice with extensive perturbations
in the development of the cerebral cortex such as the
reeler and yotari mice, corticospinal tract neurons are
spread throughout all layers of the mutant cortex [65,
149]. The specificity of corticospinal connections is,
however, relatively unaffected [135].

Several mechanisms control fiber outgrowth into the
corticospinal target areas. A diffusible chemotropic sig-
nal may be one of the environmental cues involved in ax-
onal outgrowth and guidance. The pons becomes inner-
vated by controlling the budding and directed
outgrowth of corticospinal axon collaterals through the
release of a diffusible chemotropic substance [63]. Sim-
ilarly, the cervical spinal grey matter becomes inner-
vated by corticospinal axons through the release of a dif-
fusible chemotropic factor [71]. The neuron-specific
phosphoprotein B-50 (or GAP43), a major substrate of
kinase C in fetal nerve growth cones, is strongly ex-
pressed during the outgrowth of the pyramidal tract
[55]. The cell adhesion molecule L1 (L1CAM) may be in-
volved in fascicle formation of outgrowing later arriving

corticospinal fibers [51, 70]. In L1 mutant mice, the L1
mutation causes a primary pathfinding deficit in the de-
velopment of the corticospinal decussation [21, 27]. A
varying, but reduced number of corticospinal fibers was
observed in the posterior columns of L1-deficient mice.
These fibers did not extend beyond cervical levels.
Moreover, a substantial number of corticospinal axons
failed to cross the midline.

■ Mechanisms of pyramidal tract decussation

Various mechanisms are involved in the proper decus-
sation of the pyramidal tract. During its outgrowth,
Joosten and Gribnau [68] noted a prominent vimentin-
immunoreactive glial septum in the midline raphe of the
hindbrain and spinal cord. Such a glial septum is absent
in the decussation area of corticospinal tract fibers. This
glial septum may act as a physical barrier during the
outgrowth of the corticospinal tract by preventing its
decussation. Oligodendrocytes and CNS myelin contain
potent, membrane-bound inhibitors of neurite growth
[19, 20]. Oligodendrocyte-associated neurite growth in-
hibitors (NI-35 and NI-250) in the already myelinated
cuneate and gracile fascicles play an important role in
channelling and ‘guard-rail’ function to keep the corti-
cospinal tract axons in a compact tract and to prevent
the ingrowth into the neighbouring sensory tracts [128].
Through Eph receptors, ephrin-B3 may function as a
midline-anchored repellent that prevents corticospinal
fibers from crossing back into the ipsilateral side of the
spinal cord [78, 150]. Ephrin-B3, a ligand for the recep-
tors EphB3 and EphA4, has a restricted expression pat-
tern along the midline of the neural tube [14]. The re-
ceptor EphA4 is expressed in postnatal corticospinal
neurons as their axons find their way down the con-
tralateral spinal cord [33]. In ephrin-B3 mutant mice,
corticospinal tract axons fail to respect the midline
boundary of the spinal cord and bilaterally innervate
both contralateral and ipsilateral motoneuron popula-
tions [150]. In EphA4-deficient mice, comparable obser-
vations were made [25]. Netrin-1 receptors also appear

Fig. 1 The guidance of corticofugal
projections at the telencephalic/dien-
cephalic boundary [87]. The paths fol-
lowed by corticospinal and corticothala-
mic axons are shown for wild-type (a)
and Nkx2.1 mutant mice (b). The grey ar-
eas in a show the normal expression pat-
tern of Nkx2.1 in the forebrain. ap alar
plate; bp basal plate; Cb cerebellum; cp
cerebral peduncle; Ctx cerebral cortex;
DT dorsal thalamus; GP globus pallidus;
ic internal capsule; M mesencephalon;
ob olfactory bulb; Poa preoptic region;
PT pretectum; Str striatum; VT ventral
thalamus; V, VI cortical layers V and VI
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to be necessary for a proper decussation of the pyrami-
dal tract [41].

