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Introduction

Adult patients with peripheral neuropathy of a possible
inherited nature are commonly encountered in clinical
practice. Although there are a number of signs pointing
to a hereditary neuropathy, some patients are not prop-
erly diagnosed and the full potential of molecular diag-
nosis is not completely exploited. This paper reviews the
clinical diagnostic approach to these patients by
analysing: elements that point to a diagnosis of a hered-
itary neuropathy, different modalities of presentation,
laboratory and instrumental diagnostic tests (including
molecular tests), symptoms and signs of involvement of
other organs that may accompany some inherited neu-
ropathies.

Clues pointing to hereditary neuropathy

Family history

This obviously needs to be thoroughly investigated, and
when other family members are affected by a peripheral
neuropathy the diagnosis of hereditary neuropathy is
very likely. The greatest difficulties arise when dealing
with sporadic cases due to de novo mutations.Moreover,
there are diseases, such as Charcot-Marie-Tooth disease
(CMT) and hereditary neuropathy with liability to pres-
sure palsies (HNPP), which present considerable ex-
pression variability and may go unrecognised in mildly
affected family members. Apparently sporadic cases in-
deed often turn out to be familial when at-risk family
members are carefully examined both clinically and
electrophysiologically [88]. In acute porphyrias, the at-
tacks occur only in a minority of disease carriers, while
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according to: disease course; in-
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the disease remains latent in the vast majority [111,125].
In other cases, the parents and ascendants of the patient
have died and may be reported to have had heart disease
but no clear neurological disorder, or, if one is present, it
has been neglected (e. g. carpal tunnel syndrome): this
may happen in familial amyloid neuropathy (FAP). On
the other hand, diabetic and alcoholic neuropathies are
frequent and the significance of a mild neuropathy in
family members must be carefully weighed.

Age at onset

Although most hereditary neuropathies have early on-
set, in CMT for instance, only a minority of patients
seeks medical advice during childhood and many are di-
agnosed later in life. In other neuropathies, onset occurs
during adulthood, as in some cases of CMT (more fre-
quently for the axonal variety CMT2), and in FAP, where
disease onset may be delayed until the 7th decade of life
[104].

Skeletal deformities

Pes cavus and scoliosis are stigmata of hereditary neu-
ropathies, and they are present in most hereditary neu-
ropathies when onset occurs early, but they may be ab-
sent when onset is late (even in CMT). Furthermore,
patients with early-onset acquired neuropathies, such as
chronic inflammatory demyelinating polyradiculoneu-
ropathy (CIDP), may have pes cavus.

Disease course

Although slowly progressive course should always raise
the hypothesis of an inherited neuropathy, there are sev-
eral examples of hereditary diseases with an acute
and/or relapsing course: typically HNPP,porphyric neu-
ropathy, and also Tangier and Refsum diseases.

Therefore, there is no single issue that is specific and
pathognomonic of inherited as opposed to acquired
neuropathy, but the diagnostic hypothesis requires eval-
uation of the entire clinical picture.

Phenotypes of hereditary neuropathies

The main phenotypes of hereditary neuropathies will be
analysed and the clinical approach for each discussed.
Different phenotypes may be identified (Table 1) ac-
cording to: a) disease course (chronic, acute, relapsing-
remitting), b) involvement of motor and/or sensory fi-
bres, and of the autonomic system (sensori-motor,
sensory, motor, plus autonomic); c) site of lesion (neu-
ropathy versus neuronopathy); d) calibre of involved fi-
bres (small-fibre versus large-fibre neuropathy); e) evi-
dence of distinctive symptoms (neuropathic pain); d)
involvement of other organs or apparatus.

■ Chronic sensory-motor polyneuropathy

This is the most common phenotype in both hereditary
and acquired neuropathies. It is the typical presentation
of CMT: an adult patient coming to the neurologist be-
cause of a slowly progressive distal symmetrical sensori-
motor neuropathy. CMT is characterised by wasting and
weakness of distal limb muscles (especially in the per-
oneal compartment), usually accompanied by distal
sensory loss, decrease or absence of tendon reflexes, and
skeletal deformities. Pes cavus is present in the vast ma-
jority of cases, while scoliosis is less common. Severity is
highly variable even within the same kinship,only rarely
leading to severe impairment [34]. Subclassification of
CMT into demyelinating (CMT1, accounting for about
2/3 of cases) and axonal (CMT2, about 1/3) varieties is
based on nerve conduction velocities (NCV), while fur-
ther subdivision depends on molecular genetics [27, 48,
88, 99] (Table 2).

For such patients, diagnosis proceeds according to
the following steps: identification of inheritance pat-
tern, electrophysiological examination, molecular
analyses, and, for selected cases, nerve biopsy [2].

a) Inheritance pattern is assessed by analysis of family
pedigree and, whenever possible, by direct clinical ex-
amination of at-risk family members; in some, electro-
physiologic examination may be warranted.CMT is usu-
ally transmitted as an autosomal dominant trait (CMT1
and CMT2). However, an X-linked form exists (CMTX,
associated with mutations of the connexin-32 gene –
Cx32) and appears to be rather common. CMTX might
represent up to 10 % of all CMT cases; it is characterised
by absence of male-to-male transmission, and is more
severe in affected males than in females both clinically
and electrophysiologically [10, 14, 32, 45]. The autoso-
mal recessive forms of CMT, grouped under the term of
CMT4, almost invariably have early onset and are more
severe than the dominant types [27, 88].