Development of the pyramidal tract 
in macaque monkeys

In rhesus monkeys, corticospinal fibers have reached at
least the level of the lower cervical segments at birth
[79]. Ipsilateral corticospinal projections are sparse in
neonatal macaque monkeys [6, 53]. Tract-tracing exper-

iments in fetal monkeys show that the areal distribution
of corticospinal neurons in the cerebral cortex is larger
than in infant macaques [53, 75]. Both the areal extent of
the cortical origin and the relative number of corti-
cospinal neurons with spinal axons regress very sub-
stantially over a period of two years [53]. The direct cor-
ticomotoneuronal projections do not appear to develop
until six to eight months of age [79]. Lawrence and Hop-
kins [83] extensively studied the development of hand
and finger movements in infant rhesus monkeys. The
earliest signs of reaching were found at three to four
weeks of age. Reaching was inaccurate and grasping of
food was part of a rather gross whole arm and hand
movement. Smooth reaching occurred in the third
month and the first signs of relatively independent fin-
ger movements were present in the second and third
month. Fully mature relatively independent finger
movements were present at seven to eight months of age.
This developmental time course correlates well with the
appearance of corticomotoneuronal projections [6, 7,
29, 79]. The maturation of the monkey corticospinal
tract was also studied using non-invasive transcranial
magnetic stimulation of the motor cortex [43, 44, 107].
The latency of antidromic corticospinal volleys evoked
from the pyramid and recorded from the motor cortex
decreased dramatically during the first postnatal
months. The fastest corticospinal fibers mature more
rapidly over their cranial than their spinal course, where
they undergo a tenfold change in conduction velocity
from birth to adulthood.A correlation with the develop-
ment of relatively independent finger movements was
found.

Development of the human pyramidal tract

Since studies of the human corticospinal tract are
necessarily non-invasive, they are substantially more
limited than experimental studies in other primates.
However, correlating carefully selected (mainly post-
mortem) human studies of the pyramidal tracts with
those in other primates has been fruitful. The develop-
ment of the cerebral cortex may be divided into three,
partly overlapping periods [88]: 1) an early, embryonic
period characterized by the establishment of the pre-
plate, which starts in about 40-day-old embryos; 2) an
intermediate, fetal or migration period characterized by
the formation of the cortical plate; the cortical plate is
first visible at the end of the embryonic period (about
52-day-old embryos); and 3) a late, perinatal period
characterized by specific phenotypic differentiation and
functional maturation of cortical plate neurons, which
starts about the 24th week of gestation. The separation
between the fetal and perinatal periods is somewhat ar-
bitrary but may be clinically relevant [88]. At that age
prematures become viable. Moreover, in the fetal period

Fig. 2 Three stages in the development of cortical axons arising in layer-V neurons
[106]. In a layer-V axons extend towards the spinal cord, bypassing their subcorti-
cal targets. In b the subcortical targets are exclusively contacted by collaterals that
develop by branching off a spinally directed primary axon. In c specific branches
and segments of the primary axon are selectively eliminated to yield the mature
projections functionally appropriate for the area of cortex in question. cb cerebel-
lum; ci colliculus inferior; cs colliculus superior; Cxmot motor cortex; Cxvis visual cor-
tex; dcn dorsal column nuclei; ob olfactory bulb; oli inferior olive; tgmes tegmentum
mesencephali
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so defined, disorders of neuronal migration are likely to
occur, and congenital or acquired abnormalities of the
structural organization of the cerebral cortex are com-
mon in the perinatal period.

The first cortical layer to develop is the so-called pre-
plate or primordial plexiform layer. During the forma-
tion of the cortical plate, the preplate is divided into the
marginal zone (the future cortical layer I) above and the
subplate below the cortical plate. The cortical plate gives
rise to the cortical layers II–VI that are formed in an in-
side-out sequence, first layer VI, and subsequently layers
V to II. Therefore, layer-V neurons are among the first
cortical neurons that reach their place in the cortical
plate. The first corticofugal projections originate in the
first, embryonic period of cortical development [96].
Therefore, the corticospinal tract arises in a very imma-
ture cortical plate. Humphrey [64] studied the out-
growth of the human corticospinal tract with a silver
technique (Figs. 3, 4). The corticospinal tract reaches the
caudal medulla at stage 23 [64, 97]. After reaching the
level of the pyramidal decussation at the end of the em-
bryonic period, a rather long waiting period was found.
Pyramidal decussation was complete by 17 weeks’ men-
strual or gestational age (15 postfertilization weeks),
and a massive increase in the number of pyramidal tract
fibers occurred at cervical levels between 16 and 17 ges-
tational weeks. Lower levels of the spinal cord were

reached by 19 (lower thoracic cord) and 29 (lumbosacral
cord) gestational weeks (Fig. 4).

Using GAP43-immunohistochemistry, Eyre and co-
workers [38] showed that by 29 gestational weeks, the
corticospinal tracts are the only major tracts expressing
this neuron-specific phosphoprotein in the lower cervi-
cal cord. Following a waiting period of up to several
weeks, corticospinal fibers progressively innervated the
grey matter. By 35 gestational weeks, GAP43-immunore-
activity was greatly increased in the grey matter, the dor-
sal and ventral horns in particular. At 37 gestational
weeks, when the great majority of axons expressing
GAP43 appeared to derive from the corticospinal tracts,
Nissl-stained motoneuron cell bodies were closely op-
posed by GAP43-immunoreactive varicose axons, indi-
cating the presence of direct corticomotoneuronal pro-
jections prenatally. Some caution would be appropriate,
however, since at least some of these GAP43-labeled ax-
ons may be derived from other spinal systems. At term,
direct cortical projections to Ia-inhibitory interneurons
were shown with electrophysiological techniques [38].
In man, the maturation of skilled finger movements re-
quires a much longer period of development than in the
rhesus monkey [46]. This maturation is also dependent
on that of the corticospinal tracts [37, 98, 99]. During the
first two years of life, a rapid decline was shown in the
central conduction time of responses to magnetic stim-

Fig. 3 The outgrowth of the human
corticospinal tracts through the brain
stem, shown for 9, 13, and 18 gesta-
tional weeks [3, 64]. cb cerebellum; cc
corpus callosum; Cd caudate nucleus;
cospa, cospl anterior and lateral corti-
cospinal tracts; cp cerebral peduncle; cs
colliculus superior; ic internal capsule;
Put putamen; thal thalamus
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ulation of the cerebral cortex. Adult values for central
conduction times were achieved around two to four
years of age. This extended time course is in keeping
with the protracted period during which myelination of
the human pyramidal tract continues. The early direct
corticospinal innervation presumably permits cortical
involvement in activity dependent maturation of spinal
motor centres during a critical period of perinatal de-
velopment [38]. Neonates have ipsilateral corticospinal
responses with shorter onsets than contralateral re-
sponses but similar thresholds and amplitudes [39]. Dif-
ferential development was present from three months
onwards so that by 18 months ipsilateral responses were
smaller and had higher thresholds and longer onset la-
tencies than contralateral responses. These data suggest
that the development of the corticospinal tract may di-
verge between man and macaque monkeys in at least
two ways: 1) the prenatal establishment of some cortico-
motoneuronal connections in human fetuses well before
the presence of relatively independent finger move-
ments, whereas there is a close correspondence between
these two events in infant monkeys; and 2) the coexist-

ence in human neonates of fast-conducting contralat-
eral and ipsilateral corticospinal projections which are
differentially withdrawn during the postnatal period,
whereas ipsilateral corticospinal projections are sparse
in neonate macaques.

Myelination of the pyramidal tract usually starts at
the end of the second or the beginning of the third
trimester [17, 145, 147]. Wózniak and O’Rahilly [145]
showed it to be already in progress at the level of the
pyramidal decussation at 25 weeks of gestation. Myeli-
nation of the pyramidal tract occurs over a protracted
period and is not complete until the age of two to three
years [76, 147]. In the fetal and neonatal spinal cord (see
Fig. 8a), the yet unmyelinated corticospinal tracts stand
out as unstained areas in the white matter. The cranial
part of the pyramidal tract is myelinated much earlier
than its spinal part. The MRI pattern of myelination lags
several weeks behind if compared with the histological
timetable, probably due to the minimal concentration of
myelin required on MR images [136].