b) Electrophysiological examination is the next diagnostic
step and is extremely important for orienting DNA
analyses. The presence, degree, and pattern of nerve
conduction slowing should be assessed. In the demyeli-
nating variety CMT1, NCV is diffusely and homoge-
neously slowed, and by definition motor conduction ve-
locity (MCV) is slowed below the limit of 38 m/s; in
contrast, in the axonal variety CMT2, MCV is preserved
or only mildly decreased, above 38 m/s in upper limb
nerves [34]. Therefore, homogeneous nerve conduction
slowing below 38 m/s in upper limb nerves points to
CMT1. CMTX has a peculiar behaviour, as conduction
slowing is greater in males than females; although NCV
may vary between 18 and 60 m/s, conduction velocities
are often intermediate between CMT1 and CMT2 in
males (30–45 m/s in upper limbs),and in the lower range
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of CMT2 in females [32, 45, 62]. A certain degree of
asymmetry in nerve conduction abnormalities has been
reported in CMTX,as the median nerve is often more af-
fected than the ulnar nerve, conduction slowing may be
nonuniform along nerve trunks, and sometimes exces-
sive temporal dispersion and even conduction blocks
are found [32, 44, 62].

c) Molecular analyses. All of the clinical, inheritance, and
electrophysiological data are usually sufficient to define
the diagnostic hypothesis and select the molecular tests
to be performed [2, 31, 88].

The genetic subdivision of CMT according to gene
mutations and to identified loci is shown in Table 2. The
majority of CMT1 cases (60–90 %) carry a duplication
on chromosome 17p11.2, encompassing the peripheral
myelin protein 22 (PMP22) gene (CMT1A); in other
CMT1 patients, micromutations involving the PMP22
gene (1 %) or the myelin protein zero gene (P0, MPZ)
(CMT1B, 4–5 %) are rarely found [14, 31, 78]. Mutations
in the early-growth-response-2 gene (EGR2) have been

demonstrated in very few CMT1 families [90, 119]. The
above-mentioned and more common CMTX is associ-
ated with Cx32 mutations. In other cases, no mutation is
detected. Consequently, the steps in molecular diagnosis
reflect frequency of mutations. In autosomal dominant
or sporadic CMT with electrophysiological evidence of
demyelination (CMT1), the 17p11.2 duplication should
first be investigated. If absent, diagnosis of CMTX needs
to be considered (no male-to-male transmission, more
severe disease in affected males) and Cx32 mutations
looked for; if CMTX is ruled out, P0, PMP22, and EGR2
mutations should be looked for in this order.

The axonal type CMT2 is also genetically heteroge-
neous and it is now possible to search for mutations in
the gene coding for the neurofilament light gene (NF-L)
[29, 71]; recently another gene (Kinesin family member
1B beta, KIF1Bβ, on chromosome 1p) has been associ-
ated with CMT2 [128]. Furthermore, mutations in the
Cx32 and P0 genes have been found in families with a
CMT2 phenotype [14, 22, 28, 31, 67, 89]. To further com-
plicate the matter, other so-called intermediate forms of

Table 1 Main phenotypes of hereditary neuropathies in adulthood

Phenotype Disease Inheritance Neurologic involvement Extranervous involvement

Chronic sensori-motor Charcot-Marie- AD, X-linked, AR Distal, symmetric, sensori-motor.
polyneuropathy Tooth disease Skeletal deformities.

(also: Refsum disease, HNPP, Tangier disease)

Chronic Motor Distal HMN AD, AR Distal, symmetric, motor.
Neuronopathy

Early small-fibre Familial Amyloid AD Early: autonomic, algo-thermal anaesthesia, Weight loss.
involvement Polyneuropathy pain and paraesthesiae; Heart, kidney, vitreous body.

later: other sensory modalities; motor;
carpal tunnel sy; rare CNS involvement.

Pure sensory (and HSAN I AD Early algo-thermal anaesthesia; recurrent ulcers,
autonomic) neuropathy acromutilation, Charcot joints.

Painful neuropathy Fabry disease X-linked Episodic lancinating pain, acroparaesthesiae, Skin (angiokeratomas), heart,
(Females may be autonomic involvement. Cerebrovascular disease. kidney, respiratory tract, cornea
symptomatic) and lens, brain vessels.

(also HSAN, FAP)

Pseudo-syringomyelic Tangier disease AR Dissociated algo-thermal sensory loss, cranial, Tonsils, liver and spleen.
cervical and brachial preference; facial diplegia; Cornea, heart (coronaries).
motor upper limb, hands.
Recurrent or progressive.

Acute generalised Porphyria AD Acute paralysis. Motor > > sensory. Cranial Photosensitivity (HC, VP)
polyneuropathy (AIP, HC, VP) nerves. Autonomic. Abdominal pain.

Psychosis, seizures, coma, SIADH.

Relapsing (-progressive) Refsum disease AR Distal symmetric sensori-motor, deep sensation. Retinitis pigmentosa.
generalised polyneuropathy Episodic, relapses, progressive. Cerebellar ataxia. Heart. Bones. Skin.

Cranial nerves (hearing loss, anosmia, pupillary
abnormalities).

Acute focal neuropathies HNPP AD Acute painless mononeuropathy and brachial
plexopathy. Generalised polyneuropathy.