Variations in the adult human pyramidal tracts

Nathan and co-workers [101] described the course, lo-
cation and relations of the human corticospinal tracts
within the spinal cord on the basis of autopsy material
from patients with supraspinal lesions restricted to the
corticospinal tracts or receiving anterolateral cordot-
omies. The lateral corticospinal tract is characterized
by: 1) the large extent of the spinal white matter covered
by the tract; 2) the separation in the lower cervical cord
of fibers from the main mass of the tract, which reach
the periphery of the cord in the anterolateral sector; and
3) its position dorsal to the dentate ligament in the cer-
vical cord. The caudal extent of the anterior corti-
cospinal tract depends on its size. When small it cannot
be identified further caudally than the upper thoracic
cord, but when large it continues into the sacral seg-
ments.

In 1876, Flechsig [45] already suggested that much of
the pyramidal tract variability in man occurs at the
pyramidal decussation. Several variations in the funicu-
lar trajectory of the human pyramidal tracts were de-
scribed in otherwise normally developed cases [100,
101, 105, 148]. The pyramidal decussation may even be
absent [100, 105, 138, 148] and aberrant pyramidal bun-
dles may occur [80, 100].Yakovlev and Rakic [148] stud-
ied the spinal cord of fetuses and neonates by staining
for myelin sheaths. Since the pyramidal tracts were not
yet myelinated, they could be followed as unstained bun-
dles in their course through the medulla and the spinal
cord. Partial decussation of the pyramidal tract was
found in 66.9 % of the cases studied. Several variations
were observed (see Fig. 5). In more than two-thirds of
their specimens, the fibers of the left pyramid crossed to

Fig. 4 The spinal outgrowth of the human corticospinal tracts, shown for 14, 19,
26, 29, 31, and 37 gestational weeks [3, 64]. The small bundles show the outgrowth
of the anterior corticospinal tract (not identifiable in the fetal material of 29 and 31
weeks [3]), whereas the larger bundles show the outgrowth of the lateral corti-
cospinal tract. C1,4,6,8, Th1,6,9, L1,5, and S1,4 indicate spinal segments
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the right side of the spinal cord at higher, more cranial
levels in the decussation than the fibers of the right
pyramid. Moreover, more fibers of the left pyramid de-
cussated than of the right pyramid, whereas more fibers
of the right pyramid than of the left one remained un-
crossed. Therefore, the right side of the spinal cord, at
least in the cervical region, receives more pyramidal
tract fibers from both cerebral hemispheres than the left
side. The resulting greater number of corticospinal
fibers on the right side of the cord appears to be unre-
lated to handedness [74, 101].

Malformations of the human pyramidal tract

Malformations of the pyramidal tract may occur at var-
ious stages of development and, in general, are part of
extensive malformations of the brain. They may be
found in malformations due to induction defects, ab-
normal cell proliferation,abnormal neuronal migration,
abnormal axon guidance mechanisms, secondarily ac-
quired injury leading to destructive lesions, and in mal-
formations leading to anomalies of decussation. In
Figs. 6–8 some examples of aplasia and other malforma-
tions of the pyramidal tract are shown. Aplasia of the

Fig. 6 Macroscopy of some examples
of developmental disorders of the pyra-
midal tracts: a, b lateral and basal views
of the brain in an extreme, familial case
of microcephaly [132, with permission
from Springer]; c basal view of the brain
of a holoprosencephaly case; d, e lateral
and basal views of a case of poren-
cephaly. Note the medially located infe-
rior olives in all cases (small arrows)

Fig. 5 The possible variations of the decussation of
the pyramidal tracts [148]. In 66.9 % there was partial
decussation of the pyramidal tracts, leading to a
larger crossed and a smaller uncrossed pyramidal
tract on both sides (a). Complete decussation of both
pyramids with absence of both anterior pyramidal
tracts was found in 16.2 % (b). In 13.9 % one pyrami-
dal tract crossed completely (c). A complete decussa-
tion of the left pyramidal tract occurred six times
more often than a complete decussation of the right
pyramid. Complete non-decussation of one pyramid
(d) was not observed in Yakovlev and Rakic’s series,
but noted by others [103]. In one specimen the lateral
and anterior pyramidal tracts were absent on the side
of the completely crossed pyramid (e). In three spec-
imens (2.3 %) complete absence of decussating bun-
dles, leading to the absence of both lateral pyramidal
tracts, was found (f)
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corticospinal tracts causes marked reduction of the size
of the cerebral peduncles and crowding of the pontine
nuclei. The medulla has no pyramids, and the inferior
olivary nuclei abut the ventral surface of the medulla,
covered by a thin layer of marginal glia. In the spinal
cord, the normal-sized posterior funiculi predominate,
and the dorsal horns are rotated laterally.The lateral and
anterior funiculi are very small. An abnormal sulcus
may be seen at the lateral surface of the cord (Fig. 8c).

After damage occurring during the fifth and sixth fetal
month, the pyramids are hypoplastic and the spinal cord
may show relatively small, hypoplastic tracts. Lesions at
a later stage of development induce corticospinal tract
degeneration rather than aplasia. The degenerated cor-
ticospinal tracts stand out as pale,non-myelinated zones
[48].

Fig. 7 Microscopy of the pyramidal
tracts at the medullary level. Absence of
the pyramids is shown for: a an extreme,
familial case of microcephaly [132, with
permission from Springer]; b holopros-
encephaly, and c X-linked hydro-
cephalus. In d brainstem malformations
including medial inferior olives above
malformed pyramids, possibly leading
to non-decussation of the pyramidal
tracts (see Fig. 8 f) are shown for a se-
vere, lethal form of the Möbius syn-
drome

Fig. 8 Microscopy of the pyramidal
tracts at the spinal level. In a neonatal
control case (a), the corticospinal tracts
stand out in the thoracic cord as un-
stained pathways. Complete crossing of
one pyramidal tract is shown in another
neonatal control case (b). Absence of the
corticospinal tracts is shown for: c X-
linked hydrocephalus (thoracic cord); d a
microcephaly case (thoracic cord); note
the abnormal sulcus just below the dor-
sal horn (arrow); and e holoprosen-
cephaly (lumbar cord). In f, non-decus-
sation of the pyramidal tracts is shown
for a severe, lethal form of the Möbius
syndrome (cervical cord). cospa anterior
corticospinal tract; cospl lateral cortico-
spinal tract
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■ Pyramidal tract malformations due 
to induction defects

The embryonic period in man can roughly be subdi-
vided into the following phases: 1) formation and sepa-
ration of the germ layers; 2) dorsal induction, and 3)
ventral induction. During the separation of the germ
layers enterogenous or neurenteric cysts, extending into
the vertebral canal, may arise as well as the so-called
split notochord syndrome. These malformations may
severely compress the spinal cord [109, 134]. During the
dorsal induction phase the neural tube defects arise.
Aplasia of the corticospinal tracts is a consistent feature
in anencephaly [84]. It has also been noted in occipital
encephaloceles [73]. In syndromes with encephaloceles
such as the Meckel-Gruber syndrome, a triad of prosen-
cephalic dysgenesis, occipital encephalocele and rhom-
bic roof dysgenesis, the pyramids are also absent [1, 22].
In myelomeningoceles, the consequences of the spinal
lesion depend on the level, which in 80 % of cases is lo-
cated at the lumbosacral level. With lesions above L3,
there is complete paraplegia. The characteristic devel-
opmental malformation of the ventral induction phase
is holoprosencephaly. In its most severe, alobar form the
corticospinal tracts are usually missing [48, 103],
whereas in the less severe, semilobar and lobar forms of
holoprosencephaly the pyramidal tracts are either ab-
sent or hypoplastic (Figs. 6c, 7b, 8e). In Apert’s syn-
drome, the most common form of craniosynostosis due
to a disturbance in the formation of the skull base in the
ventral induction period, hypoplastic pyramids were
found [24, 86].