HNA AD Recurrent brachial plexopathy, pain, weakness. Dysmorphic features

AD Autosomal dominant; AR Autosomal recessive; AIP Acute Intermittent Porphyria; FAP Familial Amyloid Neuropathy; HC Hereditary Coproporphyria; HMN Hereditary Mo-
tor Neuronopathy; HNA Hereditary Neuralgic Amyotrophy; HNPP Hereditary Neuropathy with liability to Pressure Palsies; HSAN Hereditary Sensory and Autonomic Neu-
ropathy; VP Variegate Porphyria
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CMT have been mapped, by linkage studies performed
in families with conduction velocities between CMT1
and CMT2 [58, 117].

In the highly heterogeneous recessive forms (CMT4),
mutations in five genes have so far been identified: peri-
axin (PRX), reported in CMT4 and also in Dejerine-Sot-
tas disease patients with severe neuropathy and relevant
sensory involvement [13, 43, 109]; ganglioside-induced
differentiation-associated protein 1 (GDAP1) in a few
families with early-onset axonal CMT [7, 25]; myotubu-
larin related protein-2 (MTMR2), associated with the
peculiar form CMT4B, characterised by the presence of
myelin outfoldings in peripheral nerves [15]; n-myc
down-regulated gene-1 (NDRG1), associated with
HMSN-L, a severe recessive neuropathy with deafness in

a gypsy community in Bulgaria [55]; and Lamin A/C Nu-
clear-Envelope Protein (LMNA), in families with reces-
sive axonal CMT [30].

d) Neuropathology. The presence of several well-formed
onion bulbs is typical of CMT1A. However, nerve biopsy
should be performed only after the main genetic tests
have been performed. There is still room for neuro-
pathology in selected cases, and it may be useful in dif-
ferentiating CMT from acquired neuropathies (mainly
inflammatory ones) and other hereditary disorders
(FAP, late-onset leukodystrophy, etc.). Moreover, it may
demonstrate the presence of some myelin figures that,
although not specific, might orient the molecular inves-
tigations. In CMT1B, for instance, besides onion-bulb

Table 2 Hereditary neuropathy in adulthood: genetic and biochemical abnormalities

Disease Locus Involved gene Metabolic abnormalities

Charcot-Marie-Tooth disease (CMT)
CMT1

CMT1A 17p11.2 PMP22 (duplication, point mutations)
CMT1B 1q22-q23 P0
CMT1C 16p13.1-p12.3 ? (Ref. 108)
CMT1D 10q21-q22 EGR2

CMTX Xq13-q22 Cx32

CMT2
CMT2A 1p35-p36 KIF1Bbeta
CMT2B 3q13-q22 ?
CMT2C ? ? (Vocal cord and respiratory involvement)
CMT2D 7p14 ?
CMT2E 8p21 NF-L
CMT2F 7q11-q21 ? (Ref. 52)

CMT intermediate 10q24-q25 ?
19p12-p13.2 ?

Distal HMN II 12q24-q25 ?

Distal HMN V 7p ?

Distal HMN VII 2q14 ?

HNPP 17p11.2 PMP22 (deletion, nonsense mutations)

HNA 17q24-q25 ?
? ?

HSAN I 9q22 Serin Palmitoyltransferase, Long Chain Base Increased synthesis of glucosyl ceramide
Subunit-1 (SPTCL1)

Refsum disease 10pter-p11.2 Phytanoil-CoA α-hydroxylase Increased phytanic acid in tissues and body fluids
6q22-q24 Peroxisome biogenesis factor 7 (PEX7)

Fabry disease Xq22 α-Galactosidase A Glycosphyngolipid accumulation

Tangier disease 9q22-q31 ATP-binding cassette transporter 1 gene (ABC1) Cholesteryl esters accumulation, low serum colestherol & HDL

Familial Amyloid 18q11.2-q12.1 Transthyretin (TTR) Amyloid deposits
Neuropathy (FAP) 9q34 Gelsolin (Finnish type)

Porphyrias
AIP 11q24.1-q24.2 porphobilinogen deaminase Increased urinary and faecal porphyrins
HC 3q12 coproporphyrinogen oxidase
VP 1q22 protoporphyrinogen oxidase

AD Autosomal dominant; AR Autosomal recessive; AIP Acute Intermittent Porphyria; FAP Familial Amyloid Neuropathy; HC Hereditary Coproporphyria; HMN Hereditary Mo-
tor Neuronopathy; HNA Hereditary Neuralgic Amyotrophy; HNPP Hereditary Neuropathy with liability to Pressure Palsies; HSAN Hereditary Sensory and Autonomic Neu-
ropathy; VP Variegate Porphyria
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formations, the presence of some tomacula and myelin
foldings or, in other cases, of myelin uncompaction has
been reported with some frequency [40]. However,
myelin uncompaction may also be encountered in
CMT1A [36]. The presence of several myelin outfoldings
in the majority of fibres is characteristic of the rare
CMT4B, prompting the search for MTMR2 mutations
[15]. Predominance of axonal changes in spite of nerve
conduction slowing is frequently observed in CMTX,
and is attributed to the localisation of Cx32 at the para-
nodal region and its possible role in Schwann cell-axon
interactions [10, 62, 88].

■ Special CMT phenotypes. There are a number of addi-
tional features that may be associated with CMT. Pos-
tural and action tremor is relatively common in many
CMT forms and is sometimes particularly prominent
(Roussy-Levy syndrome, RLS); the original RLS family
has been shown to carry a P0 gene mutation [93]. Hear-
ing loss is not rare (up to 5 % in CMT1A patients) and is
probably caused by a dysfunction of the acoustic nerve
[9, 85]. Involvement of other cranial nerves is occasion-
ally seen, particularly of the VII, V (exceptionally with
trigeminal neuralgia), IX and X [88, 113]. CMT2C is
characterised by vocal cord paresis and diaphragmatic
weakness and is exceedingly rare [34]. Ophthalmopare-
sis is also exceptional and has been reported in patients
with EGR2 mutations [90]. The Thr124Met mutation in
the P0 gene has been identified in several families with
late onset CMT2 and peculiar features, namely pupillary
abnormalities, pain, hearing loss, and dysphagia [22,
28]. Pyramidal involvement or optic atrophy are some-
times seen in otherwise typical CMT patients and corre-
spond to Hereditary Motor and Sensory Neuropathy
type V and VII in the HMSN classification [34].Recently,
transient symptoms related to central nervous system
(CNS) involvement have been described in a few CMTX
patients [83, 91]; subclinical CNS involvement is known
to occur in CMTX, as revealed by abnormalities of
evoked potentials, particularly of brainstem auditory
evoked potentials [62, 80], and is explained by the ex-
pression of Cx32 not only in Schwann cells, but also in
oligodendrocytes [62, 88].

■ Differential diagnosis. Many neuropathies of different
aetiologies need to be differentiated from CMT. Diffe-
rential diagnosis may be difficult in sporadic cases or
whenever the familial nature of the disease is not evi-
dent. It may be particularly difficult to differentiate spo-
radic CMT1 and CMTX from CIDP and demyelinating
neuropathies associated with monoclonal gammopathy.
Genetic tests and serum immunofixation are of help in
the diagnosis. Fluctuating course, inflammatory infil-
trates at nerve biopsy, and very high levels of CSF pro-
teins favour the diagnosis of acquired demyelinating
neuropathy. It is very difficult to differentiate sporadic

CMT2 from chronic axonal neuropathies, as clinical
course and instrumental examination may be similar
[110]. Early onset and the presence of pes cavus make
the diagnosis of CMT2 more likely. Genetic tests for
some CMT2 subtypes have recently become available.
HNPP may have a polyneuropathic presentation mimick-
ing CMT (see below) [86, 87]. Friedreich’s ataxia in the
early stages may be mistaken for CMT, but signs of CNS
and extraneurological involvement should prompt the
appropriate search for the intronic GAA expansion in
the frataxin gene [84]. Distal myopathies may be misdi-
agnosed as CMT; EMG examination and muscle biopsy
can help by demonstrating myopathic changes [101].

■ Management. In spite of the great advances in diag-
nosing and understanding pathophysiology, little im-
provement has been made in treating these neu-
ropathies. There is no drug therapy. Physiotherapy is
important in preventing skeletal deformities (pes cavus
and scoliosis) and tendon tightening. Once they occur,
however, surgery may be useful, but care is needed in se-
lecting patients and in choosing the surgical technique.
Genetic counselling is important, particularly for the
most severe forms. Prenatal diagnosis is feasible when
the mutation is known [57]. Gene therapy will be hope-
fully available in a not too distant future [46, 127].

■ Chronic motor neuronopathy

This is a rare phenotype. Usually the presentation is en-
tirely similar to CMT but there is no involvement of sen-
sory nerves at the clinical, electrophysiologic, and neu-
ropathological levels. Inheritance is autosomal
dominant or recessive, disease severity is variable. Elec-
troneuronography (ENG) shows evidence of a motor
neuronopathy with distal predominance. However, ex-
amination of sensory nerves must be very carefully per-
formed, as it is not uncommon to overlook mild sensory
abnormalities that would cause a shift of diagnosis to
CMT2. These forms are currently classified among the
motor neuron disorders as distal hereditary motor
neuro(no)pathy (distal HMN) [47]. One adult form (dis-
tal HMN II) has been mapped to chromosome 12q24,
distal HMN type V with upper limb predominance is
linked to chromosome 7p, and HMN VII with vocal cord
paralysis to chromosome 2q14 (see Table 2) [23, 69, 114].

■ Chronic sensory (or predominantly sensory) 
neuropathy

This phenotype is less frequently encountered than sen-
sory-motor polyneuropathy, and is heterogeneous. It
can be further subdivided according to the clinical pre-
sentation,which reflects the type of fibres involved: pref-
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erential and early involvement of small fibres, pure sen-
sory neuropathy or neuronopathy,painful neuropathies.

Chronic polyneuropathy with early 
small-fibre involvement

In CMT, motor involvement almost invariably domi-
nates the clinical picture, and sensory symptoms are
usually much less prominent.When the opposite occurs,
at least in the early phases of the disease, and patients
show loss of thermal and pain sensation, other diag-
noses should be considered.