■ Pyramidal tract malformations due 
to abnormal cell proliferation

Aplasia of the corticospinal tracts is also found in cases
of severe microcephaly [23, 103, 108, 132, see Fig. 6a, b],
in microlissencephaly [13], and in certain chromosomal
disorders. Uncommonly large pyramids were found in
three cases of cerebellar hypoplasia [4]. Bilateral corti-
cospinal tract hypertrophy was found in the X-linked
form of Kallmann syndrome [77]. Unilateral hypertro-
phy of the pyramidal tract is uncommon, and usually is
associated with an early destructive lesion in the con-
tralateral hemisphere [48, 137]. It may also occur in
hemimegalencephaly with its obvious asymmetry of the
pyramids [28, 114].

■ Pyramidal tract malformations due 
to abnormal neuronal migration

Disorders of neuronal migration of the cerebral cortex
are currently divided [12] into: 1) the lissencephaly/sub-

cortical band spectrum; 2) the cobblestone complex
(Walker-Warburg and related syndromes); 3) hetero-
topia; 4) polymicrogyria and schizencephaly, and 5)
malformations of cortical development, not otherwise
classified (e. g., Zellweger syndrome). Aplasia or hy-
poplasia of the pyramidal tract may occur in neuronal
migration disorders of the cerebral cortex, especially in
the Walker-Warburg syndrome with its severe white
matter changes [48, 60, 103, 144]. In the related
Fukuyama type of congenital muscular dystrophy and
muscle-eye-brain disease, the pyramidal tracts are hy-
poplastic [52, 118]. In classic or type 1 lissencephaly, the
pyramids are hypoplastic or absent [48,103,115].In sub-
cortical band heterotopia (SBH) or ‘double cortex’, bilat-
eral, extensive plates of heterotopic grey matter are
found beneath the cortex. With functional MRI it was
shown that, despite its epileptogenic activity, SBH seems
to be responsible for part of the functional activity
[111]. This suggests that the double cortex in SBH par-
ticipates in the formation of the corticospinal tract. In
an animal model for SBH, the ‘tish’ rat, the double cortex
has reciprocal connections with the thalamus and the
other hemisphere, and, moreover, gives rise to part of
the contralateral corticospinal projection [120]. In
polymicrogyria and schizencephaly, hypoplastic to ab-
sent pyramidal tracts may occur [18, 58, 81]. It has also
been described in a familial form of schizencephaly due
to an EMX2 mutation [56]. In Zellweger syndrome, a mi-
tochondrial disorder, the pyramidal tracts are hypoplas-
tic or absent [142].

■ Pyramidal tract malformations due 
to abnormal guidance mechanisms

Although in mice an increasing number of genes has
been found to play a role during the development of the
pyramidal tract,and mutants show pyramidal tract mal-
formations, such malformations in man are so far re-
stricted to L1CAM mutations. Sarnat [119], however,
suggested that, in the light of animal data, netrin down-
regulation may occur. Loss of NKX2.1 and SLIT2 expres-
sion may also be found in the near future. Chow and col-
leagues [22, 59] found bilateral absence of the pyramids
in 0.7 % of 2,850 autopsies carried out at the Royal Chil-
dren’s Hospital in Melbourne (Australia). They found a
strong association with X-linked congenital aqueduct
stenosis (see Fig. 7c). X-linked hydrocephalus was first
described in a British family with several male sibs that
died at birth from congenital hydrocephalus due to
aqueduct stenosis [15]. The discovery that L1CAM mu-
tations may lead to an X-linked recessive disorder with
manifestations including hydrocephalus, adducted
thumbs,spastic hemiplegia due to hypoplasia of the cor-
ticospinal tracts, hypoplasia or agenesis of the corpus
callosum and mental retardation, led to a steadily in-
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creasing list of familiar and isolated cases. Since the first
mutation report [117], more than 100 families and iso-
lated cases with L1CAM mutations have been described
[40, 47]. Previously described disorders such as X-linked
hydrocephalus, MASA (mental retardation, adducted
thumbs, spastic paraparesis, agenesis of the corpus cal-
losum) syndrome, X-linked agenesis of the corpus cal-
losum and spastic paraplegia type 1 represent pheno-
typic variants of L1CAM mutations. In a screening study
of 153 cases with prenatally or clinically suspected X-
chromosomal hydrocephalus [40], a mutation detection
rate of 74.2 % was found for patients with at least two ad-
ditional cases in the family, but only 16 mutations in the
102 cases with negative family history (15.7 % detection
rate). In contrast to data in mouse mutants, in a 2-week-
old male with an L1CAM mutation, normal pyramidal
decussation and axonal projections to the spinal cord
were found [32].