■ Familial Amyloid Polyneuropathy (FAP) typically pre-
sents with these symptoms, which are due to a small-fi-
bre neuropathy [3, 50, 51, 60, 94]. Unmyelinated and
small myelinated fibres are first involved. Other early
symptoms of FAP that reflect autonomic system dys-
function with impotence, postural hypotension, pupil-
lary abnormalities may be present. Patients may also
complain of positive sensory symptoms such as paraes-
thesiae and neuropathic pain.A carpal tunnel syndrome
may be superimposed. Loss of weight, gastrointestinal
abnormalities with alternating constipation and diar-
rhoea are other typical features as the disease worsens.
Motor involvement soon becomes evident and disabling
with muscle weakness spreading from distal to proximal
segments. Dysphagia and dysarthria due to bulbar in-
volvement may occur late. Age of onset is highly vari-
able. Progression is much faster than in CMT and dis-
ease duration until death usually ranges between 7 and
15 years. The disease is transmitted as an autosomal
dominant trait; however, penetrance is incomplete and,
as mentioned before, family history is sometimes mis-
leading. Several different disease-causing mutations in
the transthyretin (TTR) gene on chromosome 18q11.2-
q12.1 have been described [3, 51, 102]. The most com-
mon FAP mutation is Val30Met. Transthyretin is a trans-
porter protein carrying thyroxine and retinol and is one
of the proteins constituting the pre-albumin elec-
trophoretic peak. In its mutated form, it becomes unsta-
ble and precipitates as amyloid at different sites, ac-
counting both for the neuropathy and for the
involvement of other organs [3, 50, 51, 60]. It may accu-
mulate: a) in the heart, giving rise to a cardiomyopathy
with arrhythmia, congestive heart failure, hypertrophy
of interventricular septum, sudden death; b) in the vit-
reous body (vitreous opacities); c) in the kidney, some-
times causing a nephrotic syndrome; d) rarely in the lep-
tomeninges, causing subarachnoid haemorrhage,
seizures, and hydrocephalus [19, 51]. It is of interest that
although TTR is produced by the liver, a small amount is
synthesised by the epithelial cells of the choroid plexus
and by the retinal epithelium. Orthotopic liver trans-
plantation (LT) is the only currently available therapy [3,
50, 51]. LT stops or even improves autonomic dysfunc-

tion and sensory neuropathy, and levels of abnormal
TTR decrease after LT [3, 6, 50, 51]. However, the proce-
dure still carries significant mortality and morbidity
and careful selection of candidates is needed. Prognosis
is better when LT is performed in younger patients or
early in the course of the disease. There is also evidence
that prognosis after LT differs depending on TTR mu-
tation [50, 51].

Molecular analysis of TTR mutations has greatly sim-
plified the diagnostic process. However, FAP diagnosis
may be difficult when family history is negative and in
the early stages. Autonomic signs may be overlooked
and erroneous diagnosis of idiopathic chronic axonal
neuropathy is frequently made. Electrophysiological ex-
amination shows aspecific features of an axonal neu-
ropathy. Demonstration of tissue amyloid deposits is a
straightforward way of making the diagnosis. However,
specific staining for amyloid needs to be performed.The
highest probability of finding amyloid is obtained with
biopsy specimens of nerve, abdominal fat pad, rectal
mucosa,and skin [3,50,51,60].Amyloid deposits may be
specifically labelled with anti-TTR antibodies [51].
Nerve biopsy also shows early loss of small fibres, but as
the disease progresses all fibre types are involved [3, 60].
Amyloid accumulates preferentially around vessels in
the endoneurium.

Evidence of extranervous involvement can help the
diagnosis. Slit lamp examination for vitreous opacities,
EKG and echocardiography for rhythm abnormalities
and enlargement of interventricular septum, and renal
function assessment are all complementary tests.

Amyloid deposition may also cause lattice corneal
dystrophy leading to corneal clouding, often followed by
a cranial neuropathy with facial weakness, bulbar signs,
a mild generalised neuropathy, and skin changes [70].
This is a different and rare disorder due to mutations in
the gelsolin gene on chromosome 9q34 and has been re-
ported in Finnish families [68, 70]. A mutation in the
apolipoprotein A-I protein has been shown to be re-
sponsible for amyloid neuropathy in the family reported
by Van Allen et al. in 1968 [79, 116].

Chronic sensory neuropathy – neuronopathy

The phenotype of pure sensory neuropathy is rare in
hereditary neuropathy and is more frequently associ-
ated with involvement of other nervous system fibres,
such as in Friedreich’s ataxia, spinocerebellar diseases,
vitamin E deficiency, abetalipoproteinaemia, the syn-
drome of neuropathy ataxia and retinitis pigmentosa
(NARP) [34, 76, 124, 126]. In these cases, it usually re-
flects the involvement of dorsal root ganglia (DRG) and
is therefore a sensory ganglionopathy. Magnetic reso-
nance imaging (MRI) of the cervical spinal cord may
help in localising the disease process to the DRG by
demonstrating hyperintensity of the posterior columns
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in T2-weighted images, which is due to central sensory
projection degeneration [61].

An adult patient with a familial pure sensory neu-
ropathy is most likely to suffer from a hereditary sensory
and autonomic neuropathy (HSAN). HSANs are a group
of rare disorders classified according to inheritance pat-
tern, age of onset and class of involved fibres [33, 99].

■ HSAN type I is transmitted as an autosomal dominant
trait, and is characterised by a severe and progressive
sensory loss of all modalities, particularly of tempera-
ture and pain sensation, leading to recurrent perforating
plantar ulcers, acromutilations, stress fractures, and
Charcot-type arthropathy [33, 99]. Patients often com-
plain of shooting pains. Pes cavus is commonly present,
and mild motor involvement may be seen. Hearing loss
has also been reported. Electrophysiology demonstrates
an absence of sensory action potentials. Disease onset
occurs at juvenile or adult age, and the course is very
slowly progressive. Nerve biopsy reveals loss of fibres of
all calibres. DRG neurons are the likely site of degenera-
tion. HSAN I is associated with mutations of the SPTLC1
gene (Serin Palmitoyltransferase, Long Chain Base Sub-
unit-1) on chromosome 9q22: there is in vitro evidence
that the deficit of the beta subunit 1 of this enzyme
causes an increased synthesis of glucosyl ceramide
which, in turn, is supposed to activate apoptosis and
neuronal death [8, 26].

■ HSAN type II, which is characterised by a more gener-
alised loss of superficial and deep sensations, with ul-
cers, acromutilation, and decreased sweating, is trans-
mitted as an autosomal recessive trait and has infantile
onset [33, 99]. Like HSAN II, the other HSAN subtypes
have early onset and are diseases of the paediatric age.

Painful neuropathy

Positive sensory symptoms are rarely seen in CMT.
Paraesthesiae and pain are common in amyloid neu-
ropathy, and in HSAN I. Shooting and lancinating pain
is typically seen in another hereditary neuropathy:
Fabry disease. This is an X-linked disease due to muta-
tions in the α-galactosidase A (GLA) gene on chromo-
some Xq22; deficit of the enzymatic activity leads to
accumulation of incompletely metabolised glycosphin-
golipids in different tissues [16, 17]. Accumulation in
DRG and autonomic gangliar cells is responsible for a
sensory and autonomic neuronopathy characterised by:
episodes of excruciating distal limb pain and
acroparaesthesiae (which can be exercise-related and
accompanied by fever), visceral pain, hypohydrosis, de-
creased lacrimation and salivation, impaired enteric
motility. Hemizygous male patients usually develop the
full clinical picture due to massive deposition of gly-
cosphingolipids (mainly in endothelial and smooth

muscle cells of blood vessels) with involvement of sev-
eral organs [16, 17, 65]: a) the skin, with angiokeratoma
corporis diffusum; b) the heart, with electrocardio-
graphic changes, exercise intolerance, angina, hyper-
trophic cardiomyopathy; c) the kidney, with proteinuria
progressing to renal failure; d) the respiratory tract,with
airway obstruction that is likely to result from narrow-
ing by accumulated glycosphingolipids [21]; e) the eye,
with corneal opacities and posterior capsular cataract;
f) the brain, with cerebrovascular disease. Nerve biopsy
specimens show loss of small myelinated and unmyeli-
nated fibres; glycosphingolipid deposits appear as lyso-
somal inclusions with a concentric lamellar configura-
tion when seen on electron microscopy [16]. Diagnosis
is not difficult when the full-blown clinical picture is ev-
ident. However, diagnosis is difficult in the early stages
and in symptomatic heterozygous females, who may
manifest the disease with a painful neuropathy, variably
associated with other mild signs, such as cardiac and re-
nal dysfunction, corneal opacities (usually present),
sometimes cerebrovascular disease, that may be over-
looked or considered not to be linked to the disease [16,
17, 121]. Diagnosis is based on the demonstration of de-
crease of alpha-galactosidase A activity in leukocytes or
fibroblasts, but this is not always evident in female car-
riers [11, 16, 17, 41]. Skin biopsy may demonstrate the
typical inclusions; brain MRI may show hyperintense fo-
cal lesions linked to vascular disease [24]. Currently, di-
agnosis relies also on screening for GLA gene mutations
[11, 41]. Enzyme replacement therapy (with intra-
venously-administered alpha-galactosidase A) has re-
cently become available and appears to be safe and effi-
cacious for affected males [17, 18, 35]. Gene therapy and
agents for the treatment of glycosphingolipid storage
disorders are being developed [1, 98].

Pseudo-syringomyelic neuropathy

Progressive or recurrent neuropathy with dissociated
loss of temperature and pain sensations which spares
the distal part of the limbs (resembling syringomyelia)
is seen in the very rare Tangier disease [37,42,92,95,103,
126]. The cranial, cervical and brachial dermatomes are
preferentially involved. Facial diplegia, wasting and
weakness of upper limb muscles,particularly hand mus-
cles, may be associated. In other cases, Tangier disease
presents with a slowly progressive sensori-motor
polyneuropathy [126]. Onset may occur during child-
hood or adulthood. Transmission is autosomal reces-
sive. Homozygous patients show accumulation of cho-
lesteryl esters in macrophages, which causes
enlargement of the liver, spleen, lymph nodes, and ton-
sils. The latter are characteristically orange and very en-
larged, and this may be a clue to diagnosis. Corneal
clouding may cause visual impairment. Early coronary
artery disease is another feature of Tangier disease. Lab-
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oratory screening shows reduced total cholesterol level,
and very low HDL concentration. Nerve biopsy reveals
lipid storage in Schwann cells and interstitial cells, and
preferential loss of small myelinated and unmyelinated
fibres [37, 42, 92, 95, 103, 126]. The disease has been
shown to be due to mutations in the ATP-binding cas-
sette transporter 1 gene (ABC1) on chromosome 9q22-
q31, which is involved in cholesterol and phospholipid
cellular trafficking [12, 20, 100].