■ Malformations of the pyramidal tract due 
to secondarily acquired injury

Absence of the corticospinal tracts may also occur in
many cases of antenatal and perinatal encephaloclastic,
destructive lesions such as porencephaly (Fig. 6d, e) and
hydranencephaly [50, 103, 125]. In porencephaly a com-
municating “hole”-like lesion is found, whereas in hy-
dranencephaly complete destruction of the cerebral
hemispheres has resulted. Porencephaly and hydranen-
cephaly are residual to the destruction of brain tissue
from a failure in carotid circulation or fetal infection, es-
pecially toxoplasmosis and cytomegalovirus, and differ
only in terms of the extent of the damage [48, 50, 60, 103,
125, 140]. Affected infants show severe mental retarda-
tion and spastic quadriplegia. Absence of one pyramid
was also noted in a case of traumatic amniocentesis
[124].

The most common type of pyramidal tract damage is
due to hypoxic-ischemic injury of the cerebral white
matter [11, 125, 140]. It has an increasing prevalence as
smaller, more premature infants survive because of bet-
ter neonatal care. In younger premature infants (22- to
30-week-old), the blood vessels of the germinal,periven-
tricular zone and the perforating vessels of the external
glial limiting membrane are particularly vulnerable to
perinatal asphyxia [89]. Damage to these vessels often
causes focal hemorrhagic lesions. In older premature in-
fants (30–34 weeks), the fetal periventricular white mat-
ter seems to be particularly vulnerable to hypoxic-is-
chemic injury, leading to periventricular leukomalacia

(PVL), and often resulting in infarction (necrosis) and
cavitation [90, 91]. PVL refers to necrosis of white mat-
ter in a characteristic distribution, i. e. in the white mat-
ter dorsal and lateral to the external angles of the lateral
ventricles. The corticospinal tracts run through the
periventricular region. Therefore, impaired motor func-
tion is the most common neurological sequel of periven-
tricular white matter injury [2, 11, 31, 128, 130]. MRI
studies [16, 36, 128, 129] show that the amount of Wal-
lerian degeneration visible by asymmetry of the brain
stem in hemiparetic children correlates well with motor
dysfunction. Pyramidal tract damage correlates with
motor dysfunction in PVL [130]. Epidemiological and
experimental studies have demonstrated a strong asso-
ciation between materno-fetal infections and the devel-
opment of PVL and cerebral palsy [72, 102, 140, 141].
Another major pathogenetic factor is the maturation-
dependent vulnerability of oligodendrocyte progenitors
[8].

■ Malformations leading to anomalies 
of pyramidal tract decussation

Anomalies of the decussation of the pyramidal tract are
mostly nonspecific,coincidental anomalies [85,103,115,
139], but are frequently found in posterior fossa malfor-
mations such as occipital encephaloceles [138], the
Dandy-Walker malformation [26, 66, 82], Joubert syn-
drome [49, 133, 146], and in cases with extensive malfor-
mations of the brain stem such as Möbius syndrome
(see Fig. 8f).

Conclusions

This survey of the neuropathological and clinical litera-
ture reveals that malformations of the pyramidal tracts
may occur in a large number of developmental disor-
ders. Most of these disorders form part of a broad spec-
trum, ranging from disorders of patterning, neurogene-
sis and neuronal migration of the cerebral cortex to
hypoxic-ischemic injury of the white matter. Given the
formidable task of corticospinal tract axons to find their
way through the internal capsule, brain stem and spinal
cord, and the number of genes involved, it is surprising
that so few defects have been found so far in axon guid-
ance mechanisms of the human pyramidal tract. The
molecular nature of such disorders is, however, only be-
ginning to be revealed.
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