■ Acute generalised neuropathy

Acute polyneuropathy rapidly progressing to tetraplegia
and cranial nerve involvement is usually due to the
dysimmune Guillain-Barré syndrome (GBS). However,
the diagnosis of porphyric neuropathy should always be
considered, particularly when the electrophysiological
examination shows an axonal rather than a demyelinat-
ing neuropathy and if abdominal pain and evidence of
encephalopathy precede or accompany the neuropathy.
Although the porphyrias are rare disorders, they should
be borne in mind since they are potentially life-threat-
ening diseases which can be treated and prevented.
Neurological manifestations are seen almost exclusively
in the hepatic porphyrias, particularly in acute inter-
mittent porphyria (AIP) with defective porphobilino-
gen deaminase, and less commonly hereditary copro-
porphyria (HC) with defective coproporphyrinogen
oxidase, Variegate Porphyria (VP) with defective proto-
porphyrinogen oxidase), and Doss Porphyria (amino-
laevulinic acid dehydrase deficiency) [82, 97, 111, 125].
Porphyrias are usually transmitted as autosomal domi-
nant traits and are latent until an acute attack (which
occurs only in a minority of disease carriers) is precipi-
tated by environmental factors such as infections,
surgery, drugs, or by metabolic (low-caloric diet, starva-
tion) or hormonal (menstrual luteal phase, pregnancy)
changes.Attacks occur after puberty and are more com-
mon in females.

Colicky abdominal pain, constipation and tachycar-
dia are the first symptoms, often leading to inappropri-
ate treatment with sedatives and even abdominal
surgery which can further worsen the attack. Central
nervous system involvement causes agitation, which
may progress to frank psychosis, seizures, and even
coma. Hyponatraemia due to inappropriate secretion of
ADH, or to electrolyte depletion, is another possible
complication. Neuropathy develops within a few days
and closely resembles GBS because of back pain, rapidly
progressive proximal and distal motor weakness, mild
sensory symptoms, frequent cranial nerve involvement
with facial and bulbar weakness (and even oculomotor
paresis); respiratory palsy may occur. Autonomic sym-
pathetic overactivity produces also mydriasis,hyperten-
sion, and micturition dysfunction.

The following elements are of help in distinguishing
porphyric neuropathy from GBS: ascending paralysis,
early loss of deep tendon reflexes, and marked CSF pro-
tein elevation are rarely seen in porphyrias; electroneu-
rography evidence of axonal neuropathy, history of
urine colour changes (due to polymerisation of porpho-
bilinogen to porphyrins and other pigments), photosen-
sitivity (seen in HC and VP and due to porphyrin accu-
mulation in the skin) suggest porphyria. Differential
diagnosis includes metal poisoning (thallium and ar-
senic). Diagnosis is based on the demonstration of in-
creased levels of urinary aminolaevulinic acid, and of
urinary and faecal porphyrins during the acute attacks;
in the latent phases, however, urinary and faecal por-
phyrin levels may be normal. Each porphyria type
shows a specific excretion pattern of haem metabolites.
Demonstration of decreased enzymatic activity (e. g., of
porphobilinogen deaminase in erythrocytes for AIP pa-
tients) makes it possible to reach the right diagnosis [82,
111, 125]. Several different mutations in the porpho-
bilinogen deaminase gene have been reported in AIP
[97, 111]. Prevention requires avoiding several drugs
(including most anti-epileptic drugs), following a
proper caloric diet and, in women with menstrual-re-
lated attacks, administering analogues of luteinizing
hormone-releasing hormone [4]. During acute attacks,
intravenous glucose (up to 300 g/day) and haem arginate
(usually 3 mg/Kg/day for 4 days) revert the biochemical
abnormalities and, if administered early, the symptoms
[82, 111, 125].

■ Relapsing (-progressive) generalised polyneuropathy

A generalised sensori-motor polyneuropathy with a re-
lapsing-remitting or progressive course is a feature of
Refsum disease, a rare recessive disorder associated with
mutations in the phytanoil-CoA α-hydroxylase gene on
chromosome 10pter-p11.2,which cause impaired degra-
dation of branched chain fatty acids and tissue accumu-
lation of phytanic acid [53, 74, 105, 118, 122]. The neu-
ropathy is demyelinating as shown by NCV studies and
nerve biopsy evidence of hypertrophic neuropathy with
onion-bulb formations [105]. Sudden worsening may
occur and the neuropathy may be episodic in the early
stages; nerve conduction slowing may be nonuniform
[62, 118]. On the whole, the course of this polyneuropa-
thy is progressive, pes cavus is usually present and CSF
examination shows increased protein concentration
[105]. Therefore, it may be confused with either CMT1
and CIDP. However, Refsum disease is always charac-
terised by the presence of salt-and-pepper retinitis pig-
mentosa with hemeralopia, and cerebellar ataxia is pres-
ent, particularly in the late stages. Other features may 
be found [105, 118] and include: 1) cranial nerve in-
volvement with sensorineural hearing loss, anosmia,
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pupillary abnormalities; 2) cardiopathy with EKG ab-
normalities, cardiomegaly; 3) other skeletal malforma-
tions, i. e. symmetrical shortening or elongation of
metatarsal (particularly III and IV), metacarpal, finger
or toe bones; 4) skin changes, from dry skin to overt
ichthyosis; 5) cataract. Diagnosis is based on the demon-
stration of increased plasma level of phytanic acid.
Therapy calls for a diet limiting the intake of phytanic
acid and free phytol, which are contained mainly in
dairy products and ruminant meat and fat [105, 118,
122]. Plasmapheresis, which is able to lower phytanic
acid levels, can also be used as a long-term treatment
and is particularly helpful during acute relapses, which
may occur spontaneously or after stress, weight loss,
concurrent illnesses, pregnancy [105, 118]. Currently, re-
search is focused on the possibility of rescuing the mu-
tated enzyme via dietary supplementation with appro-
priate amino acids [118].Recently,genetic heterogeneity
of Refsum disease has become evident and mutations in
the peroxisome biogenesis factor-7 gene (PEX7) in a
subset of patients have been demonstrated [118, 122].

■ Acute-relapsing focal neuropathy

Acute painless mononeuropathy or brachial plexopathy
is the usual presentation of hereditary neuropathy with
liability to pressure palsies (HNPP, tomaculous neuropa-
thy), an autosomal dominant disorder characterised by
abnormal sensitivity of nerves to compression.Episodes
of focal neuropathies are typically painless and tran-
sient, may be recurrent, occur after mild trauma or pres-
sure, or with no evident triggering factor [123]. Ulnar,
radial, and peroneal nerves, and brachial plexus are the
most frequently affected segments. Compression
paraesthesiae are a typical complaint. Pes cavus is seen
in more than one third of the cases. Disease expression
varies considerably: some subjects are asymptomatic
and show only minimal signs at clinical examination,
whereas older patients may develop a generalised neu-
ropathy mimicking CMT disease [75, 86, 115]. Electro-
physiological studies demonstrate nerve conduction ab-
normalities which may be mild or diffuse but typically
are non-homogeneous, asymmetric, and always more
evident at common entrapment sites [5, 63, 75, 86].
Nerve biopsy reveals the characteristic focal myelin
thickenings (tomacula) in several fibres [123].

HNPP is associated with the deletion of the same
17p11.2 chromosomal region that is duplicated in
CMT1A and encompasses the PMP22 gene [27, 48, 87].
Rarely is the deletion not found and in a few HNPP cases
PMP22 micromutations have been demonstrated [73,
87].

Patients with acute painless mononeuropathy,
brachial plexopathy, multiple mononeuropathy, and
even those with chronic asymmetric polyneuropathy of

unknown aetiology, especially if young, should be con-
sidered potentially affected by HNPP. Therefore, they
should undergo electrophysiological examination to
look for evidence of multiple entrapments, and, if they
are found, the patients must be submitted to DNA analy-
sis. Like CMT, a family history of HNPP patients may of-
ten be apparently unremarkable, and thorough clinical,
electrophysiological, and molecular examination of at-
risk family members is warranted to disclose the famil-
ial nature of the disease.

Another familial form of recurrent focal neuropathy
is Hereditary Neuralgic Amyotrophy (HNA), charac-
terised by repeated episodes of acute brachial plexopa-
thy with muscle weakness and atrophy, sometimes with
sensory changes, preceded by severe pain [107, 123].
Like the sporadic Parsonage-Turner syndrome, the
episodes may be triggered by pregnancy, delivery, infec-
tions or immunisation. In very few patients the acute
episodes may selectively involve cranial nerves, distal
segments of the upper limb, or a lower limb [123]. Re-
covery is usually complete but requires several weeks or
months. Dysmorphic features have been reported in af-
fected patients, mainly orbital hypotelorism, and un-
usual skin folds and creases in the neck [54]. EMG ex-
amination and nerve biopsy findings are not consistent
with a generalised neuropathy. HNA is an autosomal
dominant disorder and in some families it has been
linked to chromosome 17q24-q25, whereas in others
linkage to 17q has been excluded [59, 72, 106, 107, 120].

■ Rare inherited neuropathy

Peripheral neuropathy may be a feature of a number of
rare diseases or sometimes may be the onset manifesta-
tion of more complex neurological diseases. Peripheral
neuropathy has been reported as the presenting feature
of late-onset Krabbe leukodystrophy [66]; peripheral
neuropathy is a feature of other leukodystrophy (LD)
(metachromatic LD, adrenoleukodystrophy-adreno-
myeloneuropathy) [112] and also of some cases of
Pelizaeus-Merzbacher disease associated with certain
mutations of the proteolipid protein (particularly null
mutations which involve also its DM20 isoform) [39,62].
An adult-onset sensori-motor neuropathy with in-
creased levels of pristanic acid has been associated with
mutations of the gene encoding peroxisomal alpha-
methylacyl-CoA racemase [38]. Among the mitochon-
drial cytopathies, NARP is characterised by a sensory
neuropathy [76], and the MNGIE (MyoNeuroGastroIn-
testinal Encephalopathy) syndrome by a peripheral neu-
ropathy with frequent enteric pseudo-obstructions (to-
gether with a diffuse leukoencephalopathy, and a
myopathy) [49, 76, 81]. Madelung disease combines mul-
tiple symmetrical lipomatosis with peripheral neuropa-
thy [96]; other neurological signs may be present and in
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some cases mtDNA mutations have been identified [76,
77].

Adult onset polyglucosan body disease is charac-
terised by involvement of central and peripheral ner-
vous systems, with pyramidal signs, cognitive impair-
ment, urinary disturbances and polyneuropathy: nerve
biopsy may be particularly useful by demonstrating
polyglucosan bodies [64]. Chedjack-Higashi is a rare
and lethal disease characterised by severe immunologic

defects, reduced pigmentation, and lymphoproliferative
disorders; a proportion of patients have a milder phe-
notype and in adult life develop progressive neurologi-
cal dysfunction including peripheral neuropathy [56].
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